The Womble Shale is a Middle Ordovician geologic formation in the Ouachita Mountains of Arkansas and Oklahoma . First described in 1892, this unit was not named until 1909 by Albert Homer Purdue in his study of the Ouachita Mountains of Arkansas, where he named this unit as part of the upper Ouachita Shale and the Stringtown Shale. In 1918, U.S. Geological Survey geologist, Hugh Dinsmore Miser, replaced Purdue's nomenclature with the Womble Shale. Miser assigned the town of Womble (now called Norman ) in Montgomery County , Arkansas as the type locality . As of 2017, a reference section for this unit has yet to be designated.
67-604: This article about a specific stratigraphic formation in the United States is a stub . You can help Misplaced Pages by expanding it . Stratigraphy Stratigraphy is a branch of geology concerned with the study of rock layers ( strata ) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks . Stratigraphy has three related subfields: lithostratigraphy (lithologic stratigraphy), biostratigraphy (biologic stratigraphy), and chronostratigraphy (stratigraphy by age). Catholic priest Nicholas Steno established
134-405: A mass spectrometer . The mass spectrometer was invented in the 1940s and began to be used in radiometric dating in the 1950s. It operates by generating a beam of ionized atoms from the sample under test. The ions then travel through a magnetic field, which diverts them into different sampling sensors, known as " Faraday cups ," depending on their mass and level of ionization. On impact in the cups,
201-510: A better time resolution than that available from long-lived isotopes, short-lived isotopes that are no longer present in the rock can be used. At the beginning of the solar system, there were several relatively short-lived radionuclides like Al, Fe, Mn, and I present within the solar nebula. These radionuclides—possibly produced by the explosion of a supernova—are extinct today, but their decay products can be detected in very old material, such as that which constitutes meteorites . By measuring
268-408: A consequence of background radiation on certain minerals. Over time, ionizing radiation is absorbed by mineral grains in sediments and archaeological materials such as quartz and potassium feldspar . The radiation causes charge to remain within the grains in structurally unstable "electron traps". Exposure to sunlight or heat releases these charges, effectively "bleaching" the sample and resetting
335-411: A different nuclide. This transformation may be accomplished in a number of different ways, including alpha decay (emission of alpha particles ) and beta decay ( electron emission, positron emission, or electron capture ). Another possibility is spontaneous fission into two or more nuclides. While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of
402-402: A half-life of 1.3 billion years, so this method is applicable to the oldest rocks. Radioactive potassium-40 is common in micas , feldspars , and hornblendes , though the closure temperature is fairly low in these materials, about 350 °C (mica) to 500 °C (hornblende). This is based on the beta decay of rubidium-87 to strontium-87 , with a half-life of 50 billion years. This scheme
469-479: A higher time resolution at the expense of timescale. I beta-decays to Xe with a half-life of 16.14 ± 0.12 million years . The iodine-xenon chronometer is an isochron technique. Samples are exposed to neutrons in a nuclear reactor. This converts the only stable isotope of iodine ( I ) into Xe via neutron capture followed by beta decay (of I ). After irradiation, samples are heated in
536-399: A kiln. Other methods include: Absolute radiometric dating requires a measurable fraction of parent nucleus to remain in the sample rock. For rocks dating back to the beginning of the solar system, this requires extremely long-lived parent isotopes, making measurement of such rocks' exact ages imprecise. To be able to distinguish the relative ages of rocks from such old material, and to get
603-467: A polished slice of a material to determine the density of "track" markings left in it by the spontaneous fission of uranium-238 impurities. The uranium content of the sample has to be known, but that can be determined by placing a plastic film over the polished slice of the material, and bombarding it with slow neutrons . This causes induced fission of U, as opposed to the spontaneous fission of U. The fission tracks produced by this process are recorded in
670-430: A radioactive nuclide decays exponentially at a rate described by a parameter known as the half-life , usually given in units of years when discussing dating techniques. After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or decay product . In many cases, the daughter nuclide itself is radioactive, resulting in a decay chain , eventually ending with
737-438: A range of several hundred thousand years. A related method is ionium–thorium dating , which measures the ratio of ionium (thorium-230) to thorium-232 in ocean sediment . Radiocarbon dating is also simply called carbon-14 dating. Carbon-14 is a radioactive isotope of carbon, with a half-life of 5,730 years (which is very short compared with the above isotopes), and decays into nitrogen. In other radiometric dating methods,
SECTION 10
#1732780254495804-436: A section. The samples are analyzed to determine their detrital remanent magnetism (DRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. For sedimentary rocks this is possible because, as they fall through the water column, very fine-grained magnetic minerals (< 17 μm ) behave like tiny compasses , orienting themselves with Earth's magnetic field . Upon burial, that orientation
871-406: A series of steps and the xenon isotopic signature of the gas evolved in each step is analysed. When a consistent Xe / Xe ratio is observed across several consecutive temperature steps, it can be interpreted as corresponding to a time at which the sample stopped losing xenon. Samples of a meteorite called Shallowater are usually included in the irradiation to monitor
938-460: A variable amount of uranium content. Because the fission tracks are healed by temperatures over about 200 °C the technique has limitations as well as benefits. The technique has potential applications for detailing the thermal history of a deposit. Large amounts of otherwise rare Cl (half-life ~300ky) were produced by irradiation of seawater during atmospheric detonations of nuclear weapons between 1952 and 1958. The residence time of Cl in
1005-409: A wide range of natural and man-made materials . Together with stratigraphic principles , radiometric dating methods are used in geochronology to establish the geologic time scale . Among the best-known techniques are radiocarbon dating , potassium–argon dating and uranium–lead dating . By allowing the establishment of geological timescales, it provides a significant source of information about
1072-431: Is also commonly used to delineate the nature and extent of hydrocarbon -bearing reservoir rocks, seals, and traps of petroleum geology . Chronostratigraphy is the branch of stratigraphy that places an absolute age, rather than a relative age on rock strata . The branch is concerned with deriving geochronological data for rock units, both directly and inferentially, so that a sequence of time-relative events that created
1139-534: Is due to physical contrasts in rock type ( lithology ). This variation can occur vertically as layering (bedding), or laterally, and reflects changes in environments of deposition (known as facies change). These variations provide a lithostratigraphy or lithologic stratigraphy of the rock unit. Key concepts in stratigraphy involve understanding how certain geometric relationships between rock layers arise and what these geometries imply about their original depositional environment. The basic concept in stratigraphy, called
1206-416: Is enhanced if measurements are taken on multiple samples from different locations of the rock body. Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron . This can reduce the problem of contamination . In uranium–lead dating , the concordia diagram
1273-533: Is often performed on the mineral zircon (ZrSiO 4 ), though it can be used on other materials, such as baddeleyite and monazite (see: monazite geochronology ). Zircon and baddeleyite incorporate uranium atoms into their crystalline structure as substitutes for zirconium , but strongly reject lead. Zircon has a very high closure temperature, is resistant to mechanical weathering and is very chemically inert. Zircon also forms multiple crystal layers during metamorphic events, which each may record an isotopic age of
1340-449: Is one way of measuring the decay constant of a system, which involves accumulating daughter nuclides. Unfortunately for nuclides with high decay constants (which are useful for dating very old samples), long periods of time (decades) are required to accumulate enough decay products in a single sample to accurately measure them. A faster method involves using particle counters to determine alpha, beta or gamma activity, and then dividing that by
1407-411: Is preserved. For volcanic rocks, magnetic minerals, which form in the melt, orient themselves with the ambient magnetic field, and are fixed in place upon crystallization of the lava. Oriented paleomagnetic core samples are collected in the field; mudstones , siltstones , and very fine-grained sandstones are the preferred lithologies because the magnetic grains are finer and more likely to orient with
SECTION 20
#17327802544951474-419: Is released, the intensity of which varies depending on the amount of radiation absorbed during burial and specific properties of the mineral. These methods can be used to date the age of a sediment layer, as layers deposited on top would prevent the grains from being "bleached" and reset by sunlight. Pottery shards can be dated to the last time they experienced significant heat, generally when they were fired in
1541-438: Is the Al – Mg chronometer, which can be used to estimate the relative ages of chondrules . Al decays to Mg with a half-life of 720 000 years. The dating is simply a question of finding the deviation from the natural abundance of Mg (the product of Al decay) in comparison with the ratio of
1608-421: Is thus the time at which the rock or mineral cooled to closure temperature. This temperature varies for every mineral and isotopic system, so a system can be closed for one mineral but open for another. Dating of different minerals and/or isotope systems (with differing closure temperatures) within the same rock can therefore enable the tracking of the thermal history of the rock in question with time, and thus
1675-418: Is used to date old igneous and metamorphic rocks , and has also been used to date lunar samples . Closure temperatures are so high that they are not a concern. Rubidium-strontium dating is not as precise as the uranium–lead method, with errors of 30 to 50 million years for a 3-billion-year-old sample. Application of in situ analysis (Laser-Ablation ICP-MS) within single mineral grains in faults have shown that
1742-540: Is used which also decreases the problem of nuclide loss. Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample. For example, the age of the Amitsoq gneisses from western Greenland was determined to be 3.60 ± 0.05 Ga (billion years ago) using uranium–lead dating and 3.56 ± 0.10 Ga (billion years ago) using lead–lead dating, results that are consistent with each other. Accurate radiometric dating generally requires that
1809-493: The biosphere as a consequence of industrialization have also depressed the proportion of carbon-14 by a few percent; in contrast, the amount of carbon-14 was increased by above-ground nuclear bomb tests that were conducted into the early 1960s. Also, an increase in the solar wind or the Earth's magnetic field above the current value would depress the amount of carbon-14 created in the atmosphere. This involves inspection of
1876-431: The law of superposition , states: in an undeformed stratigraphic sequence, the oldest strata occur at the base of the sequence. Chemostratigraphy studies the changes in the relative proportions of trace elements and isotopes within and between lithologic units. Carbon and oxygen isotope ratios vary with time, and researchers can use those to map subtle changes that occurred in the paleoenvironment. This has led to
1943-564: The natural remanent magnetization (NRM) to reveal the DRM. Following statistical analysis, the results are used to generate a local magnetostratigraphic column that can then be compared against the Global Magnetic Polarity Time Scale. This technique is used to date sequences that generally lack fossils or interbedded igneous rocks. The continuous nature of the sampling means that it is also a powerful technique for
2010-600: The Rb-Sr method can be used to decipher episodes of fault movement. A relatively short-range dating technique is based on the decay of uranium-234 into thorium-230, a substance with a half-life of about 80,000 years. It is accompanied by a sister process, in which uranium-235 decays into protactinium-231, which has a half-life of 32,760 years. While uranium is water-soluble, thorium and protactinium are not, and so they are selectively precipitated into ocean-floor sediments , from which their ratios are measured. The scheme has
2077-410: The age equation graphically and calculate the age of the sample and the original composition. Radiometric dating has been carried out since 1905 when it was invented by Ernest Rutherford as a method by which one might determine the age of the Earth . In the century since then the techniques have been greatly improved and expanded. Dating can now be performed on samples as small as a nanogram using
Womble Shale - Misplaced Pages Continue
2144-520: The age of the sample even if some of the lead has been lost. This can be seen in the concordia diagram, where the samples plot along an errorchron (straight line) which intersects the concordia curve at the age of the sample. This involves the alpha decay of Sm to Nd with a half-life of 1.06 x 10 years. Accuracy levels of within twenty million years in ages of two-and-a-half billion years are achievable. This involves electron capture or positron decay of potassium-40 to argon-40. Potassium-40 has
2211-428: The ages of fossils and the deduced rates of evolutionary change. Radiometric dating is also used to date archaeological materials, including ancient artifacts. Different methods of radiometric dating vary in the timescale over which they are accurate and the materials to which they can be applied. All ordinary matter is made up of combinations of chemical elements , each with its own atomic number , indicating
2278-615: The ambient field during deposition. If the ancient magnetic field were oriented similar to today's field ( North Magnetic Pole near the North Rotational Pole ), the strata would retain a normal polarity. If the data indicate that the North Magnetic Pole were near the South Rotational Pole , the strata would exhibit reversed polarity. Results of the individual samples are analyzed by removing
2345-422: The atmosphere is about 1 week. Thus, as an event marker of 1950s water in soil and ground water, Cl is also useful for dating waters less than 50 years before the present. Cl has seen use in other areas of the geological sciences, including dating ice and sediments. Luminescence dating methods are not radiometric dating methods in that they do not rely on abundances of isotopes to calculate age. Instead, they are
2412-416: The clock to zero. The trapped charge accumulates over time at a rate determined by the amount of background radiation at the location where the sample was buried. Stimulating these mineral grains using either light ( optically stimulated luminescence or infrared stimulated luminescence dating) or heat ( thermoluminescence dating ) causes a luminescence signal to be emitted as the stored unstable electron energy
2479-402: The composition of parent and daughter isotopes at the time the material being tested cooled below its closure temperature . This is well established for most isotopic systems. However, construction of an isochron does not require information on the original compositions, using merely the present ratios of the parent and daughter isotopes to a standard isotope. An isochron plot is used to solve
2546-453: The conversion efficiency from I to Xe . The difference between the measured Xe / Xe ratios of the sample and Shallowater then corresponds to the different ratios of I / I when they each stopped losing xenon. This in turn corresponds to a difference in age of closure in the early solar system. Another example of short-lived extinct radionuclide dating
2613-472: The decay products of extinct radionuclides with a mass spectrometer and using isochronplots, it is possible to determine relative ages of different events in the early history of the solar system. Dating methods based on extinct radionuclides can also be calibrated with the U–Pb method to give absolute ages. Thus both the approximate age and a high time resolution can be obtained. Generally a shorter half-life leads to
2680-404: The estimation of sediment-accumulation rates. Radiometric dating Radiometric dating , radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon , in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within
2747-422: The event. In situ micro-beam analysis can be achieved via laser ICP-MS or SIMS techniques. One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows accurate determination of
Womble Shale - Misplaced Pages Continue
2814-750: The existing isotope decays with a characteristic half-life (5730 years). The proportion of carbon-14 left when the remains of the organism are examined provides an indication of the time elapsed since its death. This makes carbon-14 an ideal dating method to date the age of bones or the remains of an organism. The carbon-14 dating limit lies around 58,000 to 62,000 years. The rate of creation of carbon-14 appears to be roughly constant, as cross-checks of carbon-14 dating with other dating methods show it gives consistent results. However, local eruptions of volcanoes or other events that give off large amounts of carbon dioxide can reduce local concentrations of carbon-14 and give inaccurate dates. The releases of carbon dioxide into
2881-567: The formation of a stable (nonradioactive) daughter nuclide; each step in such a chain is characterized by a distinct half-life. In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter. Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years (e.g., tritium ) to over 100 billion years (e.g., samarium-147 ). For most radioactive nuclides,
2948-512: The gap may be due to removal by erosion, in which case it may be called a stratigraphic vacuity. It is called a hiatus because deposition was on hold for a period of time. A physical gap may represent both a period of non-deposition and a period of erosion. A geologic fault may cause the appearance of a hiatus. Magnetostratigraphy is a chronostratigraphic technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout
3015-472: The half-life depends solely on nuclear properties and is essentially constant. This is known because decay constants measured by different techniques give consistent values within analytical errors and the ages of the same materials are consistent from one method to another. It is not affected by external factors such as temperature , pressure , chemical environment, or presence of a magnetic or electric field . The only exceptions are nuclides that decay by
3082-676: The heavy parent isotopes were produced by nucleosynthesis in supernovas, meaning that any parent isotope with a short half-life should be extinct by now. Carbon-14, though, is continuously created through collisions of neutrons generated by cosmic rays with nitrogen in the upper atmosphere and thus remains at a near-constant level on Earth. The carbon-14 ends up as a trace component in atmospheric carbon dioxide (CO 2 ). A carbon-based life form acquires carbon during its lifetime. Plants acquire it through photosynthesis , and animals acquire it from consumption of plants and other animals. When an organism dies, it ceases to take in new carbon-14, and
3149-413: The history of metamorphic events may become known in detail. These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace. This field is known as thermochronology or thermochronometry. The mathematical expression that relates radioactive decay to geologic time is where The equation is most conveniently expressed in terms of
3216-525: The ions set up a very weak current that can be measured to determine the rate of impacts and the relative concentrations of different atoms in the beams. Uranium–lead radiometric dating involves using uranium-235 or uranium-238 to date a substance's absolute age. This scheme has been refined to the point that the error margin in dates of rocks can be as low as less than two million years in two-and-a-half billion years. An error margin of 2–5% has been achieved on younger Mesozoic rocks. Uranium–lead dating
3283-458: The isotopic "clock" to zero. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes. Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature. The age that can be calculated by radiometric dating
3350-400: The material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features , including the age of fossilized life forms or the age of Earth itself, and can also be used to date
3417-428: The measured quantity N ( t ) rather than the constant initial value N o . To calculate the age, it is assumed that the system is closed (neither parent nor daughter isotopes have been lost from system), D 0 either must be negligible or can be accurately estimated, λ is known to high precision, and one has accurate and precise measurements of D* and N ( t ). The above equation makes use of information on
SECTION 50
#17327802544953484-423: The number of protons in the atomic nucleus . Additionally, elements may exist in different isotopes , with each isotope of an element differing in the number of neutrons in the nucleus. A particular isotope of a particular element is called a nuclide . Some nuclides are inherently unstable. That is, at some point in time, an atom of such a nuclide will undergo radioactive decay and spontaneously transform into
3551-466: The number of radioactive nuclides. However, it is challenging and expensive to accurately determine the number of radioactive nuclides. Alternatively, decay constants can be determined by comparing isotope data for rocks of known age. This method requires at least one of the isotope systems to be very precisely calibrated, such as the Pb–Pb system . The basic equation of radiometric dating requires that neither
3618-505: The other hand, the concentration of carbon-14 falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades. The closure temperature or blocking temperature represents the temperature below which the mineral is a closed system for the studied isotopes. If a material that selectively rejects the daughter nuclide is heated above this temperature, any daughter nuclides that have been accumulated over time will be lost through diffusion , resetting
3685-407: The parent and daughter nuclides must be precise and accurate. This normally involves isotope-ratio mass spectrometry . The precision of a dating method depends in part on the half-life of the radioactive isotope involved. For instance, carbon-14 has a half-life of 5,730 years. After an organism has been dead for 60,000 years, so little carbon-14 is left that accurate dating cannot be established. On
3752-443: The parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and enough of the daughter product is produced to be accurately measured and distinguished from the initial amount of the daughter present in the material. The procedures used to isolate and analyze
3819-443: The parent nuclide nor the daughter product can enter or leave the material after its formation. The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or gain of such isotopes since the sample was created. It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration . Precision
3886-425: The plastic film. The uranium content of the material can then be calculated from the number of tracks and the neutron flux . This scheme has application over a wide range of geologic dates. For dates up to a few million years micas , tektites (glass fragments from volcanic eruptions), and meteorites are best used. Older materials can be dated using zircon , apatite , titanite , epidote and garnet which have
3953-414: The process of electron capture, such as beryllium-7 , strontium-85 , and zirconium-89 , whose decay rate may be affected by local electron density. For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time. This predictability allows the relative abundances of related nuclides to be used as a clock to measure
4020-437: The rock layers. Strata from widespread locations containing the same fossil fauna and flora are said to be correlatable in time. Biologic stratigraphy was based on William Smith's principle of faunal succession , which predated, and was one of the first and most powerful lines of evidence for, biological evolution . It provides strong evidence for the formation ( speciation ) and extinction of species . The geologic time scale
4087-432: The rocks formation can be derived. The ultimate aim of chronostratigraphy is to place dates on the sequence of deposition of all rocks within a geological region, and then to every region, and by extension to provide an entire geologic record of the Earth. A gap or missing strata in the geological record of an area is called a stratigraphic hiatus. This may be the result of a halt in the deposition of sediment. Alternatively,
SECTION 60
#17327802544954154-405: The significance of strata or rock layering and the importance of fossil markers for correlating strata; he created the first geologic map of England. Other influential applications of stratigraphy in the early 19th century were by Georges Cuvier and Alexandre Brongniart , who studied the geology of the region around Paris. Variation in rock units, most obviously displayed as visible layering,
4221-406: The specialized field of isotopic stratigraphy. Cyclostratigraphy documents the often cyclic changes in the relative proportions of minerals (particularly carbonates ), grain size, thickness of sediment layers ( varves ) and fossil diversity with time, related to seasonal or longer term changes in palaeoclimates . Biostratigraphy or paleontologic stratigraphy is based on fossil evidence in
4288-505: The stable isotopes Al / Mg . The excess of Mg (often designated Mg *) is found by comparing the Mg / Mg ratio to that of other Solar System materials. The Al – Mg chronometer gives an estimate of the time period for formation of primitive meteorites of only a few million years (1.4 million years for Chondrule formation). In
4355-429: The theoretical basis for stratigraphy when he introduced the law of superposition , the principle of original horizontality and the principle of lateral continuity in a 1669 work on the fossilization of organic remains in layers of sediment. The first practical large-scale application of stratigraphy was by William Smith in the 1790s and early 19th century. Known as the "Father of English geology", Smith recognized
4422-421: The time from the incorporation of the original nuclides into a material to the present. The radioactive decay constant, the probability that an atom will decay per year, is the solid foundation of the common measurement of radioactivity. The accuracy and precision of the determination of an age (and a nuclide's half-life) depends on the accuracy and precision of the decay constant measurement. The in-growth method
4489-529: Was developed during the 19th century, based on the evidence of biologic stratigraphy and faunal succession. This timescale remained a relative scale until the development of radiometric dating , which was based on an absolute time framework, leading to the development of chronostratigraphy. One important development is the Vail curve , which attempts to define a global historical sea-level curve according to inferences from worldwide stratigraphic patterns. Stratigraphy
#494505