Misplaced Pages

TPT

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#290709

60-565: TPT may refer to: TPT (software) , Time Partition Testing Transaction privilege tax , in Arizona, US Twin Cities Public Television , Minneapolis–St. Paul, Minnesota, US Tara Palmer-Tomkinson (1971–2017), English television personality Tramway de Pithiviers à Toury , a French railway Totul pentru tara , a Romanian fascist party 1935-1940 Two-part tariff for

120-734: A state machine , is a mathematical model of computation . It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can change from one state to another in response to some inputs ; the change from one state to another is called a transition . An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines . For any non-deterministic finite-state machine, an equivalent deterministic one can be constructed. The behavior of state machines can be observed in many devices in modern society that perform

180-506: A Mealy machine state may have different output labels on its incoming transitions (edges). Every such state needs to be split in multiple Moore machine states, one for every incident output symbol. Optimizing an FSM means finding a machine with the minimum number of states that performs the same function. The fastest known algorithm doing this is the Hopcroft minimization algorithm . Other techniques include using an implication table , or

240-531: A class of automata studied in automata theory and the theory of computation . In computer science, finite-state machines are widely used in modeling of application behavior ( control theory ), design of hardware digital systems , software engineering , compilers , network protocols , and computational linguistics . Finite-state machines can be subdivided into acceptors, classifiers, transducers and sequencers. Acceptors (also called detectors or recognizers ) produce binary output, indicating whether or not

300-413: A deterministic automaton, every state has exactly one transition for each possible input. In a non-deterministic automaton, an input can lead to one, more than one, or no transition for a given state. The powerset construction algorithm can transform any nondeterministic automaton into a (usually more complex) deterministic automaton with identical functionality. A finite-state machine with only one state

360-607: A different formalism and set of semantics. These charts, like Harel's original state machines, support hierarchically nested states, orthogonal regions , state actions, and transition actions. In accordance with the general classification, the following formal definitions are found. A deterministic finite-state machine or deterministic finite-state acceptor is a quintuple ( Σ , S , s 0 , δ , F ) {\displaystyle (\Sigma ,S,s_{0},\delta ,F)} , where: For both deterministic and non-deterministic FSMs, it

420-486: A function of time, past variables/test events, and other signals. It is also possible to define these signals by writing " C -Style" code as well as importing measurement data and using a manual signal editor. It is possible to define functions that can act as a clients or servers . Client functions are called from TPT in the system under test, where server functions implemented in TPT can be called as " stub functions" from

480-409: A gate with three rotating arms at waist height, one across the entryway. Initially the arms are locked, blocking the entry, preventing patrons from passing through. Depositing a coin or token in a slot on the turnstile unlocks the arms, allowing a single customer to push through. After the customer passes through, the arms are locked again until another coin is inserted. Considered as a state machine,

540-429: A language that would contain every string accepted by the acceptor but none of the rejected ones; that language is accepted by the acceptor. By definition, the languages accepted by acceptors are the regular languages . The problem of determining the language accepted by a given acceptor is an instance of the algebraic path problem —itself a generalization of the shortest path problem to graphs with edges weighted by

600-449: A large number of test cases thus making it possible to find failures in the system under test with an ideal number of test cases. The underlying idea of TPT's systematic is the separation of similarities and differences among the test cases: most test cases are very similar in their structural process and can "only" be differentiated in a few, but crucial details. TPT makes use of this fact by jointly modelling and using joint structures. On

660-400: A predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are: vending machines , which dispense products when the proper combination of coins is deposited; elevators , whose sequence of stops is determined by the floors requested by riders; traffic lights , which change sequence when cars are waiting; combination locks , which require

SECTION 10

#1732773203291

720-531: A product The Powder Toy , falling sand game The Passion Translation , Christian Bible Translation TransPennine Trains , British train operator Trans Pennine Trail , long-distance path in Northern England Triphalangeal thumb , congenital malformation Tpt., an abbreviation for Trumpet used in musical scores Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with

780-589: A second block of combinational logic that determines the output of an FSM. One of the classic hardware implementations is the Richards controller . In a Medvedev machine , the output is directly connected to the state flip-flops minimizing the time delay between flip-flops and output. Through state encoding for low power state machines may be optimized to minimize power consumption. The following concepts are commonly used to build software applications with finite-state machines: Finite automata are often used in

840-414: A sequence of logical phases. The states of the finite-state machine represent the logical passes of a test which are similar for all tests. Trigger conditions model the transitions between the test phases. Each state and transition of the automaton may have different variants. The combination of the variants model the individual test cases. Natural language texts become part of the graphics, supporting

900-408: A specialised evaluation library to give optimal support to the test evaluation. The use of a script language ensures a high degree of flexibility in the test evaluation: access to reference data, communication with other tools and development of one's own domain-specific libraries for test evaluation is supported. Besides of the script based test result evaluation user interfaces provide simple access to

960-413: A systematic and graphic modelling technique for test cases with a fully automated test execution in different environments and automatic test evaluation. TPT covers the following four test activities: In TPT tests are modelled graphically with the aid of special state machines and time partitioning. All test cases for one system under test can be modelled using one hybrid automaton. Tests often consist of

1020-711: Is a model-based testing tool and is applied mainly in the automotive controller development and has originally been developed within Daimler AG for their own development. Daimler coordinated the development of the testing tool for years. Since 2007 PikeTec continues the development of the tool. TPT is used by many different other car manufacturers like BMW , Volkswagen , Audi , Porsche and General Motors as well as suppliers like Robert Bosch GmbH , Continental and Hella . Finite-state machine A finite-state machine ( FSM ) or finite-state automaton ( FSA , plural: automata ), finite automaton , or simply

1080-467: Is a sextuple ( Σ , Γ , S , s 0 , δ , ω ) {\displaystyle (\Sigma ,\Gamma ,S,s_{0},\delta ,\omega )} , where: If the output function depends on the state and input symbol ( ω : S × Σ → Γ {\displaystyle \omega :S\times \Sigma \rightarrow \Gamma } ) that definition corresponds to

1140-473: Is a systematic test methodology for the automated software test and verification of embedded control systems , cyber-physical systems , and dataflow programs . TPT is specialised on testing and validation of embedded systems whose inputs and outputs can be represented as signals and is a dedicated method for testing continuous behaviour of systems . Most control systems belong to this system class. The outstanding characteristic of control systems

1200-502: Is able to process tests in real time with defined response behaviour. The response times of TPT test cases are normally given within micro seconds – depending on the complexity and test hardware. The expected system behaviour for individual test cases should also be automatically tested to assure efficient test processes. TPT offers the possibility to compute the properties for the expected behaviour online (during test execution) and offline (after test execution). While online evaluation uses

1260-621: Is called a "combinatorial FSM". It only allows actions upon transition into a state. This concept is useful in cases where a number of finite-state machines are required to work together, and when it is convenient to consider a purely combinatorial part as a form of FSM to suit the design tools. There are other sets of semantics available to represent state machines. For example, there are tools for modeling and designing logic for embedded controllers. They combine hierarchical state machines (which usually have more than one current state), flow graphs, and truth tables into one language, resulting in

SECTION 20

#1732773203291

1320-512: Is conventional to allow δ {\displaystyle \delta } to be a partial function , i.e. δ ( s , x ) {\displaystyle \delta (s,x)} does not have to be defined for every combination of s ∈ S {\displaystyle s\in S} and x ∈ Σ {\displaystyle x\in \Sigma } . If an FSM M {\displaystyle M}

1380-424: Is in a state s {\displaystyle s} , the next symbol is x {\displaystyle x} and δ ( s , x ) {\displaystyle \delta (s,x)} is not defined, then M {\displaystyle M} can announce an error (i.e. reject the input). This is useful in definitions of general state machines, but less useful when transforming

1440-464: Is shown below: the combination of current state (e.g. B) and input (e.g. Y) shows the next state (e.g. C). The complete action's information is not directly described in the table and can only be added using footnotes. An FSM definition including the full action's information is possible using state tables (see also virtual finite-state machine ). The Unified Modeling Language has a notation for describing state machines. UML state machines overcome

1500-449: Is the fact that they interact closely interlinked with a real world environment. Controllers need to observe their environment and react correspondingly to its behaviour. The system works in an interactional cycle with its environment and is subject to temporal constraints. Testing these systems is to stimulate and to check the timing behaviour. Traditional functional testing methods use scripts – TPT uses model-based testing . TPT combines

1560-548: The Mealy model , and can be modelled as a Mealy machine . If the output function depends only on the state ( ω : S → Γ {\displaystyle \omega :S\rightarrow \Gamma } ) that definition corresponds to the Moore model , and can be modelled as a Moore machine . A finite-state machine with no output function at all is known as a semiautomaton or transition system . If we disregard

1620-542: The Unlocked state) is represented by a circular arrow returning to the original state. The arrow into the Locked node from the black dot indicates it is the initial state. A state is a description of the status of a system that is waiting to execute a transition . A transition is a set of actions to be executed when a condition is fulfilled or when an event is received. For example, when using an audio system to listen to

1680-435: The frontend of programming language compilers. Such a frontend may comprise several finite-state machines that implement a lexical analyzer and a parser. Starting from a sequence of characters, the lexical analyzer builds a sequence of language tokens (such as reserved words, literals, and identifiers) from which the parser builds a syntax tree. The lexical analyzer and the parser handle the regular and context-free parts of

1740-476: The Moore reduction procedure. Additionally, acyclic FSAs can be minimized in linear time . In a digital circuit , an FSM may be built using a programmable logic device , a programmable logic controller , logic gates and flip flops or relays . More specifically, a hardware implementation requires a register to store state variables, a block of combinational logic that determines the state transition, and

1800-606: The Test-Step List, which in turn contain automatons and sequences, resulting in hierarchical Test-Step Lists. The test sequences can also be combined with other modelling methods, allowing for a great deal of complexity (or simplicity) in one's test. Test sequences can also be combined and parallelised with other modelling methods. Within the Test-Step-List it is possible to implement so-called "Direct Definitions". Using this type of modelling, one can define signals as

1860-461: The binary string contains an even number of 0s (including any binary string containing no 0s). Examples of strings accepted by this acceptor are ε (the empty string ), 1, 11, 11..., 00, 010, 1010, 10110, etc. Classifiers are a generalization of acceptors that produce n -ary output where n is strictly greater than two. Transducers produce output based on a given input and/or a state using actions. They are used for control applications and in

TPT - Misplaced Pages Continue

1920-426: The development like unit testing , integration testing , system testing and regression testing . For analysis and measurement of code coverage , TPT can interact with coverage tools like Testwell CTC++ for C-code . A configurable graphical user interface (Dashboard), based on GUI widgets , can be used to interact with tests. The modelled test cases in TPT are compiled and during test execution interpreted by

1980-465: The elements of an (arbitrary) semiring . An example of an accepting state appears in Fig. 5: a deterministic finite automaton (DFA) that detects whether the binary input string contains an even number of 0s. S 1 (which is also the start state) indicates the state at which an even number of 0s has been input. S 1 is therefore an accepting state. This acceptor will finish in an accept state, if

2040-445: The field of computational linguistics . In control applications, two types are distinguished: Sequencers (also called generators ) are a subclass of acceptors and transducers that have a single-letter input alphabet. They produce only one sequence, which can be seen as an output sequence of acceptor or transducer outputs. A further distinction is between deterministic ( DFA ) and non-deterministic ( NFA , GNFA ) automata. In

2100-436: The finite-state machine executable. There are a large number of variants to represent an FSM such as the one in figure 3. In addition to their use in modeling reactive systems presented here, finite-state machines are significant in many different areas, including electrical engineering , linguistics , computer science , philosophy , biology , mathematics , video game programming , and logic . Finite-state machines are

2160-415: The first output symbol of a Moore machine, ω ( s 0 ) {\displaystyle \omega (s_{0})} , then it can be readily converted to an output-equivalent Mealy machine by setting the output function of every Mealy transition (i.e. labeling every edge) with the output symbol given of the destination Moore state. The converse transformation is less straightforward because

2220-456: The input of a sequence of numbers in the proper order. The finite-state machine has less computational power than some other models of computation such as the Turing machine . The computational power distinction means there are computational tasks that a Turing machine can do but an FSM cannot. This is because an FSM's memory is limited by the number of states it has. A finite-state machine has

2280-399: The limitations of traditional finite-state machines while retaining their main benefits. UML state machines introduce the new concepts of hierarchically nested states and orthogonal regions , while extending the notion of actions . UML state machines have the characteristics of both Mealy machines and Moore machines . They support actions that depend on both the state of the system and

2340-445: The machine. Some algorithms in their default form may require total functions. A finite-state machine has the same computational power as a Turing machine that is restricted such that its head may only perform "read" operations, and always has to move from left to right. That is, each formal language accepted by a finite-state machine is accepted by such a kind of restricted Turing machine, and vice versa. A finite-state transducer

2400-402: The one hand, redundancies are thus avoided. On the other hand, it is made very clear what the test cases actually differ in – i.e. which specific aspect they respectively test. The comparability of test cases and thus the overview is improved in this approach and the attention of the tester is focused on the essential – the differentiating features of the test cases. The hierarchical structure of

2460-406: The outputs resulting from each input: The turnstile state machine can also be represented by a directed graph called a state diagram (above) . Each state is represented by a node ( circle ). Edges ( arrows ) show the transitions from one state to another. Each arrow is labeled with the input that triggers that transition. An input that doesn't cause a change of state (such as a coin input in

TPT - Misplaced Pages Continue

2520-417: The pure information "success", "failed" or "unknown" can be depicted as the test result for each test case, but also details such as characteristic parameters or signals that have been observed in the test execution or computed in the test evaluation. Since the test assessment returns proper information about the timing and the checked behaviour this information can be made available in the report. The content of

2580-470: The radio (the system is in the "radio" state), receiving a "next" stimulus results in moving to the next station. When the system is in the "CD" state, the "next" stimulus results in moving to the next track. Identical stimuli trigger different actions depending on the current state. In some finite-state machine representations, it is also possible to associate actions with a state: Several state-transition table types are used. The most common representation

2640-462: The received input is accepted. Each state of an acceptor is either accepting or non accepting . Once all input has been received, if the current state is an accepting state, the input is accepted; otherwise it is rejected. As a rule, input is a sequence of symbols (characters); actions are not used. The start state can also be an accepting state, in which case the acceptor accepts the empty string. The example in figure 4 shows an acceptor that accepts

2700-400: The same computational power as a Turing machine that is restricted such that its head may only perform "read" operations, and always has to move from left to right. FSMs are studied in the more general field of automata theory . An example of a simple mechanism that can be modeled by a state machine is a turnstile . A turnstile, used to control access to subways and amusement park rides, is

2760-516: The same modelling techniques as test modelling, offline evaluation offers decidedly more far-reaching possibilities for more complex evaluations, including operations such as comparisons with external reference data, limit-value monitoring, signal filters, analyses of state sequences and time conditions. The offline evaluation is, technically speaking, based on the Python script language, which has been extended by specific syntactic language elements and

2820-499: The simple and demonstrative readability even for non-programmers. Substantial techniques such as parallel and hierarchical branching state machines , conditional branching, reactivity , signal description, measured signals as well as lists of simple test steps allow an intuitive and graphic modelling even of complex test cases. The test's complexity is hidden behind graphics. The lowest level signal description consists of either test step lists or so called direct definitions. Through

2880-515: The so-called virtual machine (VM). The VM is the same for all platforms and all tests. Only a platform adapter realises the signal mapping for the individual application. The TPT-VM is implemented in ANSI C and requires a memory of just a few kilobytes and can completely do without a dynamic memory allocation, allowing it to be applied in minimalist and environments with few resources too. There are also APIs for C and .NET . TPT's Virtual Machine

2940-458: The string "nice". In this acceptor, the only accepting state is state 7. A (possibly infinite) set of symbol sequences, called a formal language , is a regular language if there is some acceptor that accepts exactly that set. For example, the set of binary strings with an even number of zeroes is a regular language (cf. Fig. 5), while the set of all strings whose length is a prime number is not. An acceptor could also be described as defining

3000-490: The system under test. TPT itself may also call the server functions. TPT was developed specifically for testing of continuous and reactive behaviour of embedded systems. TPT can be seen as the extension of the Classification Tree Method in terms of timing behaviour. Because of its systematic approach in test case generation, TPT even keeps track of very complex systems whose thorough testing requires

3060-409: The system's behaviour during the testing process in real time – for instance to react on the system exactly when a certain system-state occurs or a sensor signal exceeds a certain threshold. If, for example, a sensor failure for an engine controller is to be simulated when the engine idling speed is exceeded, it has to be possible to react to the event "engine idling speed exceeded" in the description of

SECTION 50

#1732773203291

3120-409: The test assessments and help non-programmers to avoid scripting. Measurement data from other sources like TargetLink and Simulink signal logging or MCD-3 measurement data can be assessed automatically. This data can be independent from the test execution. TPT test documentation according to IEEE 829 presents the result of the test evaluation to the tester in a HTML, report, in which not only

3180-439: The test case. TPT test cases are made independent of its execution. The test cases can be executed in almost any environment due to the so-called virtual machine (VM) concept also in real time environments. Examples are MATLAB / Simulink , TargetLink , ASCET, C-code , CAN , AUTOSAR , SystemDesk, DaVinci CT, LABCAR, INCA, Software-in-the-Loop (SiL) and HiL . Thus TPT is an integrated tool to be used in all testing phases of

3240-458: The test cases makes it possible to break complex test problems down into sub-problems thus also improving the clarity and – as a result – the quality of the test. These modelling techniques support the tester in finding the actually relevant cases, avoiding redundancies and keeping track of even large numbers of test cases. TPT comprises several possibilities to automatically generate test cases: With TPT, each test case can specifically react to

3300-432: The test documentation as well as the structure of the document can be freely configured with the help of a template. TPT supports test management of TPT test projects with the following activities: Industry norms such as IEC 61508 , DO-178B , EN 50128 and ISO 26262 require traceability of requirements and tests . TPT offers an interface to requirements tools like Telelogic DOORS to support these activities. TPT

3360-472: The title TPT . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=TPT&oldid=1240735295 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages TPT (software) TPT ( time partition testing )

3420-481: The triggering event , as in Mealy machines, as well as entry and exit actions , which are associated with states rather than transitions, as in Moore machines. The Specification and Description Language is a standard from ITU that includes graphical symbols to describe actions in the transition: SDL embeds basic data types called "Abstract Data Types", an action language, and an execution semantic in order to make

3480-434: The turnstile has two possible states: Locked and Unlocked . There are two possible inputs that affect its state: putting a coin in the slot ( coin ) and pushing the arm ( push ). In the locked state, pushing on the arm has no effect; no matter how many times the input push is given, it stays in the locked state. Putting a coin in – that is, giving the machine a coin input – shifts the state from Locked to Unlocked . In

3540-412: The unlocked state, putting additional coins in has no effect; that is, giving additional coin inputs does not change the state. A customer pushing through the arms gives a push input and resets the state to Locked . The turnstile state machine can be represented by a state-transition table , showing for each possible state, the transitions between them (based upon the inputs given to the machine) and

3600-411: The use of the Test-Step List, one can model simple sequences of test steps that do not need to execute in parallel, such as setting signals (Set channel), ramping signals (Ramp channel), setting parameters (Set parameter), and waiting (Wait). Requests for the expected test results can be made within the test sequence to evaluate the system under test as it runs. It is also possible to place subautomatons in

#290709