Misplaced Pages

Torus

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#975024

103-424: In geometry , a torus ( pl. : tori or toruses ) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut . If the axis of revolution does not touch

206-585: A Riemannian manifold , as well as the structure of an abelian Lie group. Perhaps the simplest example of this is when L = Z 2 {\displaystyle \mathbb {Z} ^{2}} : R 2 / Z 2 {\displaystyle \mathbb {R} ^{2}/\mathbb {Z} ^{2}} , which can also be described as the Cartesian plane under the identifications ( x , y ) ~ ( x + 1, y ) ~ ( x , y + 1) . This particular flat torus (and any uniformly scaled version of it)

309-449: A closed path that circles the torus' "hole" (say, a circle that traces out a particular latitude) and then circles the torus' "body" (say, a circle that traces out a particular longitude) can be deformed to a path that circles the body and then the hole. So, strictly 'latitudinal' and strictly 'longitudinal' paths commute. An equivalent statement may be imagined as two shoelaces passing through each other, then unwinding, then rewinding. If

412-513: A fiber bundle over S (the Hopf bundle ). The surface described above, given the relative topology from R 3 {\displaystyle \mathbb {R} ^{3}} , is homeomorphic to a topological torus as long as it does not intersect its own axis. A particular homeomorphism is given by stereographically projecting the topological torus into R 3 {\displaystyle \mathbb {R} ^{3}} from

515-520: A geodesic is a generalization of the notion of a line to curved spaces . In Euclidean geometry a plane is a flat, two-dimensional surface that extends infinitely; the definitions for other types of geometries are generalizations of that. Planes are used in many areas of geometry. For instance, planes can be studied as a topological surface without reference to distances or angles; it can be studied as an affine space , where collinearity and ratios can be studied but not distances; it can be studied as

618-593: A maximal torus ; that is, a closed subgroup which is a torus of the largest possible dimension. Such maximal tori T have a controlling role to play in theory of connected G . Toroidal groups are examples of protori , which (like tori) are compact connected abelian groups, which are not required to be manifolds . Automorphisms of T are easily constructed from automorphisms of the lattice Z n {\displaystyle \mathbb {Z} ^{n}} , which are classified by invertible integral matrices of size n with an integral inverse; these are just

721-418: A parabola with the summation of an infinite series , and gave remarkably accurate approximations of pi . He also studied the spiral bearing his name and obtained formulas for the volumes of surfaces of revolution . Indian mathematicians also made many important contributions in geometry. The Shatapatha Brahmana (3rd century BC) contains rules for ritual geometric constructions that are similar to

824-751: A product of a Euclidean open disk and a circle. The volume of this solid torus and the surface area of its torus are easily computed using Pappus's centroid theorem , giving: A = ( 2 π r ) ( 2 π R ) = 4 π 2 R r , V = ( π r 2 ) ( 2 π R ) = 2 π 2 R r 2 . {\displaystyle {\begin{aligned}A&=\left(2\pi r\right)\left(2\pi R\right)=4\pi ^{2}Rr,\\[5mu]V&=\left(\pi r^{2}\right)\left(2\pi R\right)=2\pi ^{2}Rr^{2}.\end{aligned}}} These formulas are

927-425: A vector space and its dual space . Euclidean geometry is geometry in its classical sense. As it models the space of the physical world, it is used in many scientific areas, such as mechanics , astronomy , crystallography , and many technical fields, such as engineering , architecture , geodesy , aerodynamics , and navigation . The mandatory educational curriculum of the majority of nations includes

1030-519: A 1/3 twist (120°): the 3-dimensional interior corresponds to the points on the 3-torus where all 3 coordinates are distinct, the 2-dimensional face corresponds to points with 2 coordinates equal and the 3rd different, while the 1-dimensional edge corresponds to points with all 3 coordinates identical. These orbifolds have found significant applications to music theory in the work of Dmitri Tymoczko and collaborators (Felipe Posada, Michael Kolinas, et al.), being used to model musical triads . A flat torus

1133-405: A common endpoint, called the vertex of the angle. The size of an angle is formalized as an angular measure . In Euclidean geometry , angles are used to study polygons and triangles , as well as forming an object of study in their own right. The study of the angles of a triangle or of angles in a unit circle forms the basis of trigonometry . In differential geometry and calculus ,

SECTION 10

#1732793297976

1236-523: A decimal place value system with a dot for zero." Aryabhata 's Aryabhatiya (499) includes the computation of areas and volumes. Brahmagupta wrote his astronomical work Brāhmasphuṭasiddhānta in 628. Chapter 12, containing 66 Sanskrit verses, was divided into two sections: "basic operations" (including cube roots, fractions, ratio and proportion, and barter) and "practical mathematics" (including mixture, mathematical series, plane figures, stacking bricks, sawing of timber, and piling of grain). In

1339-488: A flat torus into 3-dimensional Euclidean space R 3 {\displaystyle \mathbb {R} ^{3}} was found. It is a flat torus in the sense that, as a metric space, it is isometric to a flat square torus. It is similar in structure to a fractal as it is constructed by repeatedly corrugating an ordinary torus at smaller scales. Like fractals, it has no defined Gaussian curvature. However, unlike fractals, it does have defined surface normals , yielding

1442-440: A more rigorous foundation for geometry, treated congruence as an undefined term whose properties are defined by axioms . Congruence and similarity are generalized in transformation geometry , which studies the properties of geometric objects that are preserved by different kinds of transformations. Classical geometers paid special attention to constructing geometric objects that had been described in some other way. Classically,

1545-428: A multitude of forms, including the graphics of Leonardo da Vinci , M. C. Escher , and others. In the second half of the 19th century, the relationship between symmetry and geometry came under intense scrutiny. Felix Klein 's Erlangen program proclaimed that, in a very precise sense, symmetry, expressed via the notion of a transformation group , determines what geometry is . Symmetry in classical Euclidean geometry

1648-451: A number of apparently different definitions, which are all equivalent in the most common cases. The theme of symmetry in geometry is nearly as old as the science of geometry itself. Symmetric shapes such as the circle , regular polygons and platonic solids held deep significance for many ancient philosophers and were investigated in detail before the time of Euclid. Symmetric patterns occur in nature and were artistically rendered in

1751-444: A physical system, which has a dimension equal to the system's degrees of freedom . For instance, the configuration of a screw can be described by five coordinates. In general topology , the concept of dimension has been extended from natural numbers , to infinite dimension ( Hilbert spaces , for example) and positive real numbers (in fractal geometry ). In algebraic geometry , the dimension of an algebraic variety has received

1854-528: A plane or 3-dimensional space. Mathematicians have found many explicit formulas for area and formulas for volume of various geometric objects. In calculus , area and volume can be defined in terms of integrals , such as the Riemann integral or the Lebesgue integral . Other geometrical measures include the curvature and compactness . The concept of length or distance can be generalized, leading to

1957-602: A purely algebraic context. Scheme theory allowed to solve many difficult problems not only in geometry, but also in number theory . Wiles' proof of Fermat's Last Theorem is a famous example of a long-standing problem of number theory whose solution uses scheme theory and its extensions such as stack theory . One of seven Millennium Prize problems , the Hodge conjecture , is a question in algebraic geometry. Algebraic geometry has applications in many areas, including cryptography and string theory . Complex geometry studies

2060-429: A rectangle together, choosing the other two sides instead will cause the same reversal of orientation. The first homology group of the torus is isomorphic to the fundamental group (this follows from Hurewicz theorem since the fundamental group is abelian ). The 2-torus is a twofold branched cover of the 2-sphere, with four ramification points . Every conformal structure on the 2-torus can be represented as such

2163-405: A regular torus. For example, in the following map: If R and P in the above flat torus parametrization form a unit vector ( R , P ) = (cos( η ), sin( η )) then u , v , and 0 < η < π /2 parameterize the unit 3-sphere as Hopf coordinates . In particular, for certain very specific choices of a square flat torus in the 3-sphere S , where η = π /4 above, the torus will partition

SECTION 20

#1732793297976

2266-427: A size or measure to sets , where the measures follow rules similar to those of classical area and volume. Congruence and similarity are concepts that describe when two shapes have similar characteristics. In Euclidean geometry, similarity is used to describe objects that have the same shape, while congruence is used to describe objects that are the same in both size and shape. Hilbert , in his work on creating

2369-453: A so-called "smooth fractal". The key to obtaining the smoothness of this corrugated torus is to have the amplitudes of successive corrugations decreasing faster than their "wavelengths". (These infinitely recursive corrugations are used only for embedding into three dimensions; they are not an intrinsic feature of the flat torus.) This is the first time that any such embedding was defined by explicit equations or depicted by computer graphics. In

2472-544: A sphere — by adding one additional point that represents the limiting case as a rectangular torus approaches an aspect ratio of 0 in the limit. The result is that this compactified moduli space is a sphere with three points each having less than 2π total angle around them. (Such a point is termed a "cusp", and may be thought of as the vertex of a cone, also called a "conepoint".) This third conepoint will have zero total angle around it. Due to symmetry, M* may be constructed by glueing together two congruent geodesic triangles in

2575-600: A technical sense a type of transformation geometry , in which transformations are homeomorphisms . This has often been expressed in the form of the saying 'topology is rubber-sheet geometry'. Subfields of topology include geometric topology , differential topology , algebraic topology and general topology . Algebraic geometry is fundamentally the study by means of algebraic methods of some geometrical shapes, called algebraic sets , and defined as common zeros of multivariate polynomials . Algebraic geometry became an autonomous subfield of geometry c.  1900 , with

2678-518: A theorem called Hilbert's Nullstellensatz that establishes a strong correspondence between algebraic sets and ideals of polynomial rings . This led to a parallel development of algebraic geometry, and its algebraic counterpart, called commutative algebra . From the late 1950s through the mid-1970s algebraic geometry had undergone major foundational development, with the introduction by Alexander Grothendieck of scheme theory , which allows using topological methods , including cohomology theories in

2781-494: A theory of ratios that avoided the problem of incommensurable magnitudes , which enabled subsequent geometers to make significant advances. Around 300 BC, geometry was revolutionized by Euclid, whose Elements , widely considered the most successful and influential textbook of all time, introduced mathematical rigor through the axiomatic method and is the earliest example of the format still used in mathematics today, that of definition, axiom, theorem, and proof. Although most of

2884-454: A torus is a closed surface defined as the product of two circles : S  ×  S . This can be viewed as lying in C and is a subset of the 3-sphere S of radius √2. This topological torus is also often called the Clifford torus . In fact, S is filled out by a family of nested tori in this manner (with two degenerate circles), a fact which is important in the study of S as

2987-404: A torus is any topological space that is homeomorphic to a torus. The surface of a coffee cup and a doughnut are both topological tori with genus one. An example of a torus can be constructed by taking a rectangular strip of flexible material such as rubber, and joining the top edge to the bottom edge, and the left edge to the right edge, without any half-twists (compare Klein bottle ). Torus

3090-425: A torus is punctured and turned inside out then another torus results, with lines of latitude and longitude interchanged. This is equivalent to building a torus from a cylinder, by joining the circular ends together, in two ways: around the outside like joining two ends of a garden hose, or through the inside like rolling a sock (with the toe cut off). Additionally, if the cylinder was made by gluing two opposite sides of

3193-426: A torus is the product of two circles, a modified version of the spherical coordinate system is sometimes used. In traditional spherical coordinates there are three measures, R , the distance from the center of the coordinate system, and θ and φ , angles measured from the center point. As a torus has, effectively, two center points, the centerpoints of the angles are moved; φ measures the same angle as it does in

Torus - Misplaced Pages Continue

3296-562: A torus without stretching the paper (unless some regularity and differentiability conditions are given up, see below). A simple 4-dimensional Euclidean embedding of a rectangular flat torus (more general than the square one) is as follows: where R and P are positive constants determining the aspect ratio. It is diffeomorphic to a regular torus but not isometric . It can not be analytically embedded ( smooth of class C , 2 ≤ k ≤ ∞ ) into Euclidean 3-space. Mapping it into 3 -space requires one to stretch it, in which case it looks like

3399-469: A two-sheeted cover of the 2-sphere. The points on the torus corresponding to the ramification points are the Weierstrass points . In fact, the conformal type of the torus is determined by the cross-ratio of the four points. The torus has a generalization to higher dimensions, the n-dimensional torus , often called the n -torus or hypertorus for short. (This is the more typical meaning of

3502-459: Is R n {\displaystyle \mathbb {R} ^{n}} modulo the action of the integer lattice Z n {\displaystyle \mathbb {Z} ^{n}} (with the action being taken as vector addition). Equivalently, the n -torus is obtained from the n -dimensional hypercube by gluing the opposite faces together. An n -torus in this sense is an example of an n- dimensional compact manifold . It

3605-411: Is diffeomorphic to Euclidean space. Manifolds are used extensively in physics, including in general relativity and string theory . Euclid defines a plane angle as the inclination to each other, in a plane, of two lines which meet each other, and do not lie straight with respect to each other. In modern terms, an angle is the figure formed by two rays , called the sides of the angle, sharing

3708-1004: Is a Latin word for "a round, swelling, elevation, protuberance". A torus of revolution in 3-space can be parametrized as: x ( θ , φ ) = ( R + r cos ⁡ θ ) cos ⁡ φ y ( θ , φ ) = ( R + r cos ⁡ θ ) sin ⁡ φ z ( θ , φ ) = r sin ⁡ θ {\displaystyle {\begin{aligned}x(\theta ,\varphi )&=(R+r\cos \theta )\cos {\varphi }\\y(\theta ,\varphi )&=(R+r\cos \theta )\sin {\varphi }\\z(\theta ,\varphi )&=r\sin \theta \\\end{aligned}}} using angular coordinates θ , φ ∈ [ 0 , 2 π ) , {\displaystyle \theta ,\varphi \in [0,2\pi ),} representing rotation around

3811-540: Is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic , one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer . Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry , which includes the notions of point , line , plane , distance , angle , surface , and curve , as fundamental concepts. Originally developed to model

3914-460: Is a member of the Lie group SO(4). It is known that there exists no C (twice continuously differentiable) embedding of a flat torus into 3-space. (The idea of the proof is to take a large sphere containing such a flat torus in its interior, and shrink the radius of the sphere until it just touches the torus for the first time. Such a point of contact must be a tangency. But that would imply that part of

4017-400: Is a part of some ambient flat Euclidean space). Topology is the field concerned with the properties of continuous mappings , and can be considered a generalization of Euclidean geometry. In practice, topology often means dealing with large-scale properties of spaces, such as connectedness and compactness . The field of topology, which saw massive development in the 20th century, is in

4120-413: Is a three-dimensional object bounded by a closed surface; for example, a ball is the volume bounded by a sphere. A manifold is a generalization of the concepts of curve and surface. In topology , a manifold is a topological space where every point has a neighborhood that is homeomorphic to Euclidean space. In differential geometry , a differentiable manifold is a space where each neighborhood

4223-408: Is a torus plus the volume inside the torus. Real-world objects that approximate a solid torus include O-rings , non-inflatable lifebuoys , ring doughnuts , and bagels . In topology , a ring torus is homeomorphic to the Cartesian product of two circles : S 1 × S 1 {\displaystyle S^{1}\times S^{1}} , and the latter is taken to be

Torus - Misplaced Pages Continue

4326-411: Is a torus with the metric inherited from its representation as the quotient , R 2 {\displaystyle \mathbb {R} ^{2}} / L , where L is a discrete subgroup of R 2 {\displaystyle \mathbb {R} ^{2}} isomorphic to Z 2 {\displaystyle \mathbb {Z} ^{2}} . This gives the quotient the structure of

4429-457: Is also an example of a compact abelian Lie group . This follows from the fact that the unit circle is a compact abelian Lie group (when identified with the unit complex numbers with multiplication). Group multiplication on the torus is then defined by coordinate-wise multiplication. Toroidal groups play an important part in the theory of compact Lie groups . This is due in part to the fact that in any compact Lie group G one can always find

4532-409: Is defined. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia and Egypt in the 2nd millennium BC. Early geometry was a collection of empirically discovered principles concerning lengths, angles, areas, and volumes, which were developed to meet some practical need in surveying , construction , astronomy , and various crafts. The earliest known texts on geometry are

4635-447: Is known as the "square" flat torus. This metric of the square flat torus can also be realised by specific embeddings of the familiar 2-torus into Euclidean 4-space or higher dimensions. Its surface has zero Gaussian curvature everywhere. It is flat in the same sense that the surface of a cylinder is flat. In 3 dimensions, one can bend a flat sheet of paper into a cylinder without stretching the paper, but this cylinder cannot be bent into

4738-437: Is not viewed as the set of the points through which it passes. However, there are modern geometries in which points are not primitive objects, or even without points. One of the oldest such geometries is Whitehead's point-free geometry , formulated by Alfred North Whitehead in 1919–1920. Euclid described a line as "breadthless length" which "lies equally with respect to the points on itself". In modern mathematics, given

4841-415: Is of importance to mathematical physics due to Albert Einstein 's general relativity postulation that the universe is curved . Differential geometry can either be intrinsic (meaning that the spaces it considers are smooth manifolds whose geometric structure is governed by a Riemannian metric , which determines how distances are measured near each point) or extrinsic (where the object under study

4944-482: Is represented by congruences and rigid motions, whereas in projective geometry an analogous role is played by collineations , geometric transformations that take straight lines into straight lines. However it was in the new geometries of Bolyai and Lobachevsky, Riemann, Clifford and Klein, and Sophus Lie that Klein's idea to 'define a geometry via its symmetry group ' found its inspiration. Both discrete and continuous symmetries play prominent roles in geometry,

5047-545: Is the n -fold product of the circle, the n -torus is the configuration space of n ordered, not necessarily distinct points on the circle. Symbolically, T n = ( S 1 ) n {\displaystyle \mathbb {T} ^{n}=(\mathbb {S} ^{1})^{n}} . The configuration space of unordered , not necessarily distinct points is accordingly the orbifold T n / S n {\displaystyle \mathbb {T} ^{n}/\mathbb {S} _{n}} , which

5150-491: Is the quotient of the torus by the symmetric group on n letters (by permuting the coordinates). For n = 2, the quotient is the Möbius strip , the edge corresponding to the orbifold points where the two coordinates coincide. For n = 3 this quotient may be described as a solid torus with cross-section an equilateral triangle , with a twist ; equivalently, as a triangular prism whose top and bottom faces are connected with

5253-400: Is the standard 2-torus, T 2 {\displaystyle \mathbb {T} ^{2}} . And similar to the 2-torus, the n -torus, T n {\displaystyle \mathbb {T} ^{n}} can be described as a quotient of R n {\displaystyle \mathbb {R} ^{n}} under integral shifts in any coordinate. That is, the n -torus

SECTION 50

#1732793297976

5356-753: The Sulba Sutras . According to ( Hayashi 2005 , p. 363), the Śulba Sūtras contain "the earliest extant verbal expression of the Pythagorean Theorem in the world, although it had already been known to the Old Babylonians. They contain lists of Pythagorean triples , which are particular cases of Diophantine equations . In the Bakhshali manuscript , there are a handful of geometric problems (including problems about volumes of irregular solids). The Bakhshali manuscript also "employs

5459-690: The Egyptian Rhind Papyrus (2000–1800 BC) and Moscow Papyrus ( c.  1890 BC ), and the Babylonian clay tablets , such as Plimpton 322 (1900 BC). For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, or frustum . Later clay tablets (350–50 BC) demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiter's position and motion within time-velocity space. These geometric procedures anticipated

5562-453: The Euler characteristic of the n -torus is 0 for all n . The cohomology ring H ( T n {\displaystyle \mathbb {T} ^{n}} ,  Z ) can be identified with the exterior algebra over the Z - module Z n {\displaystyle \mathbb {Z} ^{n}} whose generators are the duals of the n nontrivial cycles. As the n -torus

5665-523: The Lambert quadrilateral and Saccheri quadrilateral , were part of a line of research on the parallel postulate continued by later European geometers, including Vitello ( c.  1230  – c.  1314 ), Gersonides (1288–1344), Alfonso, John Wallis , and Giovanni Girolamo Saccheri , that by the 19th century led to the discovery of hyperbolic geometry . In the early 17th century, there were two important developments in geometry. The first

5768-518: The Oxford Calculators , including the mean speed theorem , by 14 centuries. South of Egypt the ancient Nubians established a system of geometry including early versions of sun clocks. In the 7th century BC, the Greek mathematician Thales of Miletus used geometry to solve problems such as calculating the height of pyramids and the distance of ships from the shore. He is credited with

5871-509: The Riemann surface , and Henri Poincaré , the founder of algebraic topology and the geometric theory of dynamical systems . As a consequence of these major changes in the conception of geometry, the concept of " space " became something rich and varied, and the natural background for theories as different as complex analysis and classical mechanics . The following are some of the most important concepts in geometry. Euclid took an abstract approach to geometry in his Elements , one of

5974-399: The complex plane using techniques of complex analysis ; and so on. A curve is a 1-dimensional object that may be straight (like a line) or not; curves in 2-dimensional space are called plane curves and those in 3-dimensional space are called space curves . In topology, a curve is defined by a function from an interval of the real numbers to another space. In differential geometry,

6077-478: The hyperbolic plane along their (identical) boundaries, where each triangle has angles of π/2, π/3, and 0. (The three angles of a hyperbolic triangle T determine T up to congruence.) As a result, the Gauss-Bonnet theorem shows that the area of each triangle can be calculated as π - (π/2 + π/3 + 0) = π/6, so it follows that the compactified moduli space M* has area equal to π/3. The other two cusps occur at

6180-454: The square root gives a quartic equation , ( x 2 + y 2 + z 2 + R 2 − r 2 ) 2 = 4 R 2 ( x 2 + y 2 ) . {\displaystyle \left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2}=4R^{2}\left(x^{2}+y^{2}\right).} The three classes of standard tori correspond to

6283-433: The " moduli space " of the torus to contain one point for each conformal equivalence class, with the appropriate topology. It turns out that this moduli space M may be identified with a punctured sphere that is smooth except for two points that have less angle than 2π (radians) around them: One has total angle = π and the other has total angle = 2π/3. M may be turned into a compact space M* — topologically equivalent to

SECTION 60

#1732793297976

6386-631: The 19th century changed the way it had been studied previously. These were the discovery of non-Euclidean geometries by Nikolai Ivanovich Lobachevsky, János Bolyai and Carl Friedrich Gauss and of the formulation of symmetry as the central consideration in the Erlangen programme of Felix Klein (which generalized the Euclidean and non-Euclidean geometries). Two of the master geometers of the time were Bernhard Riemann (1826–1866), working primarily with tools from mathematical analysis , and introducing

6489-496: The 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss 's Theorema Egregium ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space . This implies that surfaces can be studied intrinsically , that is, as stand-alone spaces, and has been expanded into

6592-474: The 19th century, the discovery of non-Euclidean geometries by Nikolai Ivanovich Lobachevsky (1792–1856), János Bolyai (1802–1860), Carl Friedrich Gauss (1777–1855) and others led to a revival of interest in this discipline, and in the 20th century, David Hilbert (1862–1943) employed axiomatic reasoning in an attempt to provide a modern foundation of geometry. Points are generally considered fundamental objects for building geometry. They may be defined by

6695-405: The 3-sphere into two congruent solid tori subsets with the aforesaid flat torus surface as their common boundary . One example is the torus T defined by Other tori in S having this partitioning property include the square tori of the form Q ⋅ T , where Q is a rotation of 4-dimensional space R 4 {\displaystyle \mathbb {R} ^{4}} , or in other words Q

6798-590: The angles between plane curves or space curves or surfaces can be calculated using the derivative . Length , area , and volume describe the size or extent of an object in one dimension, two dimension, and three dimensions respectively. In Euclidean geometry and analytic geometry , the length of a line segment can often be calculated by the Pythagorean theorem . Area and volume can be defined as fundamental quantities separate from length, or they can be described and calculated in terms of lengths in

6901-514: The aspect ratio denotes the ratio of the major axis to the minor axis . An ellipse with an aspect ratio of 1:1 is a circle. In geometry , there are several alternative definitions to aspect ratios of general compact sets in a d-dimensional space: If the dimension d is fixed, then all reasonable definitions of aspect ratio are equivalent to within constant factors. Aspect ratios are mathematically expressed as x : y (pronounced "x-to-y"). Cinematographic aspect ratios are usually denoted as

7004-514: The aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height, when the rectangle is oriented as a " landscape ". The aspect ratio is most often expressed as two integer numbers separated by a colon (x:y), less commonly as a simple or decimal fraction . The values x and y do not represent actual widths and heights but, rather, the proportion between width and height. As an example, 8:5, 16:10, 1.6:1, 8 ⁄ 5 and 1.6 are all ways of representing

7107-400: The circle, the surface has a ring shape and is called a torus of revolution , also known as a ring torus . If the axis of revolution is tangent to the circle, the surface is a horn torus . If the axis of revolution passes twice through the circle, the surface is a spindle torus (or self-crossing torus or self-intersecting torus ). If the axis of revolution passes through the center of

7210-437: The circle, the surface is a degenerate torus, a double-covered sphere . If the revolved curve is not a circle, the surface is called a toroid , as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings , inner tubes and ringette rings . A torus should not be confused with a solid torus , which is formed by rotating a disk , rather than a circle, around an axis. A solid torus

7313-412: The concept of angle and distance, finite geometry that omits continuity , and others. This enlargement of the scope of geometry led to a change of meaning of the word "space", which originally referred to the three-dimensional space of the physical world and its model provided by Euclidean geometry; presently a geometric space , or simply a space is a mathematical structure on which some geometry

7416-513: The contents of the Elements were already known, Euclid arranged them into a single, coherent logical framework. The Elements was known to all educated people in the West until the middle of the 20th century and its contents are still taught in geometry classes today. Archimedes ( c.  287–212 BC ) of Syracuse, Italy used the method of exhaustion to calculate the area under the arc of

7519-476: The definition in that context. It is a compact 2-manifold of genus 1. The ring torus is one way to embed this space into Euclidean space , but another way to do this is the Cartesian product of the embedding of S 1 {\displaystyle S^{1}} in the plane with itself. This produces a geometric object called the Clifford torus , a surface in 4-space . In the field of topology ,

7622-428: The field has been split in many subfields that depend on the underlying methods— differential geometry , algebraic geometry , computational geometry , algebraic topology , discrete geometry (also known as combinatorial geometry ), etc.—or on the properties of Euclidean spaces that are disregarded— projective geometry that consider only alignment of points but not distance and parallelism, affine geometry that omits

7725-520: The first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales's theorem . Pythagoras established the Pythagorean School , which is credited with the first proof of the Pythagorean theorem , though the statement of the theorem has a long history. Eudoxus (408– c.  355 BC ) developed the method of exhaustion , which allowed the calculation of areas and volumes of curvilinear figures, as well as

7828-526: The former in topology and geometric group theory , the latter in Lie theory and Riemannian geometry . A different type of symmetry is the principle of duality in projective geometry , among other fields. This meta-phenomenon can roughly be described as follows: in any theorem , exchange point with plane , join with meet , lies in with contains , and the result is an equally true theorem. A similar and closely related form of duality exists between

7931-598: The idea of metrics . For instance, the Euclidean metric measures the distance between points in the Euclidean plane , while the hyperbolic metric measures the distance in the hyperbolic plane . Other important examples of metrics include the Lorentz metric of special relativity and the semi- Riemannian metrics of general relativity . In a different direction, the concepts of length, area and volume are extended by measure theory , which studies methods of assigning

8034-537: The idea of reducing geometrical problems such as duplicating the cube to problems in algebra. Thābit ibn Qurra (known as Thebit in Latin ) (836–901) dealt with arithmetic operations applied to ratios of geometrical quantities, and contributed to the development of analytic geometry . Omar Khayyam (1048–1131) found geometric solutions to cubic equations . The theorems of Ibn al-Haytham (Alhazen), Omar Khayyam and Nasir al-Din al-Tusi on quadrilaterals , including

8137-406: The integral matrices with determinant ±1. Making them act on R n {\displaystyle \mathbb {R} ^{n}} in the usual way, one has the typical toral automorphism on the quotient. The fundamental group of an n -torus is a free abelian group of rank n . The k -th homology group of an n -torus is a free abelian group of rank n choose k . It follows that

8240-552: The latter section, he stated his famous theorem on the diagonals of a cyclic quadrilateral . Chapter 12 also included a formula for the area of a cyclic quadrilateral (a generalization of Heron's formula ), as well as a complete description of rational triangles ( i.e. triangles with rational sides and rational areas). In the Middle Ages , mathematics in medieval Islam contributed to the development of geometry, especially algebraic geometry . Al-Mahani (b. 853) conceived

8343-411: The most influential books ever written. Euclid introduced certain axioms , or postulates , expressing primary or self-evident properties of points, lines, and planes. He proceeded to rigorously deduce other properties by mathematical reasoning. The characteristic feature of Euclid's approach to geometry was its rigor, and it has come to be known as axiomatic or synthetic geometry. At the start of

8446-429: The multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic geometry , a line in the plane is often defined as the set of points whose coordinates satisfy a given linear equation , but in a more abstract setting, such as incidence geometry , a line may be an independent object, distinct from the set of points which lie on it. In differential geometry,

8549-425: The nature of geometric structures modelled on, or arising out of, the complex plane . Complex geometry lies at the intersection of differential geometry, algebraic geometry, and analysis of several complex variables , and has found applications to string theory and mirror symmetry . Aspect ratio The aspect ratio of a geometric shape is the ratio of its sizes in different dimensions. For example,

8652-427: The north pole of S . The torus can also be described as a quotient of the Cartesian plane under the identifications or, equivalently, as the quotient of the unit square by pasting the opposite edges together, described as a fundamental polygon ABA B . The fundamental group of the torus is just the direct product of the fundamental group of the circle with itself: Intuitively speaking, this means that

8755-441: The only instruments used in most geometric constructions are the compass and straightedge . Also, every construction had to be complete in a finite number of steps. However, some problems turned out to be difficult or impossible to solve by these means alone, and ingenious constructions using neusis , parabolas and other curves, or mechanical devices, were found. The geometrical concepts of rotation and orientation define part of

8858-514: The physical world, geometry has applications in almost all sciences, and also in art, architecture , and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem , a problem that was stated in terms of elementary arithmetic , and remained unsolved for several centuries. During

8961-407: The placement of objects embedded in the plane or in space. Traditional geometry allowed dimensions 1 (a line or curve), 2 (a plane or surface), and 3 (our ambient world conceived of as three-dimensional space ). Furthermore, mathematicians and physicists have used higher dimensions for nearly two centuries. One example of a mathematical use for higher dimensions is the configuration space of

9064-555: The points corresponding in M* to a) the square torus (total angle = π) and b) the hexagonal torus (total angle = 2π/3). These are the only conformal equivalence classes of flat tori that have any conformal automorphisms other than those generated by translations and negation. Geometry Geometry (from Ancient Greek γεωμετρία ( geōmetría )  'land measurement'; from γῆ ( gê )  'earth, land' and μέτρον ( métron )  'a measure')

9167-482: The properties that they must have, as in Euclid's definition as "that which has no part", or in synthetic geometry . In modern mathematics, they are generally defined as elements of a set called space , which is itself axiomatically defined. With these modern definitions, every geometric shape is defined as a set of points; this is not the case in synthetic geometry, where a line is another fundamental object that

9270-431: The same as for a cylinder of length 2π R and radius r , obtained from cutting the tube along the plane of a small circle, and unrolling it by straightening out (rectifying) the line running around the center of the tube. The losses in surface area and volume on the inner side of the tube exactly cancel out the gains on the outer side. Expressing the surface area and the volume by the distance p of an outermost point on

9373-423: The same aspect ratio. In objects of more than two dimensions, such as hyperrectangles , the aspect ratio can still be defined as the ratio of the longest side to the shortest side. The term is most commonly used with reference to: For a rectangle, the aspect ratio denotes the ratio of the width to the height of the rectangle. A square has the smallest possible aspect ratio of 1:1. Examples: For an ellipse,

9476-554: The same definition is used, but the defining function is required to be differentiable. Algebraic geometry studies algebraic curves , which are defined as algebraic varieties of dimension one. A surface is a two-dimensional object, such as a sphere or paraboloid. In differential geometry and topology , surfaces are described by two-dimensional 'patches' (or neighborhoods ) that are assembled by diffeomorphisms or homeomorphisms , respectively. In algebraic geometry, surfaces are described by polynomial equations . A solid

9579-490: The spherical system, but is known as the "toroidal" direction. The center point of θ is moved to the center of r , and is known as the "poloidal" direction. These terms were first used in a discussion of the Earth's magnetic field, where "poloidal" was used to denote "the direction toward the poles". In modern use, toroidal and poloidal are more commonly used to discuss magnetic confinement fusion devices. Topologically ,

9682-449: The study of Riemann surfaces , one says that any two smooth compact geometric surfaces are "conformally equivalent" when there exists a smooth homeomorphism between them that is both angle-preserving and orientation-preserving. The Uniformization theorem guarantees that every Riemann surface is conformally equivalent to one that has constant Gaussian curvature . In the case of a torus, the constant curvature must be zero. Then one defines

9785-589: The study of Euclidean concepts such as points , lines , planes , angles , triangles , congruence , similarity , solid figures , circles , and analytic geometry . Euclidean vectors are used for a myriad of applications in physics and engineering, such as position , displacement , deformation , velocity , acceleration , force , etc. Differential geometry uses techniques of calculus and linear algebra to study problems in geometry. It has applications in physics , econometrics , and bioinformatics , among others. In particular, differential geometry

9888-1057: The surface of the torus to the center, and the distance q of an innermost point to the center (so that R = ⁠ p + q / 2 ⁠ and r = ⁠ p − q / 2 ⁠ ), yields A = 4 π 2 ( p + q 2 ) ( p − q 2 ) = π 2 ( p + q ) ( p − q ) , V = 2 π 2 ( p + q 2 ) ( p − q 2 ) 2 = 1 4 π 2 ( p + q ) ( p − q ) 2 . {\displaystyle {\begin{aligned}A&=4\pi ^{2}\left({\frac {p+q}{2}}\right)\left({\frac {p-q}{2}}\right)=\pi ^{2}(p+q)(p-q),\\[5mu]V&=2\pi ^{2}\left({\frac {p+q}{2}}\right)\left({\frac {p-q}{2}}\right)^{2}={\tfrac {1}{4}}\pi ^{2}(p+q)(p-q)^{2}.\end{aligned}}} As

9991-438: The term " n -torus", the other referring to n holes or of genus n .) Just as the ordinary torus is topologically the product space of two circles, the n -dimensional torus is topologically equivalent to the product of n circles. That is: The standard 1-torus is just the circle: T 1 = S 1 {\displaystyle \mathbb {T} ^{1}=\mathbb {S} ^{1}} . The torus discussed above

10094-409: The theory of manifolds and Riemannian geometry . Later in the 19th century, it appeared that geometries without the parallel postulate ( non-Euclidean geometries ) can be developed without introducing any contradiction. The geometry that underlies general relativity is a famous application of non-Euclidean geometry. Since the late 19th century, the scope of geometry has been greatly expanded, and

10197-426: The three possible aspect ratios between R and r : When R ≥ r , the interior ( x 2 + y 2 − R ) 2 + z 2 < r 2 {\displaystyle {\textstyle {\bigl (}{\sqrt {x^{2}+y^{2}}}-R{\bigr )}^{2}}+z^{2}<r^{2}} of this torus is diffeomorphic (and, hence, homeomorphic) to

10300-482: The torus, since it has zero curvature everywhere, must lie strictly outside the sphere, which is a contradiction.) On the other hand, according to the Nash-Kuiper theorem , which was proven in the 1950s, an isometric C embedding exists. This is solely an existence proof and does not provide explicit equations for such an embedding. In April 2012, an explicit C (continuously differentiable) isometric embedding of

10403-534: The torus. The typical doughnut confectionery has an aspect ratio of about 3 to 2. An implicit equation in Cartesian coordinates for a torus radially symmetric about the z {\displaystyle z} - axis is ( x 2 + y 2 − R ) 2 + z 2 = r 2 . {\displaystyle {\textstyle {\bigl (}{\sqrt {x^{2}+y^{2}}}-R{\bigr )}^{2}}+z^{2}=r^{2}.} Algebraically eliminating

10506-419: The tube and rotation around the torus' axis of revolution, respectively, where the major radius R {\displaystyle R} is the distance from the center of the tube to the center of the torus and the minor radius r {\displaystyle r} is the radius of the tube. The ratio R / r {\displaystyle R/r} is called the aspect ratio of

10609-596: Was the creation of analytic geometry, or geometry with coordinates and equations , by René Descartes (1596–1650) and Pierre de Fermat (1601–1665). This was a necessary precursor to the development of calculus and a precise quantitative science of physics . The second geometric development of this period was the systematic study of projective geometry by Girard Desargues (1591–1661). Projective geometry studies properties of shapes which are unchanged under projections and sections , especially as they relate to artistic perspective . Two developments in geometry in

#975024