Misplaced Pages

Taverniera

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#648351

70-543: See text. Taverniera is a genus of legume in the family Fabaceae . It includes 17 species of shrubs or shrublets which range from Egypt eastwards to the Arabian Peninsula, Iraq, Iran, Pakistan, and India, and southwards to Ethiopia and Somalia. Typical habitats include seasonally-dry tropical and subtropical desert, shrubland, and bushland. As of April 2023, Plants of the World Online accepted

140-472: A Brønsted acid. Histidine under these conditions can act both as a Brønsted acid and a base. For amino acids with uncharged side-chains the zwitterion predominates at pH values between the two p K a values, but coexists in equilibrium with small amounts of net negative and net positive ions. At the midpoint between the two p K a values, the trace amount of net negative and trace of net positive ions balance, so that average net charge of all forms present

210-580: A Swiss village that are believed to date back to the Stone Age . Archaeological evidence suggests that these peas must have been grown in the eastern Mediterranean and Mesopotamian regions at least 5,000 years ago and in Britain as early as the 11th century. The soybean was domesticated around 5,000 years ago in China from a descendant of the wild vine Glycine soja. The oldest-known domesticated beans in

280-514: A botanically unique type of fruit – a simple dry fruit that develops from a simple carpel and usually dehisces (opens along a seam) on two sides. Most legumes have symbiotic nitrogen-fixing bacteria in structures called root nodules . Some of the fixed nitrogen becomes available to later crops, so legumes play a key role in crop rotation . The term pulse , as used by the United Nations' Food and Agriculture Organization (FAO),

350-413: A diet of perennial grasses. Factors include larger consumption, faster digestion, and higher feed conversion rate . The type of crop grown for animal rearing depends on the farming system. In cattle rearing, legume trees such as Gliricidia sepium can be planted along edges of fields to provide shade for cattle, the leaves and bark are often eaten by cattle. Green manure can be grown between harvesting

420-439: A pK a of 6.0, and is only around 10% protonated at neutral pH. Because histidine is easily found in its basic and conjugate acid forms it often participates in catalytic proton transfers in enzyme reactions. The polar, uncharged amino acids serine (Ser, S), threonine (Thr, T), asparagine (Asn, N) and glutamine (Gln, Q) readily form hydrogen bonds with water and other amino acids. They do not ionize in normal conditions,

490-454: A patch of hydrophobic amino acids on their surface that sticks to the membrane. In a similar fashion, proteins that have to bind to positively charged molecules have surfaces rich in negatively charged amino acids such as glutamate and aspartate , while proteins binding to negatively charged molecules have surfaces rich in positively charged amino acids like lysine and arginine . For example, lysine and arginine are present in large amounts in

560-465: A plant-based protein source in the world marketplace. Products containing legumes grew by 39% in Europe between 2013 and 2017. There is a common misconception that adding salt before cooking prevents them from cooking through. Legumes may not soften because they are old, or because of hard water or acidic ingredients in the pot; salting before cooking results in better seasoning . Legumes are

630-461: A prominent exception being the catalytic serine in serine proteases . This is an example of severe perturbation, and is not characteristic of serine residues in general. Threonine has two chiral centers, not only the L (2 S ) chiral center at the α-carbon shared by all amino acids apart from achiral glycine, but also (3 R ) at the β-carbon. The full stereochemical specification is (2 S ,3 R )- L - threonine . Nonpolar amino acid interactions are

700-1557: A serious pest to broad beans and other beans. Common hosts for this pest are fathen, thistle and dock. Pea weevil and bean weevil damage leaf margins leaving characteristics semi-circular notches. Stem nematodes are very widespread but will be found more frequently in areas where host plants are grown. Common legume diseases include anthracnose , caused by Colletotrichum trifolii ; common leaf spot caused by Pseudomonas syringae pv. syringae ; crown wart caused by Physoderma alfalfae ; downy mildew caused by Peronospora trifoliorum ; fusarium root rot caused by Fusarium spp.; rust caused by Uromyces striatus ; sclerotina crown and stem rot caused by Sclerotinia trifoliorum ; Southern blight caused by Sclerotium rolfsii ; pythium (browning) root rot caused by Pythium spp.; fusarium wilt caused by Fusarium oxysporum ; root knot caused by Meloidogyne hapla . These are all classified as biotic problems. Abiotic problems include nutrient deficiencies, (nitrogen, phosphorus, potassium, copper, magnesium, manganese, boron, zinc), pollutants (air, water, soil, pesticide injury, fertilizer burn), toxic concentration of minerals, and unfavorable growth conditions. Seed viability decreases with longer storage time. Studies done on vetch , broad beans , and peas show that they last about 5 years in storage. Environmental factors that are important in influencing germination are relative humidity and temperature. Two rules apply to moisture content between 5 and 14 percent:

770-969: A significant source of protein , dietary fibre , carbohydrates , and dietary minerals ; for example, a 100 gram serving of cooked chickpeas contains 18 percent of the Daily Value (DV) for protein, 30 percent DV for dietary fiber, 43 percent DV for folate and 52 percent DV for manganese . Legumes are an excellent source of resistant starch ; this is broken down by bacteria in the large intestine to produce short-chain fatty acids (such as butyrate ) used by intestinal cells for food energy . Forage legumes are of two broad types. Some, like alfalfa , clover , vetch ( Vicia ), stylo ( Stylosanthes ), or Arachis , are sown in pasture and grazed by livestock. Others, such as Leucaena or Albizia , are woody shrubs or trees that are either broken down by livestock or regularly cut by humans to provide fodder. Legume-based feeds improve animal performance over

SECTION 10

#1732791076649

840-454: A way unique among amino acids. Selenocysteine (Sec, U) is a rare amino acid not directly encoded by DNA, but is incorporated into proteins via the ribosome. Selenocysteine has a lower redox potential compared to the similar cysteine, and participates in several unique enzymatic reactions. Pyrrolysine (Pyl, O) is another amino acid not encoded in DNA, but synthesized into protein by ribosomes. It

910-482: Is Pyz –Phe–boroLeu, and MG132 is Z –Leu–Leu–Leu–al. To aid in the analysis of protein structure, photo-reactive amino acid analogs are available. These include photoleucine ( pLeu ) and photomethionine ( pMet ). Amino acids are the precursors to proteins. They join by condensation reactions to form short polymer chains called peptides or longer chains called either polypeptides or proteins. These chains are linear and unbranched, with each amino acid residue within

980-421: Is found in archaeal species where it participates in the catalytic activity of several methyltransferases. Amino acids with the structure NH + 3 −CXY−CXY−CO − 2 , such as β-alanine , a component of carnosine and a few other peptides, are β-amino acids. Ones with the structure NH + 3 −CXY−CXY−CXY−CO − 2 are γ-amino acids, and so on, where X and Y are two substituents (one of which

1050-681: Is more usually exploited for peptides and proteins than single amino acids. Zwitterions have minimum solubility at their isoelectric point, and some amino acids (in particular, with nonpolar side chains) can be isolated by precipitation from water by adjusting the pH to the required isoelectric point. The 20 canonical amino acids can be classified according to their properties. Important factors are charge, hydrophilicity or hydrophobicity , size, and functional groups. These properties influence protein structure and protein–protein interactions . The water-soluble proteins tend to have their hydrophobic residues ( Leu , Ile , Val , Phe , and Trp ) buried in

1120-510: Is normally H). The common natural forms of amino acids have a zwitterionic structure, with −NH + 3 ( −NH + 2 − in the case of proline) and −CO − 2 functional groups attached to the same C atom, and are thus α-amino acids, and are the only ones found in proteins during translation in the ribosome. In aqueous solution at pH close to neutrality, amino acids exist as zwitterions , i.e. as dipolar ions with both NH + 3 and CO − 2 in charged states, so

1190-403: Is rare. For example, 25 human proteins include selenocysteine in their primary structure, and the structurally characterized enzymes (selenoenzymes) employ selenocysteine as the catalytic moiety in their active sites. Pyrrolysine and selenocysteine are encoded via variant codons. For example, selenocysteine is encoded by stop codon and SECIS element . N -formylmethionine (which is often

1260-428: Is reserved for legume crops harvested solely for the dry seed. This excludes green beans and green peas , which are considered vegetable crops. Also excluded are seeds that are mainly grown for oil extraction ( oilseeds like soybeans and peanuts ), and seeds which are used exclusively for sowing forage ( clovers , alfalfa ). However, in common usage, these distinctions are not always clearly made, and many of

1330-527: Is similar to the use of abbreviation codes for degenerate bases . Unk is sometimes used instead of Xaa , but is less standard. Ter or * (from termination) is used in notation for mutations in proteins when a stop codon occurs. It corresponds to no amino acid at all. In addition, many nonstandard amino acids have a specific code. For example, several peptide drugs, such as Bortezomib and MG132 , are artificially synthesized and retain their protecting groups , which have specific codes. Bortezomib

1400-474: Is synthesised from proline . Another example is selenomethionine ). Non-proteinogenic amino acids that are found in proteins are formed by post-translational modification . Such modifications can also determine the localization of the protein, e.g., the addition of long hydrophobic groups can cause a protein to bind to a phospholipid membrane. Examples: Some non-proteinogenic amino acids are not found in proteins. Examples include 2-aminoisobutyric acid and

1470-448: Is their versatility, often assuming multiple roles concurrently. The extent of these roles is contingent upon the stage of maturity at which they are harvested. Grain legumes are cultivated for their seeds, for humans and animals to eat, or for oils for industrial uses. Grain legumes include beans , lentils , lupins , peas , and peanuts . Legumes are a key ingredient in vegan meat and dairy substitutes . They are growing in use as

SECTION 20

#1732791076649

1540-418: Is therefore a necessary ingredient in the production of proteins. Hence, legumes are among the best sources of plant protein. When a legume plant dies in the field, for example following the harvest , all of its remaining nitrogen, incorporated into amino acids inside the remaining plant parts, is released back into the soil. In the soil, the amino acids are converted to nitrate ( NO − 3 ), making

1610-439: Is used in plants and microorganisms in the synthesis of pantothenic acid (vitamin B 5 ), a component of coenzyme A . Amino acids are not typical component of food: animals eat proteins. The protein is broken down into amino acids in the process of digestion. They are then used to synthesize new proteins, other biomolecules, or are oxidized to urea and carbon dioxide as a source of energy. The oxidation pathway starts with

1680-409: Is zero. This pH is known as the isoelectric point p I , so p I = ⁠ 1 / 2 ⁠ (p K a1 + p K a2 ). For amino acids with charged side chains, the p K a of the side chain is involved. Thus for aspartate or glutamate with negative side chains, the terminal amino group is essentially entirely in the charged form −NH + 3 , but this positive charge needs to be balanced by

1750-759: The black locust ( Robinia pseudoacacia ), Kentucky coffeetree ( Gymnocladus dioicus ), Laburnum , and the woody climbing vine Wisteria , have poisonous elements. Neanderthals and early modern humans used wild pulses when cooking meals 70,000 to 40,000 years ago. Traces of pulse production have been found around the Ravi River ( Punjab ), the seat of the Indus Valley civilisation , from c. 3300 BC. Meanwhile, evidence of lentil cultivation has also been found in Egyptian pyramids and cuneiform recipes . Dry pea seeds have been discovered in

1820-417: The carboxyl group is called the α–carbon . In proteinogenic amino acids, it bears the amine and the R group or side chain specific to each amino acid, as well as a hydrogen atom. With the exception of glycine, for which the side chain is also a hydrogen atom, the α–carbon is stereogenic . All chiral proteogenic amino acids have the L configuration. They are "left-handed" enantiomers , which refers to

1890-425: The genetic code of life. Amino acids can be classified according to the locations of the core structural functional groups ( alpha- (α-) , beta- (β-) , gamma- (γ-) amino acids, etc.); other categories relate to polarity , ionization , and side-chain group type ( aliphatic , acyclic , aromatic , polar , etc.). In the form of proteins, amino-acid residues form the second-largest component ( water being

1960-888: The human body cannot synthesize them from other compounds at the level needed for normal growth, so they must be obtained from food. In addition, cysteine, tyrosine , and arginine are considered semiessential amino acids, and taurine a semi-essential aminosulfonic acid in children. Some amino acids are conditionally essential for certain ages or medical conditions. Essential amino acids may also vary from species to species. The metabolic pathways that synthesize these monomers are not fully developed. Many proteinogenic and non-proteinogenic amino acids have biological functions beyond being precursors to proteins and peptides.In humans, amino acids also have important roles in diverse biosynthetic pathways. Defenses against herbivores in plants sometimes employ amino acids. Examples: Amino acids are sometimes added to animal feed because some of

2030-481: The low-complexity regions of nucleic-acid binding proteins. There are various hydrophobicity scales of amino acid residues. Some amino acids have special properties. Cysteine can form covalent disulfide bonds to other cysteine residues. Proline forms a cycle to the polypeptide backbone, and glycine is more flexible than other amino acids. Glycine and proline are strongly present within low complexity regions of both eukaryotic and prokaryotic proteins, whereas

2100-405: The polyculture practice known as coconut-soybean intercropping . Grain legumes are grown in coconut ( Cocos nuficera ) groves in two ways: intercropping or as a cash crop. These are grown mainly for their protein, vegetable oil and ability to uphold soil fertility. However, continuous cropping after 3–4 years decrease grain yields significantly. A common pest of grain legumes that is noticed in

2170-441: The stereoisomers of the alpha carbon. A few D -amino acids ("right-handed") have been found in nature, e.g., in bacterial envelopes , as a neuromodulator ( D - serine ), and in some antibiotics . Rarely, D -amino acid residues are found in proteins, and are converted from the L -amino acid as a post-translational modification . Five amino acids possess a charge at neutral pH. Often these side chains appear at

Taverniera - Misplaced Pages Continue

2240-482: The 20 common amino acids to be discovered was threonine in 1935 by William Cumming Rose , who also determined the essential amino acids and established the minimum daily requirements of all amino acids for optimal growth. The unity of the chemical category was recognized by Wurtz in 1865, but he gave no particular name to it. The first use of the term "amino acid" in the English language dates from 1898, while

2310-844: The Americas were found in Guitarrero Cave , an archaeological site in Peru , and dated to around the second millennium BCE. Genetic analyses of the common bean Phaseolus show that it originated in Mesoamerica , and subsequently spread southward, along with maize and squash, traditional companion crops. In the United States, the domesticated soybean was introduced in 1770 by Benjamin Franklin after he sent seeds to Philadelphia from France. The International Year of Pulses 2016

2380-526: The German term, Aminosäure , was used earlier. Proteins were found to yield amino acids after enzymatic digestion or acid hydrolysis . In 1902, Emil Fischer and Franz Hofmeister independently proposed that proteins are formed from many amino acids, whereby bonds are formed between the amino group of one amino acid with the carboxyl group of another, resulting in a linear structure that Fischer termed " peptide ". 2- , alpha- , or α-amino acids have

2450-464: The UGA codon to encode selenocysteine instead of a stop codon. Pyrrolysine is used by some methanogenic archaea in enzymes that they use to produce methane . It is coded for with the codon UAG, which is normally a stop codon in other organisms. Several independent evolutionary studies have suggested that Gly, Ala, Asp, Val, Ser, Pro, Glu, Leu, Thr may belong to a group of amino acids that constituted

2520-457: The amino-acid molecules. The first few amino acids were discovered in the early 1800s. In 1806, French chemists Louis-Nicolas Vauquelin and Pierre Jean Robiquet isolated a compound from asparagus that was subsequently named asparagine , the first amino acid to be discovered. Cystine was discovered in 1810, although its monomer, cysteine , remained undiscovered until 1884. Glycine and leucine were discovered in 1820. The last of

2590-423: The aspartic protease pepsin in mammalian stomachs, may have catalytic aspartate or glutamate residues that act as Brønsted acids. There are three amino acids with side chains that are cations at neutral pH: arginine (Arg, R), lysine (Lys, K) and histidine (His, H). Arginine has a charged guanidino group and lysine a charged alkyl amino group, and are fully protonated at pH 7. Histidine's imidazole group has

2660-420: The chain attached to two neighboring amino acids. In nature, the process of making proteins encoded by RNA genetic material is called translation and involves the step-by-step addition of amino acids to a growing protein chain by a ribozyme that is called a ribosome . The order in which the amino acids are added is read through the genetic code from an mRNA template, which is an RNA derived from one of

2730-536: The characteristics of hydrophobic amino acids well. Several side chains are not described well by the charged, polar and hydrophobic categories. Glycine (Gly, G) could be considered a polar amino acid since its small size means that its solubility is largely determined by the amino and carboxylate groups. However, the lack of any side chain provides glycine with a unique flexibility among amino acids with large ramifications to protein folding. Cysteine (Cys, C) can also form hydrogen bonds readily, which would place it in

2800-571: The early genetic code, whereas Cys, Met, Tyr, Trp, His, Phe may belong to a group of amino acids that constituted later additions of the genetic code. The 20 amino acids that are encoded directly by the codons of the universal genetic code are called standard or canonical amino acids. A modified form of methionine ( N -formylmethionine ) is often incorporated in place of methionine as the initial amino acid of proteins in bacteria, mitochondria and plastids (including chloroplasts). Other amino acids are called nonstandard or non-canonical . Most of

2870-539: The fictitious "neutral" structure shown in the illustration. For example, the systematic name of alanine is 2-aminopropanoic acid, based on the formula CH 3 −CH(NH 2 )−COOH . The Commission justified this approach as follows: The systematic names and formulas given refer to hypothetical forms in which amino groups are unprotonated and carboxyl groups are undissociated. This convention is useful to avoid various nomenclatural problems but should not be taken to imply that these structures represent an appreciable fraction of

Taverniera - Misplaced Pages Continue

2940-683: The following species: This Faboideae -related article is a stub . You can help Misplaced Pages by expanding it . Legume Legumes ( / ˈ l ɛ ɡ j uː m , l ə ˈ ɡ j uː m / ) are plants in the family Fabaceae (or Leguminosae), or the fruit or seeds of such plants. When used as a dry grain for human consumption, the seeds are also called pulses . Legumes are grown agriculturally, primarily for human consumption, but also as livestock forage and silage , and as soil-enhancing green manure . Well-known legumes include beans , chickpeas , peanuts , lentils , lupins , mesquite , carob , tamarind , alfalfa , and clover . Legumes produce

3010-464: The food chain that would better use pulse-based proteins, further global production of pulses, better use crop rotations and address challenges in the global trade of pulses. Amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups . Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins . Only these 22 appear in

3080-493: The generic formula H 2 NCHRCOOH in most cases, where R is an organic substituent known as a " side chain ". Of the many hundreds of described amino acids, 22 are proteinogenic ("protein-building"). It is these 22 compounds that combine to give a vast array of peptides and proteins assembled by ribosomes . Non-proteinogenic or modified amino acids may arise from post-translational modification or during nonribosomal peptide synthesis. The carbon atom next to

3150-673: The initial amino acid of proteins in bacteria, mitochondria , and chloroplasts ) is generally considered as a form of methionine rather than as a separate proteinogenic amino acid. Codon– tRNA combinations not found in nature can also be used to "expand" the genetic code and form novel proteins known as alloproteins incorporating non-proteinogenic amino acids . Aside from the 22 proteinogenic amino acids , many non-proteinogenic amino acids are known. Those either are not found in proteins (for example carnitine , GABA , levothyroxine ) or are not produced directly and in isolation by standard cellular machinery. For example, hydroxyproline ,

3220-458: The largest) of human muscles and other tissues . Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis . It is thought that they played a key role in enabling life on Earth and its emergence . Amino acids are formally named by the IUPAC - IUBMB Joint Commission on Biochemical Nomenclature in terms of

3290-461: The life of the seed will last longer if the storage temperature is reduced by 5 degree Celsius. Secondly, the storage moisture content will decrease if temperature is reduced by 1 degree Celsius. Cultivated legumes encompass a diverse range of agricultural classifications, spanning forage , grain , flowering, pharmaceutical/industrial, fallow/green manure, and timber categories. A notable characteristic of many commercially cultivated legume species

3360-432: The main crop and the planting of the next crop. Legume species grown for their flowers include lupins , which are farmed commercially for their blooms as well as being popular in gardens worldwide. Industrially farmed legumes include Indigofera and Acacia species, which are cultivated for dye and natural gum production, respectively. Fallow or green manure legume species are cultivated to be tilled back into

3430-414: The middle of the protein, whereas hydrophilic side chains are exposed to the aqueous solvent. (In biochemistry , a residue refers to a specific monomer within the polymeric chain of a polysaccharide , protein or nucleic acid .) The integral membrane proteins tend to have outer rings of exposed hydrophobic amino acids that anchor them in the lipid bilayer . Some peripheral membrane proteins have

3500-409: The neurotransmitter gamma-aminobutyric acid . Non-proteinogenic amino acids often occur as intermediates in the metabolic pathways for standard amino acids – for example, ornithine and citrulline occur in the urea cycle , part of amino acid catabolism (see below). A rare exception to the dominance of α-amino acids in biology is the β-amino acid beta alanine (3-aminopropanoic acid), which

3570-510: The nitrogen available to other plants, thereby serving as fertilizer for future crops. In many traditional and organic farming practices, crop rotation or polyculture involving legumes is common. By alternating between legumes and non-legumes, or by growing both together for part of the growing season, the field can receive a sufficient amount of nitrogenous compounds to produce a good result without adding nitrogenous fertilizer. Legumes are often used as green manure . Sri Lanka developed

SECTION 50

#1732791076649

3640-573: The nonstandard amino acids are also non-proteinogenic (i.e. they cannot be incorporated into proteins during translation), but two of them are proteinogenic, as they can be incorporated translationally into proteins by exploiting information not encoded in the universal genetic code. The two nonstandard proteinogenic amino acids are selenocysteine (present in many non-eukaryotes as well as most eukaryotes, but not coded directly by DNA) and pyrrolysine (found only in some archaea and at least one bacterium ). The incorporation of these nonstandard amino acids

3710-438: The only one that is useful for chemistry in aqueous solution is that of Brønsted : an acid is a species that can donate a proton to another species, and a base is one that can accept a proton. This criterion is used to label the groups in the above illustration. The carboxylate side chains of aspartate and glutamate residues are the principal Brønsted bases in proteins. Likewise, lysine, tyrosine and cysteine will typically act as

3780-433: The opposite is the case with cysteine, phenylalanine, tryptophan, methionine, valine, leucine, isoleucine, which are highly reactive, or complex, or hydrophobic. Many proteins undergo a range of posttranslational modifications , whereby additional chemical groups are attached to the amino acid residue side chains sometimes producing lipoproteins (that are hydrophobic), or glycoproteins (that are hydrophilic) allowing

3850-424: The organism's genes . Twenty-two amino acids are naturally incorporated into polypeptides and are called proteinogenic or natural amino acids. Of these, 20 are encoded by the universal genetic code. The remaining 2, selenocysteine and pyrrolysine , are incorporated into proteins by unique synthetic mechanisms. Selenocysteine is incorporated when the mRNA being translated includes a SECIS element , which causes

3920-415: The overall structure is NH + 3 −CHR−CO − 2 . At physiological pH the so-called "neutral forms" −NH 2 −CHR−CO 2 H are not present to any measurable degree. Although the two charges in the zwitterion structure add up to zero it is misleading to call a species with a net charge of zero "uncharged". In strongly acidic conditions (pH below 3), the carboxylate group becomes protonated and

3990-536: The polar amino acid category, though it can often be found in protein structures forming covalent bonds, called disulphide bonds , with other cysteines. These bonds influence the folding and stability of proteins, and are essential in the formation of antibodies . Proline (Pro, P) has an alkyl side chain and could be considered hydrophobic, but because the side chain joins back onto the alpha amino group it becomes particularly inflexible when incorporated into proteins. Similar to glycine this influences protein structure in

4060-480: The primary driving force behind the processes that fold proteins into their functional three dimensional structures. None of these amino acids' side chains ionize easily, and therefore do not have pK a s, with the exception of tyrosine (Tyr, Y). The hydroxyl of tyrosine can deprotonate at high pH forming the negatively charged phenolate. Because of this one could place tyrosine into the polar, uncharged amino acid category, but its very low solubility in water matches

4130-455: The protein to attach temporarily to a membrane. For example, a signaling protein can attach and then detach from a cell membrane, because it contains cysteine residues that can have the fatty acid palmitic acid added to them and subsequently removed. Although one-letter symbols are included in the table, IUPAC–IUBMB recommend that "Use of the one-letter symbols should be restricted to the comparison of long sequences". The one-letter notation

4200-431: The removal of the amino group by a transaminase ; the amino group is then fed into the urea cycle . The other product of transamidation is a keto acid that enters the citric acid cycle . Glucogenic amino acids can also be converted into glucose, through gluconeogenesis . Of the 20 standard amino acids, nine ( His , Ile , Leu , Lys , Met , Phe , Thr , Trp and Val ) are called essential amino acids because

4270-467: The soil in order to exploit the high levels of captured atmospheric nitrogen found in the roots of most legumes. Numerous legumes farmed for this purpose include Leucaena , Cyamopsis , and Sesbania species. Various legume species are farmed for timber production worldwide, including numerous Acacia species and Castanospermum australe . Some legume trees, like the honey locust ( Gleditsia ) can be used in agroforestry . Others, including

SECTION 60

#1732791076649

4340-452: The special ability of fixing nitrogen from atmospheric, molecular nitrogen (N 2 ) into ammonia (NH 3 ). The chemical reaction is: Ammonia is converted to another form, ammonium ( NH + 4 ), usable by (some) plants by the following reaction: This arrangement means that the root nodules are sources of nitrogen for legumes, making them relatively rich in plant proteins . All proteins contain nitrogenous amino acids . Nitrogen

4410-580: The state with just one C-terminal carboxylate group is negatively charged. This occurs halfway between the two carboxylate p K a values: p I = ⁠ 1 / 2 ⁠ (p K a1 + p K a(R) ), where p K a(R) is the side chain p K a . Similar considerations apply to other amino acids with ionizable side-chains, including not only glutamate (similar to aspartate), but also cysteine, histidine, lysine, tyrosine and arginine with positive side chains. Amino acids have zero mobility in electrophoresis at their isoelectric point, although this behaviour

4480-509: The structure becomes an ammonio carboxylic acid, NH + 3 −CHR−CO 2 H . This is relevant for enzymes like pepsin that are active in acidic environments such as the mammalian stomach and lysosomes , but does not significantly apply to intracellular enzymes. In highly basic conditions (pH greater than 10, not normally seen in physiological conditions), the ammonio group is deprotonated to give NH 2 −CHR−CO − 2 . Although various definitions of acids and bases are used in chemistry,

4550-739: The surfaces on proteins to enable their solubility in water, and side chains with opposite charges form important electrostatic contacts called salt bridges that maintain structures within a single protein or between interfacing proteins. Many proteins bind metal into their structures specifically, and these interactions are commonly mediated by charged side chains such as aspartate , glutamate and histidine . Under certain conditions, each ion-forming group can be charged, forming double salts. The two negatively charged amino acids at neutral pH are aspartate (Asp, D) and glutamate (Glu, E). The anionic carboxylate groups behave as Brønsted bases in most circumstances. Enzymes in very low pH environments, like

4620-507: The third-largest land plant family in terms of number of species, behind only the Orchidaceae and Asteraceae , with about 751 genera and some 19,000 known species, constituting about seven percent of flowering plant species. Many legumes contain symbiotic bacteria called Rhizobia within root nodules of their root systems (plants belonging to the genus Styphnolobium are one exception to this rule). These bacteria have

4690-410: The tropical and subtropical Asia, Africa, Australia and Oceania are minuscule flies that belong to the family Agromyzidae , dubbed "bean flies". They are considered to be the most destructive. The host range of these flies is very wide amongst cultivated legumes. Infestation of plants starts from germination through to harvest, and they can destroy an entire crop in early stage. Black bean aphids are

4760-535: The varieties used for dried pulses are also used for green vegetables, with their beans in pods while young. Some Fabaceae, such as Scotch broom and other Genisteae , are leguminous but are usually not called legumes by farmers, who tend to restrict that term to food crops. The FAO recognizes 11 primary pulses, excluding green vegetable legumes (e.g. green peas) and legumes used mainly for oil extraction (e.g., soybeans and groundnuts) or used only as seed (e.g., clover and alfalfa). Legumes are widely distributed as

4830-512: Was chosen by IUPAC-IUB based on the following rules: Two additional amino acids are in some species coded for by codons that are usually interpreted as stop codons : In addition to the specific amino acid codes, placeholders are used in cases where chemical or crystallographic analysis of a peptide or protein cannot conclusively determine the identity of a residue. They are also used to summarize conserved protein sequence motifs. The use of single letters to indicate sets of similar residues

4900-709: Was declared by the Sixty-eighth session of the United Nations General Assembly . The Food and Agriculture Organization of the United Nations was nominated to facilitate the implementation of the year in collaboration with governments, relevant organizations, non-governmental organizations and other relevant stakeholders. Its aim was to heighten public awareness of the nutritional benefits of pulses as part of sustainable food production aimed towards food security and nutrition . The year created an opportunity to encourage connections throughout

#648351