Misplaced Pages

Pietenpol Air Camper

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The fuselage ( / ˈ f juː z əl ɑː ʒ / ; from the French fuselé "spindle-shaped") is an aircraft 's main body section. It holds crew , passengers, or cargo . In single-engine aircraft, it will usually contain an engine as well, although in some amphibious aircraft the single engine is mounted on a pylon attached to the fuselage, which in turn is used as a floating hull . The fuselage also serves to position the control and stabilization surfaces in specific relationships to lifting surfaces , which is required for aircraft stability and maneuverability.

#147852

40-570: The Pietenpol Air Camper is a simple parasol wing homebuilt aircraft designed by Bernard H. Pietenpol . The first prototype that became the Air Camper was built and flown by Pietenpol in 1928 . The Air Camper was designed to be built of spruce and plywood . One of Pietenpol's goals was to create a plane that was affordable and easy to construct for home builders . Building an Air Camper requires basic woodworking skills and tools. Builders also need to fabricate some metal fittings to attach

80-408: A biplane , a parasol wing has less bracing and lower drag. It remains a popular configuration for amphibians and small homebuilt and ultralight aircraft . Although the first successful aircraft were biplanes, the first attempts at heavier-than-air flying machines were monoplanes, and many pioneers continued to develop monoplane designs. For example, the first aeroplane to be put into production

120-422: A Pietenpol Air Camper or Sky Scout Airplane" . Retrieved May 14, 2013 . General characteristics Performance Aircraft of comparable role, configuration, and era Related lists Parasol wing A monoplane is a fixed-wing aircraft configuration with a single mainplane, in contrast to a biplane or other types of multiplanes , which have multiple planes. A monoplane has inherently

160-485: A design is intended to be "self jigging", not requiring a complete fixture for alignment. Early aircraft were constructed of wood frames covered in fabric. As monoplanes became popular, metal frames improved the strength, which eventually led to all-metal-structure aircraft, with metal covering for all its exterior surfaces - this was first pioneered in the second half of 1915 . Some modern aircraft are constructed with composite materials for major control surfaces, wings, or

200-544: A low-wing, shoulder-wing and high-wing configurations give increased propeller clearance on multi-engined aircraft. On a large aircraft, there is little practical difference between a shoulder wing and a high wing; but on a light aircraft, the configuration is significant because it offers superior visibility to the pilot. On light aircraft, shoulder-wings tend to be mounted further aft than a high wing, and so may need to be swept forward to maintain correct center of gravity . Examples of light aircraft with shoulder wings include

240-441: A pylon. Additional bracing may be provided by struts or wires extending from the fuselage sides. The first parasol monoplanes were adaptations of shoulder wing monoplanes, since raising a shoulder mounted wing above the fuselage greatly improved visibility downwards, which was useful for reconnaissance roles, as with the widely used Morane-Saulnier L . The parasol wing allows for an efficient design with good pilot visibility, and

280-548: A scratch pane near the passenger. Acrylic is susceptible to crazing  : a network of fine cracks appears but can be polished to restore optical transparency , removal and polishing typically undergo every 2–3 years for uncoated windows. " Flying wing " aircraft, such as the Northrop YB-49 Flying Wing and the Northrop B-2 Spirit bomber have no separate fuselage; instead what would be

320-467: Is a configuration whereby the wing is mounted near the top of the fuselage but not on the very top. It is so called because it sits on the "shoulder" of the fuselage, rather than on the pilot's shoulder. Shoulder-wings and high-wings share some characteristics, namely: they support a pendulous fuselage which requires no wing dihedral for stability; and, by comparison with a low-wing, a shoulder-wing's limited ground effect reduces float on landing. Compared to

360-445: Is composed of 4–6 panels, 35 kg (77 lb) each on an Airbus A320 . In its lifetime, an average aircraft goes through three or four windshields , and the market is shared evenly between OEM and higher margins aftermarket . Cabin windows, made from much lighter than glass stretched acrylic glass , consists of multiple panes: an outer one built to support four times the maximum cabin pressure, an inner one for redundancy and

400-445: Is still in use in many lightweight aircraft using welded steel tube trusses. A box truss fuselage structure can also be built out of wood—often covered with plywood. Simple box structures may be rounded by the addition of supported lightweight stringers, allowing the fabric covering to form a more aerodynamic shape, or one more pleasing to the eye. Geodesic structural elements were used by Barnes Wallis for British Vickers between

440-566: Is the creation of fuselages using molded plywood, in which several sheets are laid with the grain in differing directions to give the monocoque type below. In this method, the exterior surface of the fuselage is also the primary structure. A typical early form of this (see the Lockheed Vega ) was built using molded plywood , where the layers of plywood are formed over a "plug" or within a mold . A later form of this structure uses fiberglass cloth impregnated with polyester or epoxy resin as

SECTION 10

#1732781151148

480-420: Is then disassembled and removed from the completed fuselage shell, which is then fitted out with wiring, controls, and interior equipment such as seats and luggage bins. Most modern large aircraft are built using this technique, but use several large sections constructed in this fashion which are then joined with fasteners to form the complete fuselage. As the accuracy of the final product is determined largely by

520-428: Is truly monocoque , since stiffening elements are incorporated into the structure to carry concentrated loads that would otherwise buckle the thin skin. The use of molded fiberglass using negative ("female") molds (which give a nearly finished product) is prevalent in the series production of many modern sailplanes . The use of molded composites for fuselage structures is being extended to large passenger aircraft such as

560-644: The ARV Super2 , the Bölkow Junior , Saab Safari and the Barber Snark . A high wing has its upper surface on or above the top of the fuselage. It shares many advantages and disadvantages with the shoulder wing, but on a light aircraft, the high wing has poorer upwards visibility. On light aircraft such as the Cessna 152 , the wing is usually located above the cabin, so that the wing spar passes over

600-533: The Boeing 787 Dreamliner (using pressure-molding on female molds). This is the preferred method of constructing an all- aluminum fuselage. First, a series of formers in the shape of the fuselage cross sections are held in position on a rigid fixture . These formers are then joined with lightweight longitudinal elements called stringers . These are in turn covered with a skin of sheet aluminum, attached by riveting or by bonding with special adhesives. The fixture

640-440: The cantilever wing more practical — first pioneered together by the revolutionary German Junkers J 1 factory demonstrator in 1915–16 — they became common during the post–World War I period, the day of the braced wing passed, and by the 1930s, the cantilever monoplane was fast becoming the standard configuration for a fixed-wing aircraft. Advanced monoplane fighter-aircraft designs were mass-produced for military services around

680-462: The cantilever wing, which carries all structural forces internally. However, to fly at practical speeds the wing must be made thin, which requires a heavy structure to make it strong and stiff enough. External bracing can be used to improve structural efficiency, reducing weight and cost. For a wing of a given size, the weight reduction allows it to fly slower and with a lower-powered and more economical engine. For this reason, all monoplane wings in

720-537: The " Fokker scourge ". The German military Idflieg aircraft designation system prior to 1918 prefixed monoplane type designations with an E , until the approval of the Fokker D.VIII fighter from its former "E.V" designation. However, the success of the Fokker was short-lived, and World War I was dominated by biplanes. Towards the end of the war, the parasol monoplane became popular and successful designs were produced into

760-405: The 1920s. Nonetheless, relatively few monoplane types were built between 1914 and the late 1920s, compared with the number of biplanes. The reasons for this were primarily practical. With the low engine powers and airspeeds available, the wings of a monoplane needed to be large in order to create enough lift while a biplane could have two smaller wings and so be made smaller and lighter. Towards

800-686: The Aircamper have been built in Europe and in 2012 were still flying. In the 1920s and 1930s, kits were available for the design, but there were none available again until 2015 when the Pietenpol Aircraft Company introduced a kit version of the Air Camper, with components supplied by Aircraft Spruce & Specialty . The kit includes all parts except the engine, dope , fabric covering , and hardware. Data from B.H. Pietenpol And Sons Air Camper Aircraft (2013). "How to Build

840-564: The costly fixture, this form is suitable for series production, where many identical aircraft are to be produced. Early examples of this type include the Douglas Aircraft DC-2 and DC-3 civil aircraft and the Boeing B-17 Flying Fortress . Most metal light aircraft are constructed using this process. Both monocoque and semi-monocoque are referred to as "stressed skin" structures as all or a portion of

SECTION 20

#1732781151148

880-478: The end of the First World War, the inherent high drag of the biplane was beginning to restrict performance. Engines were not yet powerful enough to make the heavy cantilever-wing monoplane viable, and the braced parasol wing became popular on fighter aircraft, although few arrived in time to see combat. It remained popular throughout the 1920s. On flying boats with a shallow hull, a parasol wing allows

920-487: The engines to be mounted above the spray from the water when taking off and landing. This arrangement was popular on flying boats during the 1930s; a late example being the Consolidated PBY Catalina . It died out when taller hulls became the norm during World War II, allowing a high wing to be attached directly to the hull. As ever-increasing engine powers made the weight of all-metal construction and

960-641: The entire fuselage such as the Boeing 787. On the 787, it makes possible higher pressurization levels and larger windows for passenger comfort as well as lower weight to reduce operating costs. The Boeing 787 weighs 1,500 lb (680 kg) less than if it were an all-aluminum assembly. Cockpit windshields on the Airbus A320 must withstand bird strikes up to 350 kn (650 km/h) and are made of chemically strengthened glass . They are usually composed of three layers or plies, of glass or plastic :

1000-434: The external load (i.e. from wings and empennage, and from discrete masses such as the engine) is taken by the surface covering. In addition, all the load from internal pressurization is carried (as skin tension ) by the external skin. The proportioning of loads between the components is a design choice dictated largely by the dimensions, strength, and elasticity of the components available for construction and whether or not

1040-497: The fuselage is a thickened portion of the wing structure. Conversely, there have been a small number of aircraft designs which have no separate wing, but use the fuselage to generate lift. Examples include National Aeronautics and Space Administration 's experimental lifting body designs and the Vought XF5U-1 Flying Flapjack . A blended wing body can be considered a mixture of the above. It carries

1080-406: The highest efficiency and lowest drag of any wing configuration and is the simplest to build. However, during the early years of flight, these advantages were offset by its greater weight and lower manoeuvrability, making it relatively rare until the 1930s. Since then, the monoplane has been the most common form for a fixed-wing aircraft. The inherent efficiency of the monoplane is best achieved in

1120-634: The inner two are 8 mm (0.3 in.) thick each and are structural, while the outer ply, about 3 mm thick, is a barrier against foreign object damage and abrasion , with often a hydrophobic coating. It must prevent fogging inside the cabin and de-ice from −50 °C (−58 °F). This was previously done with thin wires similar to a rear car window but is now accomplished with a transparent, nanometers-thick coating of indium tin oxide sitting between plies, electrically conductive and thus transmitting heat. Curved glass improves aerodynamics but sight criteria also needs larger panes. A cockpit windshield

1160-427: The low-wing position is its significant ground effect , giving the plane a tendency to float farther before landing. Conversely, this ground effect permits shorter takeoffs. A mid wing is mounted midway up the fuselage. The carry-through spar structure can reduce the useful fuselage volume near its centre of gravity, where space is often in most demand. A shoulder wing (a category between high-wing and mid-wing)

1200-554: The main distinction between types of monoplane is where the wing is mounted vertically on the fuselage . A low wing is one which is located on or near the bottom of the fuselage. Placing the wing low allows good visibility upwards and frees the central fuselage from the wing spar carry-through. By reducing pendulum stability, it makes the aircraft more manoeuvrable, as on the Spitfire ; but aircraft that value stability over manoeuvrability may then need some dihedral . A feature of

1240-447: The occupants' heads, leaving the wing in the ideal fore-aft position. An advantage of the high-wing configuration is that the fuselage is closer to the ground which eases cargo loading, especially for aircraft with a rear-fuselage cargo door. Military cargo aircraft are predominantly high-wing designs with a rear cargo door. A parasol wing is not directly attached to the fuselage but held above it, supported by either cabane struts or

Pietenpol Air Camper - Misplaced Pages Continue

1280-416: The pioneer era were braced and most were up until the early 1930s. However, the exposed struts or wires create additional drag, lowering aerodynamic efficiency and reducing the maximum speed. High-speed and long-range designs tend to be pure cantilevers, while low-speed short-range types are often given bracing. Besides the general variations in wing configuration such as tail position and use of bracing,

1320-480: The skin, instead of plywood. A simple form of this used in some amateur-built aircraft uses rigid expanded foam plastic as the core, with a fiberglass covering, eliminating the necessity of fabricating molds, but requiring more effort in finishing (see the Rutan VariEze ). An example of a larger molded plywood aircraft is the de Havilland Mosquito fighter/light bomber of World War II . No plywood-skin fuselage

1360-400: The wars and into World War II to form the whole of the fuselage, including its aerodynamic shape. In this type of construction multiple flat strip stringers are wound about the formers in opposite spiral directions, forming a basket-like appearance. This proved to be light, strong, and rigid and had the advantage of being made almost entirely of wood. A similar construction using aluminum alloy

1400-625: The wooden parts together. Some welding is required. The plans for the Pietenpol Aircamper were originally published in a four-part serial in the "Flying and Glider" Manual of 1932-33. The original model was flown using an Ace four cylinder water-cooled engine. The Model A Ford engine later became the standard powerplant used; the design was first flown with one in May 1929. In the 1960s Bernard Pietenpol began to favor converted engines from Chevrolet Corvair automobiles. The Corvair flat six

1440-725: The world in both the Soviet Union and the United States in the early–mid 1930s, with the Polikarpov I-16 and the Boeing P-26 Peashooter respectively. Most military aircraft of WWII were monoplanes, as have been virtually all aircraft since, except for a few specialist types. Jet and rocket engines have even more power and all modern high-speed aircraft, especially supersonic types, have been monoplanes. Fuselage This type of structure

1480-466: Was adopted for some fighters such as the Fokker D.VIII and Morane-Saulnier AI in the later part of the First World War. A parasol wing also provides a high mounting point for engines and during the interwar period was popular on flying boats, which need to lift the propellers clear of spray. Examples include the Martin M-130 , Dornier Do 18 and the Consolidated PBY Catalina . Compared to

1520-621: Was higher horsepower, smoother, and significantly lighter, compared to the Model A, and was similar to those already available for general aviation use. The length of a Pietenpol varies with the engine choices, as lighter engines needed to be mounted further forward for weight and balance reasons. Over the years over 30 different engines have flown in the Pietenpol Air Camper. Many modern Pietenpol builders prefer Continental A65 , C85 or C90 air-cooled flat fours . Several examples of

1560-553: Was the 1907 Santos-Dumont Demoiselle , while the Blériot XI flew across the English Channel in 1909. Throughout 1909–1910, Hubert Latham set multiple altitude records in his Antoinette IV monoplane, eventually reaching 1,384 m (4,541 ft). The equivalent German language term is Eindecker , as in the mid-wing Fokker Eindecker fighter of 1915 which for a time dominated the skies in what became known as

1600-532: Was used in the Vickers Warwick with less material than would be required for other structural types. The geodesic structure is also redundant and so can survive localized damage without catastrophic failure. A fabric covering over the structure completed the aerodynamic shell (see the Vickers Wellington for an example of a large warplane which uses this process). The logical evolution of this

#147852