Misplaced Pages

Tethyan Trench

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Oceanic trenches are prominent, long, narrow topographic depressions of the ocean floor . They are typically 50 to 100 kilometers (30 to 60 mi) wide and 3 to 4 km (1.9 to 2.5 mi) below the level of the surrounding oceanic floor, but can be thousands of kilometers in length. There are about 50,000 km (31,000 mi) of oceanic trenches worldwide, mostly around the Pacific Ocean , but also in the eastern Indian Ocean and a few other locations. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench , at a depth of 10,994 m (36,070 ft) below sea level .

#548451

78-599: The Tethys Trench was an ancient oceanic trench that existed in the northern part of the Tethys Ocean during the middle Mesozoic to early Cenozoic eras . The Tethys Trench formed when the Cimmerian Plate was subducting under eastern Laurasia , around 200 million years ago, in the Early Jurassic . The Tethys Trench extended at its greatest during Late Cretaceous to Paleocene , from what

156-399: A bending force (FPB) that supplies pressure during subduction, while the overriding plate exerts a force against the subducting plate (FTS). The slab pull force (FSP) is caused by the negative buoyancy of the plate driving the plate to greater depths. The resisting force from the surrounding mantle opposes the slab pull forces. Interactions with the 660-km discontinuity cause a deflection due to

234-422: A convergent plate tectonic boundary in the gap between an active volcanic arc and the associated trench , thus above the subducting oceanic plate. The formation of a forearc basin is often created by the vertical growth of an accretionary wedge that acts as a linear dam, parallel to the volcanic arc, creating a depression in which sediments can accumulate. Trench basins are deep linear depressions formed where

312-457: A difference in buoyancy. An increase in retrograde trench migration (slab rollback) (2–4 cm/yr) is a result of flattened slabs at the 660-km discontinuity where the slab does not penetrate into the lower mantle. This is the case for the Japan, Java and Izu–Bonin trenches. These flattened slabs are only temporarily arrested in the transition zone. The subsequent displacement into the lower mantle

390-514: A high probability of preservation. In contrast, sedimentary basins formed on oceanic crust are likely to be destroyed by subduction . Continental margins formed when new ocean basins like the Atlantic are created as continents rift apart are likely to have lifespans of hundreds of millions of years, but may be only partially preserved when those ocean basins close as continents collide. Sedimentary basins are of great economic importance. Almost all

468-445: A load is placed on the lithosphere, it will tend to flex in the manner of an elastic plate. The magnitude of the lithospheric flexure is a function of the imposed load and the flexural rigidity of the lithosphere, and the wavelength of flexure is a function of flexural rigidity of the lithospheric plate. Flexural rigidity is in itself, a function of the lithospheric mineral composition, thermal regime, and effective elastic thickness of

546-606: A million, and their sedimentary fills range from one to almost twenty kilometers in thickness. A dozen or so common types of sedimentary basins are widely recognized and several classification schemes are proposed, however no single classification scheme is recognized as the standard. Most sedimentary basin classification schemes are based on one or more of these interrelated criteria: Although no one basin classification scheme has been widely adopted, several common types of sedimentary basins are widely accepted and well understood as distinct types. Over its complete lifespan

624-443: A newly developed gravimeter that could measure gravity from aboard a submarine. He proposed the tectogene hypothesis to explain the belts of negative gravity anomalies that were found near island arcs. According to this hypothesis, the belts were zones of downwelling of light crustal rock arising from subcrustal convection currents. The tectogene hypothesis was further developed by Griggs in 1939, using an analogue model based on

702-464: A pair of rotating drums. Harry Hammond Hess substantially revised the theory based on his geological analysis. World War II in the Pacific led to great improvements of bathymetry, particularly in the western Pacific. In light of these new measurements, the linear nature of the deeps became clear. There was a rapid growth of deep sea research efforts, especially the widespread use of echosounders in

780-665: A result of isostasy . The long-term preserved geologic record of a sedimentary basin is a large scale contiguous three-dimensional package of sedimentary rocks created during a particular period of geologic time, a 'stratigraphic succession', that geologists continue to refer to as a sedimentary basin even if it is no longer a bathymetric or topographic depression. The Williston Basin , Molasse basin and Magallanes Basin are examples of sedimentary basins that are no longer depressions. Basins formed in different tectonic regimes vary in their preservation potential . Intracratonic basins, which form on highly-stable continental interiors, have

858-658: A result of the closing of a major ocean through continental collision resulting from plate tectonics. As a result the sedimentary record of inactive passive margins often are found as thick sedimentary sequences in mountain belts. For example the passive margins of the ancient Tethys Ocean are found in the mountain belts of the Alps and Himalayas that formed when the Tethys closed. Many authors recognize two subtypes of foreland basins: Peripheral foreland basins Retroarc foreland basins A sedimentary basin formed in association with

SECTION 10

#1732772652549

936-575: A single sedimentary basin can go through multiple phases and evolve from one of these types to another, such as a rift process going to completion to form a passive margin. In this case the sedimentary rocks of the rift basin phase are overlain by those rocks deposited during the passive margin phase. Hybrid basins where a single regional basin results from the processes that are characteristic of multiple of these types are also possible. Terrestrial rift valleys Proto-oceanic rift troughs Passive margins are long-lived and generally become inactive only as

1014-404: A subducting oceanic plate descends into the mantle, beneath the overriding continental (Andean type) or oceanic plate (Mariana type). Trenches form in the deep ocean but, particularly where the overriding plate is continental crust they can accumulate thick sequences of sediments from eroding coastal mountains. Smaller 'trench slope basins' can form in association with a trench can form directly atop

1092-537: A trench, sedimentation also takes place from landslides on the tectonically steepened inner slope, often driven by megathrust earthquakes . The Reloca Slide of the central Chile trench is an example of this process. Convergent margins are classified as erosive or accretionary, and this has a strong influence on the morphology of the inner slope of the trench. Erosive margins, such as the northern Peru-Chile, Tonga-Kermadec, and Mariana trenches, correspond to sediment-starved trenches. The subducting slab erodes material from

1170-513: A volcanic arc) are diagnostic of convergent plate boundaries and their deeper manifestations, subduction zones . Here, two tectonic plates are drifting into each other at a rate of a few millimeters to over 10 centimeters (4 in) per year. At least one of the plates is oceanic lithosphere , which plunges under the other plate to be recycled in the Earth's mantle . Trenches are related to, but distinct from, continental collision zones, such as

1248-526: Is a stub . You can help Misplaced Pages by expanding it . Oceanic trench Oceanic trenches are a feature of the Earth's distinctive plate tectonics . They mark the locations of convergent plate boundaries , along which lithospheric plates move towards each other at rates that vary from a few millimeters to over ten centimeters per year. Oceanic lithosphere moves into trenches at a global rate of about 3 km (1.2 sq mi) per year. A trench marks

1326-525: Is a piece of rubber, which thins in the middle when stretched.) An example of a basin caused by lithospheric stretching is the North Sea – also an important location for significant hydrocarbon reserves. Another such feature is the Basin and Range Province which covers most of Nevada, forming a series of horst and graben structures. Tectonic extension at divergent boundaries where continental rifting

1404-413: Is broken by bending faults that give the outer trench slope a horst and graben topography. The formation of these bending faults is suppressed where oceanic ridges or large seamounts are subducting into the trench, but the bending faults cut right across smaller seamounts. Where the subducting slab is only thinly veneered with sediments, the outer slope will often show seafloor spreading ridges oblique to

1482-493: Is by frontal accretion, in which sediments are scraped off the downgoing plate and emplaced at the front of the accretionary prism. As the accretionary wedge grows, older sediments further from the trench become increasingly lithified , and faults and other structural features are steepened by rotation towards the trench. The other mechanism for accretionary prism growth is underplating (also known as basal accretion ) of subducted sediments, together with some oceanic crust , along

1560-476: Is caused by slab pull forces, or the destabilization of the slab from warming and broadening due to thermal diffusion. Slabs that penetrate directly into the lower mantle result in slower slab rollback rates (~1–3 cm/yr) such as the Mariana arc, Tonga arcs. As sediments are subducted at the bottom of trenches, much of their fluid content is expelled and moves back along the subduction décollement to emerge on

1638-595: Is concern that plastic debris is accumulating in trenches and threatening these communities. There are approximately 50,000 km (31,000 mi) of convergent plate margins worldwide. These are mostly located around the Pacific Ocean, but are also found in the eastern Indian Ocean , with a few shorter convergent margin segments in other parts of the Indian Ocean, in the Atlantic Ocean, and in

SECTION 20

#1732772652549

1716-591: Is large enough and long-lived enough to create a sedimentary basin often called a pull-apart basin or strike-slip basin. These basins are often roughly rhombohedral in shape and may be called a rhombochasm . A classic rhombochasm is illustrated by the Dead Sea rift, where northward movement of the Arabian Plate relative to the Anatolian Plate has created a strike slip basin. The opposite effect

1794-740: Is now Greece to the Western Pacific Ocean . Subduction at the Tethys Trench probably caused the continents Africa and India to move towards Eurasia , which resulted in the opening of the Indian Ocean. When the Arabian Plate and Indian Plate collided with Eurasia, the Tethys Ocean and the trench closed. Remnants of the Tethys Trench can still be found today in Southeastern Europe and southwest of Southeast Asia . This palaeogeography article

1872-553: Is occurring can create a nascent ocean basin leading to either an ocean or the failure of the rift zone . Another expression of lithospheric stretching results in the formation of ocean basins with central ridges. The Red Sea is in fact an incipient ocean, in a plate tectonic context. The mouth of the Red Sea is also a tectonic triple junction where the Indian Ocean Ridge, Red Sea Rift and East African Rift meet. This

1950-458: Is particularly measurable and observable with oceanic crust, as there is a well-established correlation between the age of the underlying crust and depth of the ocean . As newly-formed oceanic crust cools over a period of tens of millions of years. This is an important contribution to subsidence in rift basins, backarc basins and passive margins where they are underlain by newly-formed oceanic crust. In strike-slip tectonic settings, deformation of

2028-602: Is reflected in the deep trenches of the western Pacific. Here the bottoms of the Marianas and the Tonga–Kermadec trenches are up to 10–11 kilometers (6.2–6.8 mi) below sea level. In the eastern Pacific, where the subducting oceanic lithosphere is much younger, the depth of the Peru-Chile trench is around 7 to 8 kilometers (4.3 to 5.0 mi). Though narrow, oceanic trenches are remarkably long and continuous, forming

2106-411: Is roughened by localized mass wasting . Cascadia has practically no bathymetric expression of the outer rise and trench, due to complete sediment filling, but the inner trench slope is complex, with many thrust ridges. These compete with canyon formation by rivers draining into the trench. Inner trench slopes of erosive margins rarely show thrust ridges. Accretionary prisms grow in two ways. The first

2184-553: Is that of transpression , where converging movement of a curved fault plane causes collision of the opposing sides of the fault. An example is the San Bernardino Mountains north of Los Angeles, which result from convergence along a curve in the San Andreas Fault system. The Northridge earthquake was caused by vertical movement along local thrust and reverse faults "bunching up" against the bend in

2262-677: Is the forearc basin of the Lesser Antilles subduction zone . Also not a trench is the New Caledonia trough, which is an extensional sedimentary basin related to the Tonga-Kermadec subduction zone . Additionally, the Cayman Trough, which is a pull-apart basin within a transform fault zone, is not an oceanic trench. Trenches, along with volcanic arcs and Wadati–Benioff zones (zones of earthquakes under

2340-416: Is the only place on the planet where such a triple junction in oceanic crust is exposed subaerially . This is due to a high thermal buoyancy ( thermal subsidence ) of the junction, and also to a local crumpled zone of seafloor crust acting as a dam against the Red Sea. Lithospheric flexure is another geodynamic mechanism that can cause regional subsidence resulting in the creation of a sedimentary basin. If

2418-466: Is thus an important area of study for purely scientific and academic reasons. There are however important economic incentives as well for understanding the processes of sedimentary basin formation and evolution because almost all of the world's fossil fuel reserves were formed in sedimentary basins. All of these perspectives on the history of a particular region are based on the study of a large three-dimensional body of sedimentary rocks that resulted from

Tethyan Trench - Misplaced Pages Continue

2496-473: The Earth's crust where subsidence has occurred and a thick sequence of sediments have accumulated to form a large three-dimensional body of sedimentary rock . They form when long-term subsidence creates a regional depression that provides accommodation space for accumulation of sediments. Over millions or tens or hundreds of millions of years the deposition of sediment , primarily gravity-driven transportation of water-borne eroded material, acts to fill

2574-498: The Himalayas . Unlike in trenches, in continental collision zones continental crust enters a subduction zone. When buoyant continental crust enters a trench, subduction comes to a halt and the area becomes a zone of continental collision. Features analogous to trenches are associated with collision zones . One such feature is the peripheral foreland basin , a sediment-filled foredeep . Examples of peripheral foreland basins include

2652-615: The Makran Trough. Some trenches are completely buried and lack bathymetric expression as in the Cascadia subduction zone , which is completely filled with sediments. Despite their appearance, in these instances the fundamental plate-tectonic structure is still an oceanic trench. Some troughs look similar to oceanic trenches but possess other tectonic structures. One example is the Lesser Antilles Trough, which

2730-711: The floodplains of the Ganges River and the Tigris-Euphrates river system . Trenches were not clearly defined until the late 1940s and 1950s. The bathymetry of the ocean was poorly known prior to the Challenger expedition of 1872–1876, which took 492 soundings of the deep ocean. At station #225, the expedition discovered Challenger Deep , now known to be the southern end of the Mariana Trench . The laying of transatlantic telegraph cables on

2808-444: The shear stresses at the base of the overriding plate. As slab rollback velocities increase, circular mantle flow velocities also increase, accelerating extension rates. Extension rates are altered when the slab interacts with the discontinuities within the mantle at 410 km and 660 km depth. Slabs can either penetrate directly into the lower mantle , or can be retarded due to the phase transition at 660 km depth creating

2886-544: The 1950s and 1960s. These efforts confirmed the morphological utility of the term "trench." Important trenches were identified, sampled, and mapped via sonar. The early phase of trench exploration reached its peak with the 1960 descent of the Bathyscaphe Trieste to the bottom of the Challenger Deep. Following Robert S. Dietz ' and Harry Hess ' promulgation of the seafloor spreading hypothesis in

2964-565: The Chilean trench. The north Chile portion of the trench, which lies along the Atacama Desert with its very slow rate of weathering, is sediment-starved, with from 20 to a few hundred meters of sediments on the trench floor. The tectonic morphology of this trench segment is fully exposed on the ocean bottom. The central Chile segment of the trench is moderately sedimented, with sediments onlapping onto pelagic sediments or ocean basement of

3042-566: The Mediterranean. They are found on the oceanward side of island arcs and Andean-type orogens . Globally, there are over 50 major ocean trenches covering an area of 1.9 million km or about 0.5% of the oceans. Trenches are geomorphologically distinct from troughs . Troughs are elongated depressions of the sea floor with steep sides and flat bottoms, while trenches are characterized by a V-shaped profile. Trenches that are partially infilled are sometimes described as troughs, for example

3120-479: The area of the Southeast Pacific, there have been several rollback events resulting in the formation of numerous back-arc basins. Interactions with the mantle discontinuities play a significant role in slab rollback. Stagnation at the 660-km discontinuity causes retrograde slab motion due to the suction forces acting at the surface. Slab rollback induces mantle return flow, which causes extension from

3198-482: The associated accretionary prism as it grows and changes shape creating ponded basins. Pull-apart basins is are created along major strike-slip faults where a bend in the fault geometry or the splitting of the fault into two or more faults creates tensional forces that cause crustal thinning or stretching due to extension, creating a regional depression. Frequently, the basins are rhombic, S-like or Z-like in shape. A broad comparatively shallow basin formed far from

Tethyan Trench - Misplaced Pages Continue

3276-406: The buoyancy at the phase transition (F660). The unique interplay of these forces is what generates slab rollback. When the deep slab section obstructs the down-going motion of the shallow slab section, slab rollback occurs. The subducting slab undergoes backward sinking due to the negative buoyancy forces causing a retrogradation of the trench hinge along the surface. Upwelling of the mantle around

3354-443: The depression. As the sediments are buried, they are subject to increasing pressure and begin the processes of compaction and lithification that transform them into sedimentary rock . Sedimentary basins are created by deformation of Earth's lithosphere in diverse geological settings, usually as a result of plate tectonic activity. Mechanisms of crustal deformation that lead to subsidence and sedimentary basin formation include

3432-405: The early 1960s and the plate tectonic revolution in the late 1960s, the oceanic trench became an important concept in plate tectonic theory. Oceanic trenches are 50 to 100 kilometers (30 to 60 mi) wide and have an asymmetric V-shape, with the steeper slope (8 to 20 degrees) on the inner (overriding) side of the trench and the gentler slope (around 5 degrees) on the outer (subducting) side of

3510-401: The earth's surface over time. Regional study of these rocks can be used as the primary record for different kinds of scientific investigation aimed at understanding and reconstructing the earth's past plate tectonics (paleotectonics), geography ( paleogeography , climate ( paleoclimatology ), oceans ( paleoceanography ), habitats ( paleoecology and paleobiogeography ). Sedimentary basin analysis

3588-425: The edge of a continental craton as a result of prolonged, broadly distributed but slow subsidence of the continental lithosphere relative to the surrounding area. They are sometimes referred to as intracratonic sag basins. They tend to be subcircular in shape and are commonly filled with shallow water marine or terrestrial sedimentary rocks that remain flat-lying and relatively undeformed over long periods of time due to

3666-439: The effect is believed to be twofold. The lower, hotter part of the lithosphere will "flow" slowly away from the main area being stretched, whilst the upper, cooler and more brittle crust will tend to fault (crack) and fracture. The combined effect of these two mechanisms is for Earth's surface in the area of extension to subside, creating a geographical depression which is then often infilled with water and/or sediments. (An analogy

3744-640: The exhumation of ophiolites . Slab rollback is not always a continuous process suggesting an episodic nature. The episodic nature of the rollback is explained by a change in the density of the subducting plate, such as the arrival of buoyant lithosphere (a continent, arc, ridge, or plateau), a change in the subduction dynamics, or a change in the plate kinematics. The age of the subducting plates does not have any effect on slab rollback. Nearby continental collisions have an effect on slab rollback. Continental collisions induce mantle flow and extrusion of mantle material, which causes stretching and arc-trench rollback. In

3822-405: The fill of one or more sedimentary basins over time. The scientific studies of stratigraphy and in recent decades sequence stratigraphy are focused on understanding the three-dimensional architecture, packaging and layering of this body of sedimentary rocks as a record resulting from sedimentary processes acting over time, influenced by global sea level change and regional plate tectonics. Where

3900-539: The horst and graben ridges. Trench morphology is strongly modified by the amount of sedimentation in the trench. This varies from practically no sedimentation, as in the Tonga-Kermadec trench, to completely filled with sediments, as with the Cascadia subduction zone. Sedimentation is largely controlled by whether the trench is near a continental sediment source. The range of sedimentation is well illustrated by

3978-462: The inner slope as mud volcanoes and cold seeps . Methane clathrates and gas hydrates also accumulate in the inner slope, and there is concern that their breakdown could contribute to global warming . The fluids released at mud volcanoes and cold seeps are rich in methane and hydrogen sulfide , providing chemical energy for chemotrophic microorganisms that form the base of a unique trench biome . Cold seep communities have been identified in

SECTION 50

#1732772652549

4056-451: The inner trench slopes of the western Pacific (especially Japan ), South America, Barbados, the Mediterranean, Makran, and the Sunda trench. These are found at depths as great as 6,000 meters (20,000 ft). The genome of the extremophile Deinococcus from Challenger Deep has sequenced for its ecological insights and potential industrial uses. Because trenches are the lowest points in

4134-403: The largest linear depressions on earth. An individual trench can be thousands of kilometers long. Most trenches are convex towards the subducting slab, which is attributed to the spherical geometry of the Earth. The trench asymmetry reflects the different physical mechanisms that determine the inner and outer slope angle. The outer slope angle of the trench is determined by the bending radius of

4212-425: The lithosphere occurs primarily in the plane of Earth as a result of near horizontal maximum and minimum principal stresses . Faults associated with these plate boundaries are primarily vertical. Wherever these vertical fault planes encounter bends, movement along the fault can create local areas of compression or tension. When the curve in the fault plane moves apart, a region of transtension occurs and sometimes

4290-405: The lithosphere. Plate tectonic processes that can create sufficient loads on the lithosphere to induce basin-forming processes include: After any kind of sedimentary basin has begun to form, the load created by the water and sediments filling the basin creates additional load, thus causing additional lithospheric flexure and amplifying the original subsidence that created the basin, regardless of

4368-478: The long-lived tectonic stability of the underlying craton. The geodynamic forces that create them remain poorly understood. Sedimentary basins form as a result of regional subsidence of the lithosphere, mostly as a result of a few geodynamic processes. If the lithosphere is caused to stretch horizontally, by mechanisms such as rifting (which is associated with divergent plate boundaries) or ridge-push or trench-pull (associated with convergent boundaries),

4446-460: The lower part of the overriding slab, reducing its volume. The edge of the slab experiences subsidence and steepening, with normal faulting. The slope is underlain by relative strong igneous and metamorphic rock, which maintains a high angle of repose. Over half of all convergent margins are erosive margins. Accretionary margins, such as the southern Peru-Chile, Cascadia, and Aleutians, are associated with moderately to heavily sedimented trenches. As

4524-471: The northernmost Sumatra subduction zone, which is buried under 6 kilometers (3.7 mi) of sediments. Sediments are sometimes transported along the axis of an oceanic trench. The central Chile trench experiences transport of sediments from source fans along an axial channel. Similar transport of sediments has been documented in the Aleutian trench. In addition to sedimentation from rivers draining into

4602-518: The ocean floor, there is concern that plastic debris may accumulate in trenches and endanger the fragile trench biomes. Recent measurements, where the salinity and temperature of the water was measured throughout the dive, have uncertainties of about 15 m (49 ft). Older measurements may be off by hundreds of meters. (*) The five deepest trenches in the world Sedimentary basin Sedimentary basins are region-scale depressions of

4680-471: The original cause of basin inception. Cooling of a lithospheric plate, particularly young oceanic crust or recently stretched continental crust, causes thermal subsidence . As the plate cools it shrinks and becomes denser through thermal contraction . Analogous to a solid floating in a liquid, as the lithospheric plate gets denser it sinks because it displaces more of the underlying mantle through an equilibrium process known as isostasy . Thermal subsidence

4758-413: The otherwise strike-slip fault environment. The study of sedimentary basins as entities unto themselves is often referred to as sedimentary basin analysis . Study involving quantitative modeling of the dynamic geologic processes by which they evolved is called basin modelling . The sedimentary rocks comprising the fill of sedimentary basins hold the most complete historical record of the evolution of

SECTION 60

#1732772652549

4836-432: The position at which the flexed, subducting slab begins to descend beneath another lithospheric slab. Trenches are generally parallel to and about 200 km (120 mi) from a volcanic arc . Much of the fluid trapped in sediments of the subducting slab returns to the surface at the oceanic trench, producing mud volcanoes and cold seeps . These support unique biomes based on chemotrophic microorganisms. There

4914-429: The rocks directly and also very importantly allow paleontologists to study the microfossils they contain ( micropaleontology ). At the time they are being drilled, boreholes are also surveyed by pulling electronic instruments along the length of the borehole in a process known as well logging . Well logging, which is sometimes appropriately called borehole geophysics , uses electromagnetic and radioactive properties of

4992-413: The seafloor between the continents during the late 19th and early 20th centuries provided further motivation for improved bathymetry. The term trench , in its modern sense of a prominent elongated depression of the sea bottom, was first used by Johnstone in his 1923 textbook An Introduction to Oceanography . During the 1920s and 1930s, Felix Andries Vening Meinesz measured gravity over trenches using

5070-486: The sedimentary rocks comprising a sedimentary basin's fill are exposed at the earth's surface, traditional field geology and aerial photography techniques as well as satellite imagery can be used in the study of sedimentary basins. Much of a sedimentary basin's fill often remains buried below the surface, often submerged in the ocean, and thus cannot be studied directly. Acoustic imaging using seismic reflection acquired through seismic data acquisition and studied through

5148-481: The shallow parts of the subduction decollement. The Franciscan Group of California is interpreted as an ancient accretionary prism in which underplating is recorded as tectonic mélanges and duplex structures. Frequent megathrust earthquakes modify the inner slope of the trench by triggering massive landslides. These leave semicircular landslide scarps with slopes of up to 20 degrees on the headwalls and sidewalls. Subduction of seamounts and aseismic ridges into

5226-455: The slab can create favorable conditions for the formation of a back-arc basin. Seismic tomography provides evidence for slab rollback. Results demonstrate high temperature anomalies within the mantle suggesting subducted material is present in the mantle. Ophiolites are viewed as evidence for such mechanisms as high pressure and temperature rocks are rapidly brought to the surface through the processes of slab rollback, which provides space for

5304-427: The slab subducts, sediments are "bulldozed" onto the edge of the overriding plate, producing an accretionary wedge or accretionary prism . This builds the overriding plate outwards. Because the sediments lack strength, their angle of repose is gentler than the rock making up the inner slope of erosive margin trenches. The inner slope is underlain by imbricated thrust sheets of sediments. The inner slope topography

5382-466: The slab with respect to the mantle modified by the geometry of the slab itself. The extension in the overriding plate, in response to the subsequent subhorizontal mantle flow from the displacement of the slab, can result in formation of a back-arc basin. Several forces are involved in the process of slab rollback. Two forces acting against each other at the interface of the two subducting plates exert forces against one another. The subducting plate exerts

5460-400: The specific sub-discipline of seismic stratigraphy is the primary means of understanding the three-dimensional architecture of the basin's fill through remote sensing . Direct sampling of the rocks themselves is accomplished via the drilling of boreholes and the retrieval of rock samples in the form of both core samples and drill cuttings . These allow geologists to study small samples of

5538-416: The subducting plate. This is called trench rollback or hinge retreat (also hinge rollback ) and is one explanation for the existence of back-arc basins . Forces perpendicular to the slab (the portion of the subducting plate within the mantle) are responsible for steepening of the slab and, ultimately, the movement of the hinge and trench at the surface. These forces arise from the negative buoyancy of

5616-419: The subducting slab, as determined by its elastic thickness. Since oceanic lithosphere thickens with age, the outer slope angle is ultimately determined by the age of the subducting slab. The inner slope angle is determined by the angle of repose of the overriding plate edge. This reflects frequent earthquakes along the trench that prevent oversteepening of the inner slope. As the subducting plate approaches

5694-509: The subducting slab, but the trench morphology is still clearly discernible. The southern Chile segment of the trench is fully sedimented, to the point where the outer rise and slope are no longer discernible. Other fully sedimented trenches include the Makran Trough, where sediments are up to 7.5 kilometers (4.7 mi) thick; the Cascadia subduction zone, which is completed buried by 3 to 4 kilometers (1.9 to 2.5 mi) of sediments; and

5772-402: The thinning of underlying crust; depression of the crust by sedimentary, tectonic or volcanic loading; or changes in the thickness or density of underlying or adjacent lithosphere . Once the process of basin formation has begun, the weight of the sediments being deposited in the basin adds a further load on the underlying crust that accentuates subsidence and thus amplifies basin development as

5850-450: The trench may increase aseismic creep and reduce the severity of earthquakes. Contrariwise, subduction of large amounts of sediments may allow ruptures along the subduction décollement to propagate for great distances to produce megathrust earthquakes. Trenches seem positionally stable over time, but scientists believe that some trenches—particularly those associated with subduction zones where two oceanic plates converge—move backward into

5928-399: The trench, it bends slightly upwards before beginning its plunge into the depths. As a result, the outer trench slope is bounded by an outer trench high . This is subtle, often only tens of meters high, and is typically located a few tens of kilometers from the trench axis. On the outer slope itself, where the plate begins to bend downwards into the trench, the upper part of the subducting slab

6006-474: The trench. The bottom of the trench marks the boundary between the subducting and overriding plates, known as the basal plate boundary shear or the subduction décollement . The depth of the trench depends on the starting depth of the oceanic lithosphere as it begins its plunge into the trench, the angle at which the slab plunges, and the amount of sedimentation in the trench. Both starting depth and subduction angle are greater for older oceanic lithosphere, which

6084-546: The world's natural gas and petroleum and all of its coal are found in sedimentary rock. Many metal ores are found in sedimentary rocks formed in particular sedimentary environments. Sedimentary basins are also important from a purely scientific perspective because their sedimentary fill provides a record of Earth's history during the time in which the basin was actively receiving sediment. More than six hundred sedimentary basins have been identified worldwide. They range in areal size from tens of square kilometers to well over

#548451