The Puget Sound Convergence Zone ( PSCZ ) is a meteorological phenomenon that occurs over Puget Sound in the U.S. state of Washington . It is formed when the large-scale air flow splits around the Olympic Mountains and then converges over Puget Sound. This convergence zone generally occurs between north Seattle and Everett and can cause updrafts and convection , which leads to a narrow band of precipitation .
86-671: A second, weaker convergence zone can occur between approximately Victoria, British Columbia , and Bellingham, Washington , over the San Juan Islands , as a result of southwesterly air blowing from the Strait of Juan de Fuca meeting northerly air moving southward down the Strait of Georgia . The National Weather Service publishes special reports, forecasts, and graphical analyses for the PSCZ region. Puget Sound Convergence Zones, variable in both location and strength, tend to form in
172-577: A low pressure area which girdles the Earth at the Equator . Another example is the South Pacific convergence zone that extends from the western Pacific Ocean toward French Polynesia . The Intertropical Convergence Zone is the result of the northeasterly trade winds and southeasterly trade winds converging in an area of high latent heat and low pressure . As the two trade winds converge,
258-499: A channel around 11 micron wavelength and primarily give information about cloud tops. Due to the typical structure of the atmosphere, cloud-top temperatures are approximately inversely related to cloud-top heights, meaning colder clouds almost always occur at higher altitudes. Further, cloud tops with a lot of small-scale variation are likely to be more vigorous than smooth-topped clouds. Various mathematical schemes, or algorithms, use these and other properties to estimate precipitation from
344-705: A dramatic effect on agriculture. All plants need at least some water to survive, therefore rain (being the most effective means of watering) is important to agriculture. While a regular rain pattern is usually vital to healthy plants, too much or too little rainfall can be harmful, even devastating to crops. Drought can kill crops and increase erosion, while overly wet weather can cause harmful fungus growth. Plants need varying amounts of rainfall to survive. For example, certain cacti require small amounts of water, while tropical plants may need up to hundreds of inches of rain per year to survive. In areas with wet and dry seasons, soil nutrients diminish and erosion increases during
430-425: A layer of above-freezing air exists with sub-freezing air both above and below. This causes the partial or complete melting of any snowflakes falling through the warm layer. As they fall back into the sub-freezing layer closer to the surface, they re-freeze into ice pellets. However, if the sub-freezing layer beneath the warm layer is too small, the precipitation will not have time to re-freeze, and freezing rain will be
516-735: A mere ten blocks north of the beginnings of the University District and the University of Washington community. Just north of Roosevelt High School, an inch of snow coated the ground, and due west of the school in the Green Lake neighborhood of Seattle, an inch of snow had also fallen. In line with the known "abrupt edge" of the Puget Sound Convergence Zone, areas to the south of this Green Lake-to-Roosevelt High line (marked by NE 68th Street), including
602-411: A physical barrier such as a mountain ( orographic lift ). Conductive cooling occurs when the air comes into contact with a colder surface, usually by being blown from one surface to another, for example from a liquid water surface to colder land. Radiational cooling occurs due to the emission of infrared radiation , either by the air or by the surface underneath. Evaporative cooling occurs when moisture
688-453: A portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity ), so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation; their water vapor does not condense sufficiently to precipitate, so fog and mist do not fall. (Such a non-precipitating combination is a colloid .) Two processes, possibly acting together, can lead to air becoming saturated with water vapor: cooling
774-567: A single year. A significant portion of the annual precipitation in any particular place (no weather station in Africa or South America were considered) falls on only a few days, typically about 50% during the 12 days with the most precipitation. The Köppen classification depends on average monthly values of temperature and precipitation. The most commonly used form of the Köppen classification has five primary types labeled A through E. Specifically,
860-409: A slow-falling drizzle , which has been observed as Rain puddles at its equator and polar regions. Precipitation is a major component of the water cycle , and is responsible for depositing most of the fresh water on the planet. Approximately 505,000 km (121,000 cu mi) of water falls as precipitation each year, 398,000 km (95,000 cu mi) of it over the oceans. Given
946-752: A subject of research. Although the ice is clear, scattering of light by the crystal facets and hollows/imperfections mean that the crystals often appear white in color due to diffuse reflection of the whole spectrum of light by the small ice particles. The shape of the snowflake is determined broadly by the temperature and humidity at which it is formed. Rarely, at a temperature of around −2 °C (28 °F), snowflakes can form in threefold symmetry—triangular snowflakes. The most common snow particles are visibly irregular, although near-perfect snowflakes may be more common in pictures because they are more visually appealing. No two snowflakes are alike, as they grow at different rates and in different patterns depending on
SECTION 10
#17327652822981032-407: A variety of datasets possessing different formats, time/space grids, periods of record and regions of coverage, input datasets, and analysis procedures, as well as many different forms of dataset version designators. In many cases, one of the modern multi-satellite data sets is the best choice for general use. The likelihood or probability of an event with a specified intensity and duration is called
1118-420: Is IC. Occult deposition occurs when mist or air that is highly saturated with water vapour interacts with the leaves of trees or shrubs it passes over. Stratiform or dynamic precipitation occurs as a consequence of slow ascent of air in synoptic systems (on the order of cm/s), such as over surface cold fronts , and over and ahead of warm fronts . Similar ascent is seen around tropical cyclones outside of
1204-410: Is RA, while the coding for rain showers is SHRA. Ice pellets or sleet are a form of precipitation consisting of small, translucent balls of ice. Ice pellets are usually (but not always) smaller than hailstones. They often bounce when they hit the ground, and generally do not freeze into a solid mass unless mixed with freezing rain . The METAR code for ice pellets is PL . Ice pellets form when
1290-482: Is a grassland biome located in semi-arid to semi-humid climate regions of subtropical and tropical latitudes, with rainfall between 750 and 1,270 mm (30 and 50 in) a year. They are widespread on Africa, and are also found in India, the northern parts of South America, Malaysia, and Australia. The humid subtropical climate zone is where winter rainfall (and sometimes snowfall) is associated with large storms that
1376-479: Is a region in the atmosphere where two prevailing flows meet and interact, usually resulting in distinctive weather conditions . This causes a mass accumulation that eventually leads to a vertical movement and to the formation of clouds and precipitation . Large-scale convergence, called synoptic-scale convergence, is associated with weather systems such as baroclinic troughs , low-pressure areas , and cyclones . The large-scale convergence zone formed over
1462-480: Is a stable cloud deck which tends to form when a cool, stable air mass is trapped underneath a warm air mass. It can also form due to the lifting of advection fog during breezy conditions. There are four main mechanisms for cooling the air to its dew point: adiabatic cooling, conductive cooling, radiational cooling , and evaporative cooling. Adiabatic cooling occurs when air rises and expands. The air can rise due to convection , large-scale atmospheric motions, or
1548-449: Is a time when air quality improves, freshwater quality improves, and vegetation grows significantly. Soil nutrients diminish and erosion increases. Animals have adaptation and survival strategies for the wetter regime. The previous dry season leads to food shortages into the wet season, as the crops have yet to mature. Developing countries have noted that their populations show seasonal weight fluctuations due to food shortages seen before
1634-582: Is accompanied by plentiful precipitation year-round. The Mediterranean climate regime resembles the climate of the lands in the Mediterranean Basin, parts of western North America, parts of western and southern Australia, in southwestern South Africa and in parts of central Chile. The climate is characterized by hot, dry summers and cool, wet winters. A steppe is a dry grassland. Subarctic climates are cold with continuous permafrost and little precipitation. Precipitation, especially rain, has
1720-620: Is added to the air through evaporation, which forces the air temperature to cool to its wet-bulb temperature , or until it reaches saturation. The main ways water vapor is added to the air are: wind convergence into areas of upward motion, precipitation or virga falling from above, daytime heating evaporating water from the surface of oceans, water bodies or wet land, transpiration from plants, cool or dry air moving over warmer water, and lifting air over mountains. Coalescence occurs when water droplets fuse to create larger water droplets, or when water droplets freeze onto an ice crystal, which
1806-437: Is associated with their warm front is often extensive, forced by weak upward vertical motion of air over the frontal boundary which condenses as it cools and produces precipitation within an elongated band, which is wide and stratiform , meaning falling out of nimbostratus clouds. When moist air tries to dislodge an arctic air mass, overrunning snow can result within the poleward side of the elongated precipitation band . In
SECTION 20
#17327652822981892-487: Is equally distributed through the year. Some areas with pronounced rainy seasons will see a break in rainfall mid-season when the Intertropical Convergence Zone or monsoon trough move poleward of their location during the middle of the warm season. When the wet season occurs during the warm season, or summer, rain falls mainly during the late afternoon and early evening hours. The wet season
1978-416: Is filled by 2.5 cm (0.98 in) of rain, with overflow flowing into the outer cylinder. Plastic gauges have markings on the inner cylinder down to 1 ⁄ 4 mm (0.0098 in) resolution, while metal gauges require use of a stick designed with the appropriate 1 ⁄ 4 mm (0.0098 in) markings. After the inner cylinder is filled, the amount inside is discarded, then filled with
2064-401: Is intermittent and often associated with baroclinic boundaries such as cold fronts , squall lines , and warm fronts. Convective precipitation mostly consist of mesoscale convective systems and they produce torrential rainfalls with thunderstorms, wind damages, and other forms of severe weather events. Orographic precipitation occurs on the windward (upwind) side of mountains and is caused by
2150-759: Is known as the Bergeron process . The fall rate of very small droplets is negligible, hence clouds do not fall out of the sky; precipitation will only occur when these coalesce into larger drops. droplets with different size will have different terminal velocity that cause droplets collision and producing larger droplets, Turbulence will enhance the collision process. As these larger water droplets descend, coalescence continues, so that drops become heavy enough to overcome air resistance and fall as rain. Raindrops have sizes ranging from 5.1 to 20 millimetres (0.20 to 0.79 in) mean diameter, above which they tend to break up. Smaller drops are called cloud droplets, and their shape
2236-540: Is made, various networks exist across the United States and elsewhere where rainfall measurements can be submitted through the Internet, such as CoCoRAHS or GLOBE . If a network is not available in the area where one lives, the nearest local weather office will likely be interested in the measurement. A concept used in precipitation measurement is the hydrometeor. Any particulates of liquid or solid water in
2322-431: Is possible within a cyclone's comma head and within lake effect precipitation bands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation. On the leeward side of mountains, desert climates can exist due to the dry air caused by compressional heating. Most precipitation occurs within the tropics and is caused by convection . The movement of
2408-519: Is spherical. As a raindrop increases in size, its shape becomes more oblate , with its largest cross-section facing the oncoming airflow. Contrary to the cartoon pictures of raindrops, their shape does not resemble a teardrop. Intensity and duration of rainfall are usually inversely related, i.e., high intensity storms are likely to be of short duration and low intensity storms can have a long duration. Rain drops associated with melting hail tend to be larger than other rain drops. The METAR code for rain
2494-695: Is the reason that cities located just north or south of the line, which are located within the rain shadow of the Olympic Mountains , approach Seattle in annual precipitation. The effect of the Puget Sound Convergence Zone nearly offsets that of the rain shadow. Without PSCZ, cities such as Edmonds , Mountlake Terrace , and Lynnwood in Snohomish County and Shoreline , Lake Forest Park , and Bothell in King County would be noticeably drier than Seattle. The PSCZ has been suggested as
2580-489: Is the temperature to which a parcel of air must be cooled in order to become saturated, and (unless super-saturation occurs) condenses to water. Water vapor normally begins to condense on condensation nuclei such as dust, ice, and salt in order to form clouds. The cloud condensation nuclei concentration will determine the cloud microphysics. An elevated portion of a frontal zone forces broad areas of lift, which form cloud decks such as altostratus or cirrostratus . Stratus
2666-457: Is the time of year, covering one or more months, when most of the average annual rainfall in a region falls. The term green season is also sometimes used as a euphemism by tourist authorities. Areas with wet seasons are dispersed across portions of the tropics and subtropics. Savanna climates and areas with monsoon regimes have wet summers and dry winters. Tropical rainforests technically do not have dry or wet seasons, since their rainfall
Puget Sound Convergence Zone - Misplaced Pages Continue
2752-400: Is typically active when freezing rain occurs. A stationary front is often present near the area of freezing rain and serves as the focus for forcing moist air to rise. Provided there is necessary and sufficient atmospheric moisture content, the moisture within the rising air will condense into clouds, namely nimbostratus and cumulonimbus if significant precipitation is involved. Eventually,
2838-678: The Great Basin and Mojave Deserts . Similarly, in Asia, the Himalaya mountains create an obstacle to monsoons which leads to extremely high precipitation on the southern side and lower precipitation levels on the northern side. Extratropical cyclones can bring cold and dangerous conditions with heavy rain and snow with winds exceeding 119 km/h (74 mph), (sometimes referred to as windstorms in Europe). The band of precipitation that
2924-626: The Irish Sea . Flooding in Boscastle , Cornwall, England in August 2004 was the result of thunderstorms developing on a convergence line. Precipitation In meteorology , precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle , rain , sleet , snow , ice pellets , graupel and hail . Precipitation occurs when
3010-885: The Puget Sound Convergence Zone which occurs in the Puget Sound region in the U.S. state of Washington ; Mohawk–Hudson convergence in the U.S. state of New York ; the Elsinore Convergence Zone in the U.S. state of California ; the Brown Willy effect which can be generated when south-westerly winds blow over Bodmin Moor in Cornwall ; and the Pembrokeshire Dangler which can form when northerly winds blow down
3096-459: The electromagnetic spectrum that theory and practice show are related to the occurrence and intensity of precipitation. The sensors are almost exclusively passive, recording what they see, similar to a camera, in contrast to active sensors ( radar , lidar ) that send out a signal and detect its impact on the area being observed. Satellite sensors now in practical use for precipitation fall into two categories. Thermal infrared (IR) sensors record
3182-446: The eyewall , and in comma-head precipitation patterns around mid-latitude cyclones . A wide variety of weather can be found along an occluded front, with thunderstorms possible, but usually their passage is associated with a drying of the air mass. Occluded fronts usually form around mature low-pressure areas. Precipitation may occur on celestial bodies other than Earth. When it gets cold, Mars has precipitation that most likely takes
3268-468: The monsoon trough , or Intertropical Convergence Zone , brings rainy seasons to savannah regions. Precipitation is a major component of the water cycle , and is responsible for depositing fresh water on the planet. Approximately 505,000 cubic kilometres (121,000 cu mi) of water falls as precipitation each year: 398,000 cubic kilometres (95,000 cu mi) over oceans and 107,000 cubic kilometres (26,000 cu mi) over land. Given
3354-425: The return period or frequency. The intensity of a storm can be predicted for any return period and storm duration, from charts based on historical data for the location. The term 1 in 10 year storm describes a rainfall event which is rare and is only likely to occur once every 10 years, so it has a 10 percent likelihood any given year. The rainfall will be greater and the flooding will be worse than
3440-738: The Earth's surface area, that means the globally averaged annual precipitation is 990 millimetres (39 in), but over land it is only 715 millimetres (28.1 in). Climate classification systems such as the Köppen climate classification system use average annual rainfall to help differentiate between differing climate regimes. Global warming is already causing changes to weather, increasing precipitation in some geographies, and reducing it in others, resulting in additional extreme weather . Precipitation may occur on other celestial bodies. Saturn's largest satellite , Titan , hosts methane precipitation as
3526-610: The Earth's surface area, that means the globally averaged annual precipitation is 990 millimetres (39 in). Mechanisms of producing precipitation include convective, stratiform , and orographic rainfall. Convective processes involve strong vertical motions that can cause the overturning of the atmosphere in that location within an hour and cause heavy precipitation, while stratiform processes involve weaker upward motions and less intense precipitation. Precipitation can be divided into three categories, based on whether it falls as liquid water, liquid water that freezes on contact with
Puget Sound Convergence Zone - Misplaced Pages Continue
3612-535: The IR data. The second category of sensor channels is in the microwave part of the electromagnetic spectrum. The frequencies in use range from about 10 gigahertz to a few hundred GHz. Channels up to about 37 GHz primarily provide information on the liquid hydrometeors (rain and drizzle) in the lower parts of clouds, with larger amounts of liquid emitting higher amounts of microwave radiant energy . Channels above 37 GHz display emission signals, but are dominated by
3698-807: The Northern Hemisphere, poleward is towards the North Pole, or north. Within the Southern Hemisphere, poleward is towards the South Pole, or south. Southwest of extratropical cyclones, curved cyclonic flow bringing cold air across the relatively warm water bodies can lead to narrow lake-effect snow bands. Those bands bring strong localized snowfall which can be understood as follows: Large water bodies such as lakes efficiently store heat that results in significant temperature differences (larger than 13 °C or 23 °F) between
3784-572: The Sun. The ITCZ is shifted farther south during the winter solstice (in the Northern Hemisphere), when the solar radiation is focused at 23.5°S. Convergence zones also occur at a smaller scale. Convergence lines form rows of showers or thunderstorms over a more local area. Sea breezes colliding can trigger development of a convergence line. The heavy rain caused in a short period of time can cause severe flooding. Some examples are
3870-574: The U-District, witnessed only a dusting of snow. On December 18, 2018, a tornado formed in Port Orchard, Washington during an atmospheric river event that lasted for several weeks. The tornado was rated EF2 with winds near 125 miles per hour (201 km/h) and caused approximately $ 1.8 million (2018 USD ) of damage and was the strongest tornado in the state since the 1980s. Convergence zone A convergence zone in meteorology
3956-1000: The action of solid hydrometeors (snow, graupel, etc.) to scatter microwave radiant energy. Satellites such as the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission employ microwave sensors to form precipitation estimates. Additional sensor channels and products have been demonstrated to provide additional useful information including visible channels, additional IR channels, water vapor channels and atmospheric sounding retrievals. However, most precipitation data sets in current use do not employ these data sources. The IR estimates have rather low skill at short time and space scales, but are available very frequently (15 minutes or more often) from satellites in geosynchronous Earth orbit. IR works best in cases of deep, vigorous convection—such as
4042-414: The air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers . Moisture that is lifted or otherwise forced to rise over a layer of sub-freezing air at the surface may be condensed by the low temperature into clouds and rain. This process
4128-497: The atmosphere are known as hydrometeors. Formations due to condensation, such as clouds, haze , fog, and mist, are composed of hydrometeors. All precipitation types are made up of hydrometeors by definition, including virga , which is precipitation which evaporates before reaching the ground. Particles blown from the Earth's surface by wind, such as blowing snow and blowing sea spray, are also hydrometeors , as are hail and snow . Although surface precipitation gauges are considered
4214-413: The atmosphere due to their mass, and may collide and stick together in clusters, or aggregates. These aggregates are snowflakes, and are usually the type of ice particle that falls to the ground. Guinness World Records list the world's largest snowflakes as those of January 1887 at Fort Keogh , Montana; allegedly one measured 38 cm (15 in) wide. The exact details of the sticking mechanism remain
4300-484: The average time between observations exceeds three hours. This several-hour interval is insufficient to adequately document precipitation because of the transient nature of most precipitation systems as well as the inability of a single satellite to appropriately capture the typical daily cycle of precipitation at a given location. Since the late 1990s, several algorithms have been developed to combine precipitation data from multiple satellites' sensors, seeking to emphasize
4386-531: The best analyses of gauge data take two months or more after the observation time to undergo the necessary transmission, assembly, processing and quality control. Thus, precipitation estimates that include gauge data tend to be produced further after the observation time than the no-gauge estimates. As a result, while estimates that include gauge data may provide a more accurate depiction of the "true" precipitation, they are generally not suited for real- or near-real-time applications. The work described has resulted in
SECTION 50
#17327652822984472-420: The best instantaneous satellite estimate. In either case, the less-emphasized goal is also considered desirable. One key aspect of multi-satellite studies is the ability to include even a small amount of surface gauge data, which can be very useful for controlling the biases that are endemic to satellite estimates. The difficulties in using gauge data are that 1) their availability is limited, as noted above, and 2)
4558-565: The cause of greater precipitation over Glacier Peak relative to other mountains in the Cascades to the east of Puget Sound. As there are no weather stations near Glacier Peak, it remains unclear whether that area actually receives greater precipitation than elsewhere in the Cascade Range. On April 18, 2008, a strong and very unseasonable snow-producing Puget Sound Convergence Zone storm formed around Everett, and spread south throughout
4644-532: The changing temperature and humidity within the atmosphere through which they fall on their way to the ground. The METAR code for snow is SN, while snow showers are coded SHSN. Diamond dust, also known as ice needles or ice crystals, forms at temperatures approaching −40 °C (−40 °F) due to air with slightly higher moisture from aloft mixing with colder, surface-based air. They are made of simple ice crystals, hexagonal in shape. The METAR identifier for diamond dust within international hourly weather reports
4730-447: The cloud droplets will grow large enough to form raindrops and descend toward the Earth where they will freeze on contact with exposed objects. Where relatively warm water bodies are present, for example due to water evaporation from lakes, lake-effect snowfall becomes a concern downwind of the warm lakes within the cold cyclonic flow around the backside of extratropical cyclones . Lake-effect snowfall can be locally heavy. Thundersnow
4816-462: The coding of GS, which is short for the French word grésil. Stones just larger than golf ball-sized are one of the most frequently reported hail sizes. Hailstones can grow to 15 centimetres (6 in) and weigh more than 500 grams (1 lb). In large hailstones, latent heat released by further freezing may melt the outer shell of the hailstone. The hailstone then may undergo 'wet growth', where
4902-461: The cool, dry air collects moisture from the warm ocean and rises, contributing to cloud formation and precipitation. The low pressure area that is created by the movement of the trade winds acts as a vacuum , drawing in the cooler, dry air from high pressure areas (divergence zones), creating a convection cell commonly known as the Hadley Cell . Sea surface temperature is directly related to
4988-567: The course of the afternoon and evening. By evening, the Zone had spread into northern King County, dumping 3.5 inches (89 mm) of snow in Shoreline, and 6.5 inches (170 mm) of snow in Woodinville . As the Zone slowly sank south of Shoreline into Seattle (past NE 145th Street), snow amounts began to taper off. The snow-producing part of the Zone ended abruptly at Roosevelt High School ,
5074-424: The deeper the clouds get, and the greater the precipitation rate becomes. In mountainous areas, heavy snowfall accumulates when air is forced to ascend the mountains and squeeze out precipitation along their windward slopes, which in cold conditions, falls in the form of snow. Because of the ruggedness of terrain, forecasting the location of heavy snowfall remains a significant challenge. The wet, or rainy, season
5160-531: The descending and generally warming, leeward side where a rain shadow is observed. In Hawaii , Mount Waiʻaleʻale , on the island of Kauai, is notable for its extreme rainfall, as it has the second-highest average annual rainfall on Earth, with 12,000 millimetres (460 in). Storm systems affect the state with heavy rains between October and March. Local climates vary considerably on each island due to their topography, divisible into windward ( Koʻolau ) and leeward ( Kona ) regions based upon location relative to
5246-548: The equator in Colombia are amongst the wettest places on Earth. North and south of this are regions of descending air that form subtropical ridges where precipitation is low; the land surface underneath these ridges is usually arid, and these regions make up most of the Earth's deserts. An exception to this rule is in Hawaii, where upslope flow due to the trade winds lead to one of the wettest locations on Earth. Otherwise,
SECTION 60
#17327652822985332-401: The equator, the Intertropical Convergence Zone , has condensed and intensified as a result of the global increase in temperature. Small-scale convergence will give phenomena from isolated cumulus clouds to large areas of thunderstorms . The inverse of convergence is divergence, such as the horse latitudes . An example of a convergence zone is the Intertropical Convergence Zone (ITCZ),
5418-458: The first harvest, which occurs late in the wet season. Tropical cyclones, a source of very heavy rainfall, consist of large air masses several hundred miles across with low pressure at the centre and with winds blowing inward towards the centre in either a clockwise direction (southern hemisphere) or counterclockwise (northern hemisphere). Although cyclones can take an enormous toll in lives and personal property, they may be important factors in
5504-737: The flow of the Westerlies into the Rocky Mountains lead to the wettest, and at elevation snowiest, locations within North America. In Asia during the wet season, the flow of moist air into the Himalayas leads to some of the greatest rainfall amounts measured on Earth in northeast India. The standard way of measuring rainfall or snowfall is the standard rain gauge, which can be found in 10 cm (3.9 in) plastic and 20 cm (7.9 in) metal varieties. The inner cylinder
5590-579: The form of ice needles, rather than rain or snow. Convective rain , or showery precipitation, occurs from convective clouds, e.g. cumulonimbus or cumulus congestus . It falls as showers with rapidly changing intensity. Convective precipitation falls over a certain area for a relatively short time, as convective clouds have limited horizontal extent. Most precipitation in the tropics appears to be convective; however, it has been suggested that stratiform precipitation also occurs. Graupel and hail indicate convection. In mid-latitudes, convective precipitation
5676-400: The funnel needs to be removed before the event begins. For those looking to measure rainfall the most inexpensively, a can that is cylindrical with straight sides will act as a rain gauge if left out in the open, but its accuracy will depend on what ruler is used to measure the rain with. Any of the above rain gauges can be made at home, with enough know-how . When a precipitation measurement
5762-425: The gauge. Once the snowfall/ice is finished accumulating, or as 30 cm (12 in) is approached, one can either bring it inside to melt, or use lukewarm water to fill the inner cylinder with in order to melt the frozen precipitation in the outer cylinder, keeping track of the warm fluid added, which is subsequently subtracted from the overall total once all the ice/snow is melted. Other types of gauges include
5848-674: The general vicinity of central and southern Snohomish and northern King counties in Washington, from Everett to the Northgate neighborhood of Seattle . The strongest part of the Convergence Zone (where the heaviest precipitation falls) tends to lie along and adjacent to the King-Snohomish County line so that neither county is left dry. The proximity of the Convergence Zone to the King-Snohomish County line
5934-463: The hailstones to the upper part of the cloud. The updraft dissipates and the hailstones fall down, back into the updraft, and are lifted again. Hail has a diameter of 5 millimetres (0.20 in) or more. Within METAR code, GR is used to indicate larger hail, of a diameter of at least 6.4 millimetres (0.25 in). GR is derived from the French word grêle. Smaller-sized hail, as well as snow pellets, use
6020-487: The higher mountains. Windward sides face the east to northeast trade winds and receive much more rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover. In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desertlike climate just downwind across western Argentina. The Sierra Nevada range creates the same effect in North America forming
6106-479: The ice crystals the crystals are able to grow to hundreds of micrometers in size at the expense of the water droplets. This process is known as the Wegener–Bergeron–Findeisen process . The corresponding depletion of water vapor causes the droplets to evaporate, meaning that the ice crystals grow at the droplets' expense. These large crystals are an efficient source of precipitation, since they fall through
6192-454: The liquid outer shell collects other smaller hailstones. The hailstone gains an ice layer and grows increasingly larger with each ascent. Once a hailstone becomes too heavy to be supported by the storm's updraft, it falls from the cloud. Snow crystals form when tiny supercooled cloud droplets (about 10 μm in diameter) freeze. Once a droplet has frozen, it grows in the supersaturated environment. Because water droplets are more numerous than
6278-424: The popular wedge gauge (the cheapest rain gauge and most fragile), the tipping bucket rain gauge , and the weighing rain gauge . The wedge and tipping bucket gauges have problems with snow. Attempts to compensate for snow/ice by warming the tipping bucket meet with limited success, since snow may sublimate if the gauge is kept much above freezing. Weighing gauges with antifreeze should do fine with snow, but again,
6364-523: The position of the Sun or the location of the " energy flux equator," thus the ITCZ shifts corresponding to the seasons. Due to the position of the Sun, the sea surface temperature near the equator (30°S to 30°N), during an equinox , is higher than any other latitudes. During the summer solstice in the Northern Hemisphere (June 21), the ITCZ is shifted north, following the position of
6450-490: The precipitation regimes of places they impact, as they may bring much-needed precipitation to otherwise dry regions. Areas in their path can receive a year's worth of rainfall from a tropical cyclone passage. On the large scale, the highest precipitation amounts outside topography fall in the tropics, closely tied to the Intertropical Convergence Zone , itself the ascending branch of the Hadley cell . Mountainous locales near
6536-581: The primary types are A, tropical; B, dry; C, mild mid-latitude; D, cold mid-latitude; and E, polar. The five primary classifications can be further divided into secondary classifications such as rain forest , monsoon , tropical savanna , humid subtropical , humid continental , oceanic climate , Mediterranean climate , steppe , subarctic climate , tundra , polar ice cap , and desert . Rain forests are characterized by high rainfall, with definitions setting minimum normal annual rainfall between 1,750 and 2,000 mm (69 and 79 in). A tropical savanna
6622-406: The remaining rainfall in the outer cylinder until all the fluid in the outer cylinder is gone, adding to the overall total until the outer cylinder is empty. These gauges are used in the winter by removing the funnel and inner cylinder and allowing snow and freezing rain to collect inside the outer cylinder. Some add anti-freeze to their gauge so they do not have to melt the snow or ice that falls into
6708-413: The result at the surface. A temperature profile showing a warm layer above the ground is most likely to be found in advance of a warm front during the cold season, but can occasionally be found behind a passing cold front . Like other precipitation, hail forms in storm clouds when supercooled water droplets freeze on contact with condensation nuclei , such as dust or dirt. The storm's updraft blows
6794-438: The rising air motion of a large-scale flow of moist air across the mountain ridge, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds ), a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air (see katabatic wind ) on
6880-455: The standard for measuring precipitation, there are many areas in which their use is not feasible. This includes the vast expanses of ocean and remote land areas. In other cases, social, technical or administrative issues prevent the dissemination of gauge observations. As a result, the modern global record of precipitation largely depends on satellite observations. Satellite sensors work by remotely sensing precipitation—recording various parts of
6966-565: The strengths and minimize the weaknesses of the individual input data sets. The goal is to provide "best" estimates of precipitation on a uniform time/space grid, usually for as much of the globe as possible. In some cases the long-term homogeneity of the dataset is emphasized, which is the Climate Data Record standard. Alternatively, the High Resolution Precipitation Product aims to produce
7052-424: The surface, or ice. Mixtures of different types of precipitation, including types in different categories, can fall simultaneously. Liquid forms of precipitation include rain and drizzle. Rain or drizzle that freezes on contact within a subfreezing air mass is called "freezing rain" or "freezing drizzle". Frozen forms of precipitation include snow, ice needles , ice pellets , hail , and graupel . The dew point
7138-437: The tropics—and becomes progressively less useful in areas where stratiform (layered) precipitation dominates, especially in mid- and high-latitude regions. The more-direct physical connection between hydrometeors and microwave channels gives the microwave estimates greater skill on short time and space scales than is true for IR. However, microwave sensors fly only on low Earth orbit satellites, and there are few enough of them that
7224-405: The water surface and the air above. Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds (see satellite picture) which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height,
7310-447: The westerlies steer from west to east. Most summer rainfall occurs during thunderstorms and from occasional tropical cyclones. Humid subtropical climates lie on the east side continents, roughly between latitudes 20° and 40° degrees from the equator. An oceanic (or maritime) climate is typically found along the west coasts at the middle latitudes of all the world's continents, bordering cool oceans, as well as southeastern Australia, and
7396-438: The worst storm expected in any single year. The term 1 in 100 year storm describes a rainfall event which is extremely rare and which will occur with a likelihood of only once in a century, so has a 1 percent likelihood in any given year. The rainfall will be extreme and flooding to be worse than a 1 in 10 year event. As with all probability events, it is possible though unlikely to have two "1 in 100 Year Storms" in
#297702