Promega Corporation is a Madison, Wisconsin –based manufacturer of enzymes and other products for biotechnology and molecular biology with a portfolio covering the fields of genomics, protein analysis and expression, cellular analysis, drug discovery, and genetic identity.
41-486: Promega Corporation was founded by Bill Linton in 1978 to provide restriction enzymes for biotechnology. The company now offers more than 4,000 life science products used by scientists, researchers and life science and pharmaceutical companies. Promega has 1,601 employees. Revenue is approaching $ 450 million (USD) in 2019. The privately held company has branch offices in 16 countries and more than 50 global distributors serving 100 countries. Promega Corporation also established
82-762: A barcode , the tag does not need to be within the line of sight of the reader, so it may be embedded in the tracked object. RFID is one method of automatic identification and data capture (AIDC). RFID tags are used in many industries. For example, an RFID tag attached to an automobile during production can be used to track its progress through the assembly line , RFID-tagged pharmaceuticals can be tracked through warehouses, and implanting RFID microchips in livestock and pets enables positive identification of animals. Tags can also be used in shops to expedite checkout, and to prevent theft by customers and employees. Since RFID tags can be attached to physical money, clothing, and possessions, or implanted in animals and people,
123-545: A terahertz frequency identification (TFID) tag that is barely 1 square millimeter in size. The devices are essentially a piece of silicon that are inexpensive, small, and function like larger RFID tags. Because of the small size, manufacturers could tag any product and track logistics information for minimal cost. An RFID tag can be affixed to an object and used to track tools, equipment, inventory, assets, people, or other objects. RFID offers advantages over manual systems or use of barcodes . The tag can be read if passed near
164-560: A certain distance of the reader to authenticate the holder. Tags can also be placed on vehicles, which can be read at a distance, to allow entrance to controlled areas without having to stop the vehicle and present a card or enter an access code. In 2010, Vail Resorts began using UHF Passive RFID tags in ski passes. Facebook is using RFID cards at most of their live events to allow guests to automatically capture and post photos. Automotive brands have adopted RFID for social media product placement more quickly than other industries. Mercedes
205-450: A nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number , back to the reader. This number can be used to track inventory goods. Passive tags are powered by energy from the RFID reader's interrogating radio waves . Active tags are powered by a battery and thus can be read at a greater range from the RFID reader, up to hundreds of meters. Unlike
246-409: A particular product. Often more than one tag will respond to a tag reader. For example, many individual products with tags may be shipped in a common box or on a common pallet. Collision detection is important to allow reading of data. Two different types of protocols are used to "singulate" a particular tag, allowing its data to be read in the midst of many similar tags. In a slotted Aloha system,
287-723: A reader, even if it is covered by the object or not visible. The tag can be read inside a case, carton, box or other container, and unlike barcodes, RFID tags can be read hundreds at a time; barcodes can only be read one at a time using current devices. Some RFID tags, such as battery-assisted passive tags, are also able to monitor temperature and humidity. In 2011, the cost of passive tags started at US$ 0.09 each; special tags, meant to be mounted on metal or withstand gamma sterilization, could cost up to US$ 5. Active tags for tracking containers, medical assets, or monitoring environmental conditions in data centers started at US$ 50 and could be over US$ 100 each. Battery-Assisted Passive (BAP) tags were in
328-510: A special tool or deactivated electronically when payment is made. On leaving the shop, customers have to pass near an RFID detector; if they have items with active RFID tags, an alarm sounds, both indicating an unpaid-for item, and identifying what it is. Casinos can use RFID to authenticate poker chips , and can selectively invalidate any chips known to be stolen. RFID tags are widely used in identification badges , replacing earlier magnetic stripe cards. These badges need only be held within
369-441: Is a fuzzy method for process support. From the perspective of cost and effect, bulk reading is not reported as an economical approach to secure process control in logistics. RFID tags are easy to conceal or incorporate in other items. For example, in 2009 researchers at Bristol University successfully glued RFID micro-transponders to live ants in order to study their behavior. This trend towards increasingly miniaturized RFIDs
410-460: Is a strategy for interrogating multiple tags at the same time, but lacks sufficient precision for inventory control. A group of objects, all of them RFID tagged, are read completely from one single reader position at one time. However, as tags respond strictly sequentially, the time needed for bulk reading grows linearly with the number of labels to be read. This means it takes at least twice as long to read twice as many labels. Due to collision effects,
451-466: Is expected to rise from US$ 12.08 billion in 2020 to US$ 16.23 billion by 2029. In 1945, Leon Theremin invented the "Thing", a listening device for the Soviet Union which retransmitted incident radio waves with the added audio information. Sound waves vibrated a diaphragm which slightly altered the shape of the resonator , which modulated the reflected radio frequency. Even though this device
SECTION 10
#1732780148849492-507: Is likely to continue as technology advances. Hitachi holds the record for the smallest RFID chip, at 0.05 mm × 0.05 mm. This is 1/64th the size of the previous record holder, the mu-chip. Manufacture is enabled by using the silicon-on-insulator (SOI) process. These dust-sized chips can store 38-digit numbers using 128-bit Read Only Memory (ROM). A major challenge is the attachment of antennas, thus limiting read range to only millimeters. In early 2020, MIT researchers demonstrated
533-408: Is not reliable. Bulk reading can be a rough guide for logistics decisions, but due to a high proportion of reading failures, it is not (yet) suitable for inventory management. However, when a single RFID tag might be seen as not guaranteeing a proper read, multiple RFID tags, where at least one will respond, may be a safer approach for detecting a known grouping of objects. In this respect, bulk reading
574-438: Is the landmark 1948 paper by Harry Stockman, who predicted that "Considerable research and development work has to be done before the remaining basic problems in reflected-power communication are solved, and before the field of useful applications is explored." Mario Cardullo 's device, patented on January 23, 1973, was the first true ancestor of modern RFID, as it was a passive radio transponder with memory. The initial device
615-428: Is used in intelligent transportation systems . In New York City , RFID readers are deployed at intersections to track E-ZPass tags as a means for monitoring the traffic flow. The data is fed through the broadband wireless infrastructure to the traffic management center to be used in adaptive traffic control of the traffic lights. Where ship, rail, or highway tanks are being loaded, a fixed RFID antenna contained in
656-562: The Xinjiang Production and Construction Corps . In 2021, The New York Times reported that, despite bans, Promega equipment continued to be sold to police in Xinjiang . The company's portfolio began with products for genomics researchers and now includes cloning systems, luciferase reporters, and amplification products as well as the original restriction and modifying enzymes. The portfolio of amplification products includes
697-582: The railroad industry, RFID tags mounted on locomotives and rolling stock identify the owner, identification number and type of equipment and its characteristics. This can be used with a database to identify the type, origin, destination, etc. of the commodities being carried. In commercial aviation, RFID is used to support maintenance on commercial aircraft. RFID tags are used to identify baggage and cargo at several airports and airlines. Some countries are using RFID for vehicle registration and enforcement. RFID can help detect and retrieve stolen cars. RFID
738-548: The CE Mark for use as an in vitro diagnostic device in the European Union. Radio-frequency identification Radio-frequency identification ( RFID ) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder called a tag, a radio receiver , and a transmitter . When triggered by an electromagnetic interrogation pulse from
779-653: The French retailer Decathlon , customers perform self-checkout by either using a smartphone or putting items into a bin near the register that scans the tags without having to orient each one toward the scanner. Some stores use RFID-tagged items to trigger systems that provide customers with more information or suggestions, such as fitting rooms at Chanel and the "Color Bar" at Kendra Scott stores. Item tagging can also provide protection against theft by customers and employees by using electronic article surveillance (EAS). Tags of different types can be physically removed with
820-600: The GoTaq family of polymerases, buffers and the Plexor quantitative PCR system. The company is one of two main suppliers of systems for genetic identification based on DNA analysis using short tandem repeats (STRs). Promega was the first company to provide kits for STR analysis of single loci. Along with Applied Biosystems, Promega participated with the FBI and other crime labs in validating STR loci that would eventually be selected as
861-509: The US$ 3–10 range. RFID can be used in a variety of applications, such as: In 2010, three factors drove a significant increase in RFID usage: decreased cost of equipment and tags, increased performance to a reliability of 99.9%, and a stable international standard around HF and UHF passive RFID. The adoption of these standards were driven by EPCglobal, a joint venture between GS1 and GS1 US , which were responsible for driving global adoption of
SECTION 20
#1732780148849902-686: The barcode in the 1970s and 1980s. The EPCglobal Network was developed by the Auto-ID Center . RFID provides a way for organizations to identify and manage stock, tools and equipment ( asset tracking ), etc. without manual data entry. Manufactured products such as automobiles or garments can be tracked through the factory and through shipping to the customer. Automatic identification with RFID can be used for inventory systems. Many organisations require that their vendors place RFID tags on all shipments to improve supply chain management . Warehouse Management System incorporate this technology to speed up
943-820: The core loci for the Combined DNA Index System (CODIS), used for forensic DNA testing in North America. The Promega PowerPlex STR systems were the first commercially available systems for STR analysis that contained all of the CODIS loci. Promega was an early supplier in the cell-free protein synthesis field and is continuing to develop its portfolio in this area. The company also sells their own Maxwell RSC and Maxwell RSC 48 Systems, bench-top automated purification systems for low and middle throughput research and diagnostic laboratories. The Y-Chromosome Deletion Detection System from Promega also carries
984-437: The field produced by the reader by changing the electrical loading the tag represents. By switching between lower and higher relative loads, the tag produces a change that the reader can detect. At UHF and higher frequencies, the tag is more than one radio wavelength away from the reader, requiring a different approach. The tag can backscatter a signal. Active tags may contain functionally separated transmitters and receivers, and
1025-580: The first biotechnology joint venture in China (Sino-American Biotechnology Co. in 1985). The company has developed an on-site stocking system, which uses radio frequency identification (RFID) linked to the Internet to track and manage remote inventory. This resulted in the spin-off company Terso Solutions that specializes in the design and manufacturing of small RFID storage units. In February 2020, Foreign Policy reported that Promega had sold equipment to
1066-456: The organization number is assigned by the EPCGlobal consortium. The next 24 bits are an object class, identifying the kind of product. The last 36 bits are a unique serial number for a particular tag. These last two fields are set by the organization that issued the tag. Rather like a URL , the total electronic product code number can be used as a key into a global database to uniquely identify
1107-473: The possibility of reading personally-linked information without consent has raised serious privacy concerns. These concerns resulted in standard specifications development addressing privacy and security issues. In 2014, the world RFID market was worth US$ 8.89 billion , up from US$ 7.77 billion in 2013 and US$ 6.96 billion in 2012. This figure includes tags, readers, and software/services for RFID cards, labels, fobs, and all other form factors. The market value
1148-528: The radio energy transmitted by the reader. However, to operate a passive tag, it must be illuminated with a power level roughly a thousand times stronger than an active tag for signal transmission. Tags may either be read-only, having a factory-assigned serial number that is used as a key into a database, or may be read/write, where object-specific data can be written into the tag by the system user. Field programmable tags may be write-once, read-multiple; "blank" tags may be written with an electronic product code by
1189-423: The range of the RFID reader and read them simultaneously. RFID systems can be classified by the type of tag and reader. There are 3 types: Fixed readers are set up to create a specific interrogation zone which can be tightly controlled. This allows a highly defined reading area for when tags go in and out of the interrogation zone. Mobile readers may be handheld or mounted on carts or vehicles. Signaling between
1230-410: The reader and the tag is done in several different incompatible ways, depending on the frequency band used by the tag. Tags operating on LF and HF bands are, in terms of radio wavelength, very close to the reader antenna because they are only a small percentage of a wavelength away. In this near field region, the tag is closely coupled electrically with the transmitter in the reader. The tag can modulate
1271-484: The reader broadcasts an initialization command and a parameter that the tags individually use to pseudo-randomly delay their responses. When using an "adaptive binary tree" protocol, the reader sends an initialization symbol and then transmits one bit of ID data at a time; only tags with matching bits respond, and eventually only one tag matches the complete ID string. Both methods have drawbacks when used with many tags or with multiple overlapping readers. "Bulk reading"
Promega - Misplaced Pages Continue
1312-425: The receiving and delivery of the products and reduce the cost of labor needed in their warehouses. RFID is used for item-level tagging in retail stores. This can enable more accurate and lower-labor-cost supply chain and store inventory tracking, as is done at Lululemon , though physically locating items in stores requires more expensive technology. RFID tags can be used at checkout; for example, at some stores of
1353-414: The tag need not respond on a frequency related to the reader's interrogation signal. An Electronic Product Code (EPC) is one common type of data stored in a tag. When written into the tag by an RFID printer, the tag contains a 96-bit string of data. The first eight bits are a header which identifies the version of the protocol. The next 28 bits identify the organization that manages the data for this tag;
1394-572: The time required is greater. A group of tags has to be illuminated by the interrogating signal just like a single tag. This is not a challenge concerning energy, but with respect to visibility; if any of the tags are shielded by other tags, they might not be sufficiently illuminated to return a sufficient response. The response conditions for inductively coupled HF RFID tags and coil antennas in magnetic fields appear better than for UHF or SHF dipole fields, but then distance limits apply and may prevent success. Under operational conditions, bulk reading
1435-403: The transmission and sensor data, respectively. RFID tags can be either passive, active or battery-assisted passive. An active tag has an on-board battery and periodically transmits its ID signal. A battery-assisted passive tag has a small battery on board and is activated when in the presence of an RFID reader. A passive tag is cheaper and smaller because it has no battery; instead, the tag uses
1476-410: The user. The RFID tag receives the message and then responds with its identification and other information. This may be only a unique tag serial number, or may be product-related information such as a stock number, lot or batch number, production date, or other specific information. Since tags have individual serial numbers, the RFID system design can discriminate among several tags that might be within
1517-650: Was a covert listening device , rather than an identification tag, it is considered to be a predecessor of RFID because it was passive, being energised and activated by waves from an outside source. Similar technology, such as the Identification friend or foe transponder , was routinely used by the Allies and Germany in World War II to identify aircraft as friendly or hostile. Transponders are still used by most powered aircraft. An early work exploring RFID
1558-554: Was an early adopter in 2011 at the PGA Golf Championships , and by the 2013 Geneva Motor Show many of the larger brands were using RFID for social media marketing. To prevent retailers diverting products, manufacturers are exploring the use of RFID tags on promoted merchandise so that they can track exactly which product has sold through the supply chain at fully discounted prices. Yard management, shipping and freight and distribution centers use RFID tracking. In
1599-484: Was granted to David Everett, John Frech, Theodore Wright, and Kelly Rodriguez. A radio-frequency identification system uses tags , or labels attached to the objects to be identified. Two-way radio transmitter-receivers called interrogators or readers send a signal to the tag and read its response. RFID tags are made out of three pieces: The tag information is stored in a non-volatile memory. The RFID tag includes either fixed or programmable logic for processing
1640-939: Was passive, powered by the interrogating signal, and was demonstrated in 1971 to the New York Port Authority and other potential users. It consisted of a transponder with 16 bit memory for use as a toll device . The basic Cardullo patent covers the use of radio frequency (RF), sound and light as transmission carriers. The original business plan presented to investors in 1969 showed uses in transportation (automotive vehicle identification, automatic toll system, electronic license plate , electronic manifest, vehicle routing, vehicle performance monitoring), banking (electronic chequebook, electronic credit card), security (personnel identification, automatic gates, surveillance) and medical (identification, patient history). In 1973, an early demonstration of reflected power (modulated backscatter) RFID tags, both passive and semi-passive,
1681-532: Was performed by Steven Depp, Alfred Koelle and Robert Freyman at the Los Alamos National Laboratory . The portable system operated at 915 MHz and used 12-bit tags. This technique is used by the majority of today's UHFID and microwave RFID tags. In 1983, the first patent to be associated with the abbreviation RFID was granted to Charles Walton . In 1996, the first patent for a batteryless RFID passive tag with limited interference