Misplaced Pages

Tether

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A tether is a cord, fixture, or flexible attachment that characteristically anchors something movable to something fixed; it also may be used to connect two movable objects, such as an item being towed by its tow.

#591408

99-495: Applications for tethers include: fall arrest systems , lanyards , balloons, kites, airborne wind-power systems , anchors , floating water power systems, towing, animal constraint , space walks , power kiteing , and anti-theft devices. Failure modes for tethers are considered in their design. A cord or rope tether may reach its breaking strength and fail. Outcomes can include an injury or fatal fall, and damage or loss of life to personnel or bystanders caused by backlash of

198-422: A Standard Model to describe forces between particles smaller than atoms. The Standard Model predicts that exchanged particles called gauge bosons are the fundamental means by which forces are emitted and absorbed. Only four main interactions are known: in order of decreasing strength, they are: strong , electromagnetic , weak , and gravitational . High-energy particle physics observations made during

297-437: A building . If the fall clearance is less than this the worker may strike the ground before his fall is arrested. The design of an HLL system is a complex process. The designer should always perform a design calculation and the results of this calculation should be presented in any proposal and verified as acceptable. The loads applied to the structure and the fall clearance required should be checked. Force A force

396-464: A constant mass m {\displaystyle m} to then have any predictive content, it must be combined with further information. Moreover, inferring that a force is present because a body is accelerating is only valid in an inertial frame of reference. The question of which aspects of Newton's laws to take as definitions and which to regard as holding physical content has been answered in various ways, which ultimately do not affect how

495-580: A different set of mathematical rules than physical quantities that do not have direction (denoted scalar quantities). For example, when determining what happens when two forces act on the same object, it is necessary to know both the magnitude and the direction of both forces to calculate the result . If both of these pieces of information are not known for each force, the situation is ambiguous. Historically, forces were first quantitatively investigated in conditions of static equilibrium where several forces canceled each other out. Such experiments demonstrate

594-482: A force is applied in the direction of motion while the kinetic friction force exactly opposes the applied force. This results in zero net force, but since the object started with a non-zero velocity, it continues to move with a non-zero velocity. Aristotle misinterpreted this motion as being caused by the applied force. When kinetic friction is taken into consideration it is clear that there is no net force causing constant velocity motion. Some forces are consequences of

693-474: A force that existed intrinsically between two charges . The properties of the electrostatic force were that it varied as an inverse square law directed in the radial direction , was both attractive and repulsive (there was intrinsic polarity ), was independent of the mass of the charged objects, and followed the superposition principle . Coulomb's law unifies all these observations into one succinct statement. Subsequent mathematicians and physicists found

792-582: A frame of reference if it at rest and not accelerating, whereas a body in dynamic equilibrium is moving at a constant speed in a straight line, i.e., moving but not accelerating. What one observer sees as static equilibrium, another can see as dynamic equilibrium and vice versa. Static equilibrium was understood well before the invention of classical mechanics. Objects that are not accelerating have zero net force acting on them. The simplest case of static equilibrium occurs when two forces are equal in magnitude but opposite in direction. For example, an object on

891-459: A key principle of Newtonian physics. In the early 17th century, before Newton's Principia , the term "force" ( Latin : vis ) was applied to many physical and non-physical phenomena, e.g., for an acceleration of a point. The product of a point mass and the square of its velocity was named vis viva (live force) by Leibniz . The modern concept of force corresponds to Newton's vis motrix (accelerating force). Sir Isaac Newton described

990-483: A level surface is pulled (attracted) downward toward the center of the Earth by the force of gravity. At the same time, a force is applied by the surface that resists the downward force with equal upward force (called a normal force ). The situation produces zero net force and hence no acceleration. Pushing against an object that rests on a frictional surface can result in a situation where the object does not move because

1089-503: A second 8 hours of training for workers who climb communication towers, or oil derricks. Fall protection training includes information on the use, maintenance, inspection and hazards of using fall protection equipment. Archived 2015-02-11 at the Wayback Machine To arrest a fall in a controlled manner, it is essential that there is sufficient energy absorption capacity in the system. Without this designed energy absorption,

SECTION 10

#1732786861592

1188-432: A straight line will see it continuing to do so. According to the first law, motion at constant speed in a straight line does not need a cause. It is change in motion that requires a cause, and Newton's second law gives the quantitative relationship between force and change of motion. Newton's second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time . If

1287-745: A surface up to the limit specified by the coefficient of static friction ( μ s f {\displaystyle \mu _{\mathrm {sf} }} ) multiplied by the normal force ( F N {\displaystyle \mathbf {F} _{\text{N}}} ). In other words, the magnitude of the static friction force satisfies the inequality: 0 ≤ F s f ≤ μ s f F N . {\displaystyle 0\leq \mathbf {F} _{\mathrm {sf} }\leq \mu _{\mathrm {sf} }\mathbf {F} _{\mathrm {N} }.} The kinetic friction force ( F k f {\displaystyle F_{\mathrm {kf} }} )

1386-480: A system should include 5 elements referred to as ABCDEs of Fall Arrest: Each of these elements is critical to the effectiveness of a personal fall arrest system. There are many different combinations of products that are commonly used to assemble a personal fall arrest system, and each must meet strict standards. The specific environment or application generally dictates the combination or combinations that are most appropriate. Workers are required to have training in

1485-413: A system with an arbitrary number of particles. In general, as long as all forces are due to the interaction of objects with mass, it is possible to define a system such that net momentum is never lost nor gained. Some textbooks use Newton's second law as a definition of force. However, for the equation F = m a {\displaystyle \mathbf {F} =m\mathbf {a} } for

1584-449: A tether involved in towing objects, such as sailplanes . A signal tether is a system in which a constant signal designates a positive condition, and its interruption, whether by discontinuation or jamming, conveys a failure. The signal may be electrically generated, or a physical device such as flying a flag. This technology-related article is a stub . You can help Misplaced Pages by expanding it . Fall arrest system Fall arrest

1683-484: A unidirectional force or a force that acts on only one body. In a system composed of object 1 and object 2, the net force on the system due to their mutual interactions is zero: F 1 , 2 + F 2 , 1 = 0. {\displaystyle \mathbf {F} _{1,2}+\mathbf {F} _{2,1}=0.} More generally, in a closed system of particles, all internal forces are balanced. The particles may accelerate with respect to each other but

1782-426: A wire rope wrapped around a structure and its ends fastened together by wire rope clips, being replaced by fixed-point anchors or HLL systems designed by defined "qualified" persons.) In arresting a fall in a controlled manner, the distance required to arrest the fall must be considered. Federal OSHA limits the fall distance to 6 ft (1.8 m) unless the specific system is designed by a "qualified person" meeting

1881-421: Is actually conducted, the cannonball always falls at the foot of the mast, as if the cannonball knows to travel with the ship despite being separated from it. Since there is no forward horizontal force being applied on the cannonball as it falls, the only conclusion left is that the cannonball continues to move with the same velocity as the boat as it falls. Thus, no force is required to keep the cannonball moving at

1980-474: Is an influence that can cause an object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N) , and force is often represented by the symbol F . Force plays an important role in classical mechanics. The concept of force

2079-419: Is central to all three of Newton's laws of motion . Types of forces often encountered in classical mechanics include elastic , frictional , contact or "normal" forces , and gravitational . The rotational version of force is torque , which produces changes in the rotational speed of an object. In an extended body, each part often applies forces on the adjacent parts; the distribution of such forces through

SECTION 20

#1732786861592

2178-488: Is connected to an anchor above, and to which the user's PPE is attached either directly or through a "shock absorbing" (energy absorbing) lanyard. Once all of the components of the particular lifeline system meet the requirements of the standard, the anchor connection is then referred to as an anchorage, and the system as well as the rope is then called a "lifeline". Anchors used for lifeline anchorages are designed for 5,000 lb (2,300 kg) force per connecting user, and

2277-417: Is equal in magnitude and direction to the transversal of the parallelogram. The magnitude of the resultant varies from the difference of the magnitudes of the two forces to their sum, depending on the angle between their lines of action. Free-body diagrams can be used as a convenient way to keep track of forces acting on a system. Ideally, these diagrams are drawn with the angles and relative magnitudes of

2376-450: Is normally essential to include energy (or shock) absorbers within HLL in addition to those within the workers' PPE. Without such absorbers, the horizontal life line cannot deform significantly when arresting the fall. Because of the geometry of pulling across the horizontal line, this in turn results in large resolved forces being generated within the anchor system, sufficient to cause failure of

2475-481: Is taken from sea level and may vary depending on location), and points toward the center of the Earth. This observation means that the force of gravity on an object at the Earth's surface is directly proportional to the object's mass. Thus an object that has a mass of m {\displaystyle m} will experience a force: F = m g . {\displaystyle \mathbf {F} =m\mathbf {g} .} For an object in free-fall, this force

2574-397: Is taken to be massless, frictionless, unbreakable, and infinitely stretchable. Such springs exert forces that push when contracted, or pull when extended, in proportion to the displacement of the spring from its equilibrium position. This linear relationship was described by Robert Hooke in 1676, for whom Hooke's law is named. If Δ x {\displaystyle \Delta x}

2673-515: Is the coefficient of kinetic friction . The coefficient of kinetic friction is normally less than the coefficient of static friction. Tension forces can be modeled using ideal strings that are massless, frictionless, unbreakable, and do not stretch. They can be combined with ideal pulleys , which allow ideal strings to switch physical direction. Ideal strings transmit tension forces instantaneously in action–reaction pairs so that if two objects are connected by an ideal string, any force directed along

2772-432: Is the mass and v {\displaystyle \mathbf {v} } is the velocity . If Newton's second law is applied to a system of constant mass , m may be moved outside the derivative operator. The equation then becomes F = m d v d t . {\displaystyle \mathbf {F} =m{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}.} By substituting

2871-410: Is the displacement, the force exerted by an ideal spring equals: F = − k Δ x , {\displaystyle \mathbf {F} =-k\Delta \mathbf {x} ,} where k {\displaystyle k} is the spring constant (or force constant), which is particular to the spring. The minus sign accounts for the tendency of the force to act in opposition to

2970-410: Is the distance between the two objects' centers of mass and r ^ {\displaystyle {\hat {\mathbf {r} }}} is the unit vector pointed in the direction away from the center of the first object toward the center of the second object. This formula was powerful enough to stand as the basis for all subsequent descriptions of motion within the solar system until

3069-473: Is the electromagnetic force, E {\displaystyle \mathbf {E} } is the electric field at the body's location, B {\displaystyle \mathbf {B} } is the magnetic field, and v {\displaystyle \mathbf {v} } is the velocity of the particle. The magnetic contribution to the Lorentz force is the cross product of the velocity vector with

Tether - Misplaced Pages Continue

3168-488: Is the force of body 1 on body 2 and F 2 , 1 {\displaystyle \mathbf {F} _{2,1}} that of body 2 on body 1, then F 1 , 2 = − F 2 , 1 . {\displaystyle \mathbf {F} _{1,2}=-\mathbf {F} _{2,1}.} This law is sometimes referred to as the action-reaction law , with F 1 , 2 {\displaystyle \mathbf {F} _{1,2}} called

3267-546: Is the form of fall protection which involves the safe stopping of a person already falling. It is one of several forms of fall protection, forms which also include fall guarding (general protection that prevents persons from entering a fall hazard area e.g., guard rails ) and fall restraint (personal protection which prevents persons who are in a fall hazard area from falling in the first place, e.g., fall restraint lanyards ). The U.S. Department of Labor's Occupational Safety and Health Administration specifies under Title 29 of

3366-581: Is the magnitude of the hypothetical test charge. Similarly, the idea of the magnetic field was introduced to express how magnets can influence one another at a distance. The Lorentz force law gives the force upon a body with charge q {\displaystyle q} due to electric and magnetic fields: F = q ( E + v × B ) , {\displaystyle \mathbf {F} =q\left(\mathbf {E} +\mathbf {v} \times \mathbf {B} \right),} where F {\displaystyle \mathbf {F} }

3465-591: Is the momentum of object 1 and p 2 {\displaystyle \mathbf {p} _{2}} the momentum of object 2, then d p 1 d t + d p 2 d t = F 1 , 2 + F 2 , 1 = 0. {\displaystyle {\frac {\mathrm {d} \mathbf {p} _{1}}{\mathrm {d} t}}+{\frac {\mathrm {d} \mathbf {p} _{2}}{\mathrm {d} t}}=\mathbf {F} _{1,2}+\mathbf {F} _{2,1}=0.} Using similar arguments, this can be generalized to

3564-438: Is the momentum of the system, and F {\displaystyle \mathbf {F} } is the net ( vector sum ) force. If a body is in equilibrium, there is zero net force by definition (balanced forces may be present nevertheless). In contrast, the second law states that if there is an unbalanced force acting on an object it will result in the object's momentum changing over time. In common engineering applications

3663-449: Is the velocity of the object and r {\displaystyle r} is the distance to the center of the circular path and r ^ {\displaystyle {\hat {\mathbf {r} }}} is the unit vector pointing in the radial direction outwards from the center. This means that the net force felt by the object is always directed toward the center of the curving path. Such forces act perpendicular to

3762-437: Is typically independent of both the forces applied and the movement of the object. Thus, the magnitude of the force equals: F k f = μ k f F N , {\displaystyle \mathbf {F} _{\mathrm {kf} }=\mu _{\mathrm {kf} }\mathbf {F} _{\mathrm {N} },} where μ k f {\displaystyle \mu _{\mathrm {kf} }}

3861-442: Is unopposed and the net force on the object is its weight. For objects not in free-fall, the force of gravity is opposed by the reaction forces applied by their supports. For example, a person standing on the ground experiences zero net force, since a normal force (a reaction force) is exerted by the ground upward on the person that counterbalances his weight that is directed downward. Newton's contribution to gravitational theory

3960-470: The Aristotelian theory of motion . He showed that the bodies were accelerated by gravity to an extent that was independent of their mass and argued that objects retain their velocity unless acted on by a force, for example friction . Galileo's idea that force is needed to change motion rather than to sustain it, further improved upon by Isaac Beeckman , René Descartes , and Pierre Gassendi , became

4059-400: The action and − F 2 , 1 {\displaystyle -\mathbf {F} _{2,1}} the reaction . Newton's Third Law is a result of applying symmetry to situations where forces can be attributed to the presence of different objects. The third law means that all forces are interactions between different bodies. and thus that there is no such thing as

Tether - Misplaced Pages Continue

4158-476: The center of mass of the system will not accelerate. If an external force acts on the system, it will make the center of mass accelerate in proportion to the magnitude of the external force divided by the mass of the system. Combining Newton's Second and Third Laws, it is possible to show that the linear momentum of a system is conserved in any closed system . In a system of two particles, if p 1 {\displaystyle \mathbf {p} _{1}}

4257-409: The 1970s and 1980s confirmed that the weak and electromagnetic forces are expressions of a more fundamental electroweak interaction. Since antiquity the concept of force has been recognized as integral to the functioning of each of the simple machines . The mechanical advantage given by a simple machine allowed for less force to be used in exchange for that force acting over a greater distance for

4356-425: The 20th century. During that time, sophisticated methods of perturbation analysis were invented to calculate the deviations of orbits due to the influence of multiple bodies on a planet , moon , comet , or asteroid . The formalism was exact enough to allow mathematicians to predict the existence of the planet Neptune before it was observed. The electrostatic force was first described in 1784 by Coulomb as

4455-490: The Code of Federal Regulations that individuals working at height must be protected from fall injury, and fall arrest is one of several forms of fall protection as defined within that Code. Fall arrest is of two major types: general fall arrest, such as nets; and personal fall arrest, such as lifelines. The most common manifestation of fall arrest in the workplace is the personal fall arrest system ( PFAS or lifeline ). Such

4554-490: The acceleration of the Moon around the Earth could be ascribed to the same force of gravity if the acceleration due to gravity decreased as an inverse square law . Further, Newton realized that the acceleration of a body due to gravity is proportional to the mass of the other attracting body. Combining these ideas gives a formula that relates the mass ( m ⊕ {\displaystyle m_{\oplus }} ) and

4653-493: The anchorage. This can occur even with energy absorbers being included in the PPE of the worker. The load and horizontal line geometry in horizontal lifelines usually creates falls in excess of the 6 ft (1.8 m) limit of the standard, limiting HLL design to standard-defined "qualified persons". (The recognition of these basic weaknesses have resulted in most temporary "wrapped structure" HLL anchors, which were anchors made from

4752-399: The applied force is opposed by static friction , generated between the object and the table surface. For a situation with no movement, the static friction force exactly balances the applied force resulting in no acceleration. The static friction increases or decreases in response to the applied force up to an upper limit determined by the characteristics of the contact between the surface and

4851-430: The applied load. For an object in uniform circular motion , the net force acting on the object equals: F = − m v 2 r r ^ , {\displaystyle \mathbf {F} =-{\frac {mv^{2}}{r}}{\hat {\mathbf {r} }},} where m {\displaystyle m} is the mass of the object, v {\displaystyle v}

4950-502: The atoms in an object is able to flow, contract, expand, or otherwise change shape, the theories of continuum mechanics describe the way forces affect the material. For example, in extended fluids , differences in pressure result in forces being directed along the pressure gradients as follows: F V = − ∇ P , {\displaystyle {\frac {\mathbf {F} }{V}}=-\mathbf {\nabla } P,} where V {\displaystyle V}

5049-401: The body is the internal mechanical stress . In equilibrium these stresses cause no acceleration of the body as the forces balance one another. If these are not in equilibrium they can cause deformation of solid materials, or flow in fluids . In modern physics , which includes relativity and quantum mechanics , the laws governing motion are revised to rely on fundamental interactions as

SECTION 50

#1732786861592

5148-428: The constant application of a force needed to keep a cart moving, had conceptual trouble accounting for the behavior of projectiles , such as the flight of arrows. An archer causes the arrow to move at the start of the flight, and it then sails through the air even though no discernible efficient cause acts upon it. Aristotle was aware of this problem and proposed that the air displaced through the projectile's path carries

5247-406: The constant forward velocity. Moreover, any object traveling at a constant velocity must be subject to zero net force (resultant force). This is the definition of dynamic equilibrium: when all the forces on an object balance but it still moves at a constant velocity. A simple case of dynamic equilibrium occurs in constant velocity motion across a surface with kinetic friction . In such a situation,

5346-515: The construct of the electric field to be useful for determining the electrostatic force on an electric charge at any point in space. The electric field was based on using a hypothetical " test charge " anywhere in space and then using Coulomb's Law to determine the electrostatic force. Thus the electric field anywhere in space is defined as E = F q , {\displaystyle \mathbf {E} ={\mathbf {F} \over {q}},} where q {\displaystyle q}

5445-408: The crucial properties that forces are additive vector quantities : they have magnitude and direction. When two forces act on a point particle , the resulting force, the resultant (also called the net force ), can be determined by following the parallelogram rule of vector addition : the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that

5544-417: The definition of acceleration , the algebraic version of Newton's second law is derived: F = m a . {\displaystyle \mathbf {F} =m\mathbf {a} .} Whenever one body exerts a force on another, the latter simultaneously exerts an equal and opposite force on the first. In vector form, if F 1 , 2 {\displaystyle \mathbf {F} _{1,2}}

5643-406: The early 20th century, Einstein developed a theory of relativity that correctly predicted the action of forces on objects with increasing momenta near the speed of light and also provided insight into the forces produced by gravitation and inertia . With modern insights into quantum mechanics and technology that can accelerate particles close to the speed of light, particle physics has devised

5742-428: The elements earth and water, were in their natural place when on the ground, and that they stay that way if left alone. He distinguished between the innate tendency of objects to find their "natural place" (e.g., for heavy bodies to fall), which led to "natural motion", and unnatural or forced motion, which required continued application of a force. This theory, based on the everyday experience of how objects move, such as

5841-413: The energy absorbing lanyards hold in excess of 5,000 lb (2,300 kg) when fully absorbed, most limit the load during the fall to under 1,400 lb (640 kg). Another common system is an HLL (Horizontal Life Line). These are linear anchoring devices, which allow workers to move along the whole length of the anchor, usually without needing to disconnect and fixing points of the anchorage. It

5940-403: The equivalence of constant velocity and rest were correct. For example, if a mariner dropped a cannonball from the crow's nest of a ship moving at a constant velocity, Aristotelian physics would have the cannonball fall straight down while the ship moved beneath it. Thus, in an Aristotelian universe, the falling cannonball would land behind the foot of the mast of a moving ship. When this experiment

6039-399: The fall can only be arrested by applying large forces to the worker and to the anchorage, which can result in either or both being severely affected. An analogy for this energy absorption is to consider the difference in dropping an egg onto a stone floor or dropping it into soft mud. Even for the same fall distance and weight of egg (the input energy ), there will be more damage with

SECTION 60

#1732786861592

6138-424: The force directly between them is called the normal force, the component of the total force in the system exerted normal to the interface between the objects. The normal force is closely related to Newton's third law. The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of

6237-417: The force of gravity is proportional to volume for objects of constant density (widely exploited for millennia to define standard weights); Archimedes' principle for buoyancy; Archimedes' analysis of the lever ; Boyle's law for gas pressure; and Hooke's law for springs. These were all formulated and experimentally verified before Isaac Newton expounded his Three Laws of Motion . Dynamic equilibrium

6336-550: The force standards contained in Federal OSHA 29CFR1910.66 appendix c, a force-type design standard which accounts for required energy considerations. The standard mitigates PPE interchangeability problems, allows wide use by designers not versed in high rate energy methods, and it limits the force into the worker to a survivable level. Actual loads on the user and anchor-anchorage vary widely with user weight, height of fall, geometry, and type of line/rope. Excessive energy into

6435-400: The force vectors preserved so that graphical vector addition can be done to determine the net force. As well as being added, forces can also be resolved into independent components at right angles to each other. A horizontal force pointing northeast can therefore be split into two forces, one pointing north, and one pointing east. Summing these component forces using vector addition yields

6534-401: The fundamental ones. In such situations, idealized models can be used to gain physical insight. For example, each solid object is considered a rigid body . What we now call gravity was not identified as a universal force until the work of Isaac Newton. Before Newton, the tendency for objects to fall towards the Earth was not understood to be related to the motions of celestial objects. Galileo

6633-410: The interactions of the fields themselves. This led Maxwell to discover that electric and magnetic fields could be "self-generating" through a wave that traveled at a speed that he calculated to be the speed of light . This insight united the nascent fields of electromagnetic theory with optics and led directly to a complete description of the electromagnetic spectrum . When objects are in contact,

6732-404: The load. Such machines allow a mechanical advantage for a corresponding increase in the length of displaced string needed to move the load. These tandem effects result ultimately in the conservation of mechanical energy since the work done on the load is the same no matter how complicated the machine. A simple elastic force acts to return a spring to its natural length. An ideal spring

6831-427: The magnetic field. The origin of electric and magnetic fields would not be fully explained until 1864 when James Clerk Maxwell unified a number of earlier theories into a set of 20 scalar equations, which were later reformulated into 4 vector equations by Oliver Heaviside and Josiah Willard Gibbs . These " Maxwell's equations " fully described the sources of the fields as being stationary and moving charges, and

6930-432: The magnitude or direction of the other. Choosing a set of orthogonal basis vectors is often done by considering what set of basis vectors will make the mathematics most convenient. Choosing a basis vector that is in the same direction as one of the forces is desirable, since that force would then have only one non-zero component. Orthogonal force vectors can be three-dimensional with the third component being at right angles to

7029-440: The mass in a system remains constant allowing as simple algebraic form for the second law. By the definition of momentum, F = d p d t = d ( m v ) d t , {\displaystyle \mathbf {F} ={\frac {\mathrm {d} \mathbf {p} }{\mathrm {d} t}}={\frac {\mathrm {d} \left(m\mathbf {v} \right)}{\mathrm {d} t}},} where m

7128-551: The mass of the object is constant, this law implies that the acceleration of an object is directly proportional to the net force acting on the object, is in the direction of the net force, and is inversely proportional to the mass of the object. A modern statement of Newton's second law is a vector equation: F = d p d t , {\displaystyle \mathbf {F} ={\frac {\mathrm {d} \mathbf {p} }{\mathrm {d} t}},} where p {\displaystyle \mathbf {p} }

7227-438: The motion of all objects using the concepts of inertia and force. In 1687, Newton published his magnum opus, Philosophiæ Naturalis Principia Mathematica . In this work Newton set out three laws of motion that have dominated the way forces are described in physics to this day. The precise ways in which Newton's laws are expressed have evolved in step with new mathematical approaches. Newton's first law of motion states that

7326-644: The natural behavior of an object at rest is to continue being at rest, and the natural behavior of an object moving at constant speed in a straight line is to continue moving at that constant speed along that straight line. The latter follows from the former because of the principle that the laws of physics are the same for all inertial observers , i.e., all observers who do not feel themselves to be in motion. An observer moving in tandem with an object will see it as being at rest. So, its natural behavior will be to remain at rest with respect to that observer, which means that an observer who sees it moving at constant speed in

7425-566: The normal force in action is the impact force on an object crashing into an immobile surface. Friction is a force that opposes relative motion of two bodies. At the macroscopic scale, the frictional force is directly related to the normal force at the point of contact. There are two broad classifications of frictional forces: static friction and kinetic friction . The static friction force ( F s f {\displaystyle \mathbf {F} _{\mathrm {sf} }} ) will exactly oppose forces applied to an object parallel to

7524-466: The object by either slowing it down or speeding it up, and the radial (centripetal) force, which changes its direction. Newton's laws and Newtonian mechanics in general were first developed to describe how forces affect idealized point particles rather than three-dimensional objects. In real life, matter has extended structure and forces that act on one part of an object might affect other parts of an object. For situations where lattice holding together

7623-446: The object. A static equilibrium between two forces is the most usual way of measuring forces, using simple devices such as weighing scales and spring balances . For example, an object suspended on a vertical spring scale experiences the force of gravity acting on the object balanced by a force applied by the "spring reaction force", which equals the object's weight. Using such tools, some quantitative force laws were discovered: that

7722-481: The original force. Resolving force vectors into components of a set of basis vectors is often a more mathematically clean way to describe forces than using magnitudes and directions. This is because, for orthogonal components, the components of the vector sum are uniquely determined by the scalar addition of the components of the individual vectors. Orthogonal components are independent of each other because forces acting at ninety degrees to each other have no effect on

7821-409: The other two. When all the forces that act upon an object are balanced, then the object is said to be in a state of equilibrium . Hence, equilibrium occurs when the resultant force acting on a point particle is zero (that is, the vector sum of all forces is zero). When dealing with an extended body, it is also necessary that the net torque be zero. A body is in static equilibrium with respect to

7920-503: The projectile to its target. This explanation requires a continuous medium such as air to sustain the motion. Though Aristotelian physics was criticized as early as the 6th century, its shortcomings would not be corrected until the 17th century work of Galileo Galilei , who was influenced by the late medieval idea that objects in forced motion carried an innate force of impetus . Galileo constructed an experiment in which stones and cannonballs were both rolled down an incline to disprove

8019-414: The radius ( R ⊕ {\displaystyle R_{\oplus }} ) of the Earth to the gravitational acceleration: g = − G m ⊕ R ⊕ 2 r ^ , {\displaystyle \mathbf {g} =-{\frac {Gm_{\oplus }}{{R_{\oplus }}^{2}}}{\hat {\mathbf {r} }},} where

8118-411: The requirements of OSHA 29CFR1910.66 appendix c. The user also may not fall so as to strike protrusions or adjoining walls during the 6 ft (1.8 m) fall. The safe fall distance is a function of the fall factor and the deployment of the "energy absorbers". As a rule of thumb for a factor 2 fall, a fall distance of approx 6 m (20 ft) will be required. This is equivalent to 2 stories of

8217-454: The ruptured segments. Failure-prevention may be designed into a tethering system. Some safety harnesses are used in combination with a shock-absorbing lanyard , which has break-away stitching designed into it to prevent material failure and regulate deceleration , thereby preventing a serious G-force injury to the user when the end of the rope is reached. Designed-to-fail safety links are sometimes used to prevent excessive tension in

8316-621: The same laws of motion , his law of gravity had to be universal. Succinctly stated, Newton's law of gravitation states that the force on a spherical object of mass m 1 {\displaystyle m_{1}} due to the gravitational pull of mass m 2 {\displaystyle m_{2}} is F = − G m 1 m 2 r 2 r ^ , {\displaystyle \mathbf {F} =-{\frac {Gm_{1}m_{2}}{r^{2}}}{\hat {\mathbf {r} }},} where r {\displaystyle r}

8415-547: The same amount of work . Analysis of the characteristics of forces ultimately culminated in the work of Archimedes who was especially famous for formulating a treatment of buoyant forces inherent in fluids . Aristotle provided a philosophical discussion of the concept of a force as an integral part of Aristotelian cosmology . In Aristotle's view, the terrestrial sphere contained four elements that come to rest at different "natural places" therein. Aristotle believed that motionless objects on Earth, those composed mostly of

8514-479: The sometimes non-obvious force of friction and a consequently inadequate view of the nature of natural motion. A fundamental error was the belief that a force is required to maintain motion, even at a constant velocity. Most of the previous misunderstandings about motion and force were eventually corrected by Galileo Galilei and Sir Isaac Newton . With his mathematical insight, Newton formulated laws of motion that were not improved for over two hundred years. By

8613-492: The standard permits an anchor to deform in order to absorb energy (adhesive anchors have higher design requirements because of aging loss). The rope can be lifeline rope, which stretches to lengthen the fall distance as it absorbs energy; or static rope, which does not stretch and thus limits the fall distance, but requires the fall energy be absorbed in other devices. It is essential that the PPE be rated for Fall Arrest and PPE used with static line include an energy absorber. While

8712-434: The stone floor as the arrest distance is smaller and so forces must be higher to dissipate the energy. For the soft mud , the arrest distance is longer and so arrest forces are lower but the egg is still stopped and is hopefully undamaged. Because fall arrest designs require high-rate-energy capacity design methods, fundamental fall arrest design is tedious and esoteric. Thus, most fall arrest parts and systems are designed to

8811-400: The string by the first object is accompanied by a force directed along the string in the opposite direction by the second object. By connecting the same string multiple times to the same object through the use of a configuration that uses movable pulleys, the tension force on a load can be multiplied. For every string that acts on a load, another factor of the tension force in the string acts on

8910-406: The support and user is avoided by the use of energy absorbing PPE designed for the 1800 lbs maximum of the referenced Federal OSHA standard. (Designers should be cautioned that the force values of the standard are based on high rate energy system design and thus its force values are not necessarily inter-related.) The most common fall arrest system is the vertical lifeline: a stranded rope that

9009-410: The theory is used in practice. Notable physicists, philosophers and mathematicians who have sought a more explicit definition of the concept of force include Ernst Mach and Walter Noll . Forces act in a particular direction and have sizes dependent upon how strong the push or pull is. Because of these characteristics, forces are classified as " vector quantities ". This means that forces follow

9108-419: The ultimate origin of force. However, the understanding of force provided by classical mechanics is useful for practical purposes. Philosophers in antiquity used the concept of force in the study of stationary and moving objects and simple machines , but thinkers such as Aristotle and Archimedes retained fundamental errors in understanding force. In part, this was due to an incomplete understanding of

9207-569: The use of fall protection equipment. This is legislated by Occupational Health and Safety Groups such as OSHA in the USA, and in Canada, the Provincial legislative bodies. Training is required to include instruction on theoretical aspects of using the equipment, and also practical aspects. Typically a fall protection, sometimes called fall arrest class is 8 hours long for general workers, but may include

9306-492: The vector direction is given by r ^ {\displaystyle {\hat {\mathbf {r} }}} , is the unit vector directed outward from the center of the Earth. In this equation, a dimensional constant G {\displaystyle G} is used to describe the relative strength of gravity. This constant has come to be known as the Newtonian constant of gravitation , though its value

9405-412: The velocity vector associated with the motion of an object, and therefore do not change the speed of the object (magnitude of the velocity), but only the direction of the velocity vector. More generally, the net force that accelerates an object can be resolved into a component that is perpendicular to the path, and one that is tangential to the path. This yields both the tangential force, which accelerates

9504-521: Was first described by Galileo who noticed that certain assumptions of Aristotelian physics were contradicted by observations and logic . Galileo realized that simple velocity addition demands that the concept of an "absolute rest frame " did not exist. Galileo concluded that motion in a constant velocity was completely equivalent to rest. This was contrary to Aristotle's notion of a "natural state" of rest that objects with mass naturally approached. Simple experiments showed that Galileo's understanding of

9603-436: Was instrumental in describing the characteristics of falling objects by determining that the acceleration of every object in free-fall was constant and independent of the mass of the object. Today, this acceleration due to gravity towards the surface of the Earth is usually designated as g {\displaystyle \mathbf {g} } and has a magnitude of about 9.81 meters per second squared (this measurement

9702-459: Was to unify the motions of heavenly bodies, which Aristotle had assumed were in a natural state of constant motion, with falling motion observed on the Earth. He proposed a law of gravity that could account for the celestial motions that had been described earlier using Kepler's laws of planetary motion . Newton came to realize that the effects of gravity might be observed in different ways at larger distances. In particular, Newton determined that

9801-503: Was unknown in Newton's lifetime. Not until 1798 was Henry Cavendish able to make the first measurement of G {\displaystyle G} using a torsion balance ; this was widely reported in the press as a measurement of the mass of the Earth since knowing G {\displaystyle G} could allow one to solve for the Earth's mass given the above equation. Newton realized that since all celestial bodies followed

#591408