EEPROM or E PROM ( electrically erasable programmable read-only memory ) is a type of non-volatile memory . It is used in computers, usually integrated in microcontrollers such as smart cards and remote keyless systems , or as a separate chip device, to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.
28-598: Teds or TEDS may refer to Transducer Electronic Data Sheet Teddy Boys , particularly 1970s revivalists. Trinity Evangelical Divinity School The Ellen DeGeneres Show Twins Early Development Study The Ethical Debating Society TETRA Enhanced Data Service Tactical Eye Devices, a US Army term for eyeglasses Thrombo Embolus Deterrent Stockings - Anti-Embolism Compression Stockings See also [ edit ] Ted (disambiguation) TED (disambiguation) Ted's Hot Dogs Topics referred to by
56-543: A 16K (2K word × 8) bit Intel 2816 chip with a thin silicon dioxide layer, which was less than 200 Å . In 1980, this structure was publicly introduced as FLOTOX ; floating gate tunnel oxide . The FLOTOX structure improved reliability of erase/write cycles per byte up to 10,000 times. But this device required additional 20–22V V PP bias voltage supply for byte erase, except for 5V read operations. In 1981, Perlegos and 2 other members left Intel to form Seeq Technology , which used on-device charge pumps to supply
84-464: A limited life for erasing and reprogramming, reaching a million operations in modern EEPROMs. In an EEPROM that is frequently reprogrammed, the life of the EEPROM is an important design consideration. Flash memory is a type of EEPROM designed for high speed and high density, at the expense of large erase blocks (typically 512 bytes or larger) and limited number of write cycles (often 10,000). There
112-490: A set of open, common, network-independent communication interfaces for connecting transducers to microprocessors, instrumentation systems, and control/field networks. One of the key elements of the IEEE 1451 standards is the definition of TEDS for each transducer. The TEDS can be implemented as a memory device attached to the transducer and containing information needed by a measurement instrument or control system to interface with
140-877: A transducer. TEDS can, however, be implemented in two ways. First, the TEDS can reside in embedded memory, typically an EEPROM , within the transducer itself which is connected to the measurement instrument or control system. Second, a virtual TEDS can exist as a data file accessible by the measurement instrument or control system. A virtual TEDS extends the standardized TEDS to legacy sensors and applications where embedded memory may not be available. The 1451 family of standards includes: EEPROM EEPROMs are organized as arrays of floating-gate transistors . EEPROMs can be programmed and erased in-circuit, by applying special programming signals. Originally, EEPROMs were limited to single-byte operations, which made them slower, but modern EEPROMs allow multi-byte page operations. An EEPROM has
168-467: Is available. Today, an academic explanation of the FLOTOX device structure can be found in several sources. Nowadays, EEPROM is used for embedded microcontrollers as well as standard EEPROM products. EEPROM still requires a 2-transistor structure per bit to erase a dedicated byte in the memory, while flash memory has 1 transistor per bit to erase a region of the memory. Because EEPROM technology
196-415: Is described in former section, old EEPROMs are based on avalanche breakdown -based hot-carrier injection with high reverse breakdown voltage . But FLOTOX theoretical basis is Fowler–Nordheim tunneling hot-carrier injection through a thin silicon dioxide layer between the floating gate and the wafer. In other words, it uses a tunnel junction . Theoretical basis of the physical phenomenon itself
224-628: Is different from Wikidata All article disambiguation pages All disambiguation pages Transducer Electronic Data Sheet IEEE 1451 is a set of smart transducer interface standards developed by the Institute of Electrical and Electronics Engineers (IEEE) Instrumentation and Measurement Society's Sensor Technology Technical Committee describing a set of open, common, network-independent communication interfaces for connecting transducers (sensors or actuators) to microprocessors, instrumentation systems, and control/field networks. One of
252-478: Is no clear boundary dividing the two, but the term "EEPROM" is generally used to describe non-volatile memory with small erase blocks (as small as one byte) and a long lifetime (typically 1,000,000 cycles). Many past microcontrollers included both (flash memory for the firmware and a small EEPROM for parameters), though the trend with modern microcontrollers is to emulate EEPROM using flash. As of 2020, flash memory costs much less than byte-programmable EEPROM and
280-447: Is the dominant memory type wherever a system requires a significant amount of non-volatile solid-state storage . EEPROMs, however, are still used on applications that only require small amounts of storage, like in serial presence detect . In the early 1970s, some studies, inventions , and development for electrically re-programmable non-volatile memories were performed by various companies and organizations. In 1971, early research
308-413: Is the same as today's flash memory . But each FLOTOX structure is in conjunction with another read-control transistor because the floating gate itself is just programming and erasing one data bit. Intel's FLOTOX device structure improved EEPROM reliability, in other words, the endurance of the write and erase cycles, and the data retention period. A material of study for single-event effect about FLOTOX
SECTION 10
#1732791699178336-535: Is used for some security gadgets, such as credit cards, SIM cards, key-less entry, etc., some devices have security protection mechanisms, such as copy-protection. EEPROM devices use a serial or parallel interface for data input/output. The common serial interfaces are SPI , I²C , Microwire , UNI/O , and 1-Wire . These use from 1 to 4 device pins and allow devices to use packages with 8 pins or less. A typical EEPROM serial protocol consists of three phases: OP-code phase , address phase and data phase. The OP-code
364-531: Is usually the first 8 bits input to the serial input pin of the EEPROM device (or with most I²C devices, is implicit); followed by 8 to 24 bits of addressing, depending on the depth of the device, then the read or write data. Each EEPROM device typically has its own set of OP-code instructions mapped to different functions. Common operations on SPI EEPROM devices are: Other operations supported by some EEPROM devices are: Parallel EEPROM devices typically have an 8-bit data bus and an address bus wide enough to cover
392-697: The complete memory. Most devices have chip select and write protect pins. Some microcontrollers also have integrated parallel EEPROM. Operation of a parallel EEPROM is simple and fast when compared to serial EEPROM, but these devices are larger due to the higher pin count (28 pins or more) and have been decreasing in popularity in favor of serial EEPROM or flash. EEPROM memory is used to enable features in other types of products that are not strictly memory products. Products such as real-time clocks , digital potentiometers , digital temperature sensors , among others, may have small amounts of EEPROM to store calibration information or other data that needs to be available in
420-545: The data retention periods and the number of erase/write cycles. Most of the major semiconductor manufactures, such as Toshiba , Sanyo (later, ON Semiconductor ), IBM , Intel , NEC (later, Renesas Electronics ), Philips (later, NXP Semiconductors ), Siemens (later, Infineon Technologies ), Honeywell (later, Atmel ), Texas Instruments , studied, invented, and manufactured some electrically re-programmable non-volatile devices until 1977. The first EEPROM that used Fowler-Nordheim tunnelling to erase data
448-403: The electrons in the floating gate, lowering the window between threshold voltages for zeros vs ones. After sufficient number of rewrite cycles, the difference becomes too small to be recognizable, the cell is stuck in programmed state, and endurance failure occurs. The manufacturers usually specify the maximum number of rewrites being 1 million or more. During storage, the electrons injected into
476-411: The event of power loss. It was also used on video game cartridges to save game progress and configurations, before the usage of external and internal flash memories. There are two limitations of stored information: endurance and data retention. During rewrites, the gate oxide in the floating-gate transistors gradually accumulates trapped electrons. The electric field of the trapped electrons adds to
504-462: The floating gate may drift through the insulator, especially at increased temperature, and cause charge loss, reverting the cell into erased state. The manufacturers usually guarantee data retention of 10 years or more. Flash memory is a later form of EEPROM. In the industry, there is a convention to reserve the term EEPROM to byte-wise erasable memories compared to block-wise erasable flash memories. EEPROM occupies more die area than flash memory for
532-488: The high voltages necessary for programming E PROMs. In 1984, Perlogos left Seeq Technology to found Atmel , then Seeq Technology was acquired by Atmel. Electrically alterable read-only memory (EAROM) is a type of EEPROM that can be modified one or a few bits at a time. Writing is a very slow process and again needs higher voltage (usually around 12 V ) than is used for read access. EAROMs are intended for applications that require infrequent and only partial rewriting. As
560-416: The key elements of these standards is the definition of Transducer electronic data sheets (TEDS) for each transducer. The TEDS is a memory device attached to the transducer, which stores transducer identification, calibration, correction data, and manufacturer-related information. The goal of the IEEE 1451 family of standards is to allow the access of transducer data through a common set of interfaces whether
588-444: The same capacity, because each cell usually needs a read, a write, and an erase transistor , while flash memory erase circuits are shared by large blocks of cells (often 512×8). Newer non-volatile memory technologies such as FeRAM and MRAM are slowly replacing EEPROMs in some applications, but are expected to remain a small fraction of the EEPROM market for the foreseeable future. The difference between EPROM and EEPROM lies in
SECTION 20
#1732791699178616-405: The same term [REDACTED] This disambiguation page lists articles associated with the title Teds . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Teds&oldid=1038570742 " Category : Disambiguation pages Hidden categories: Short description
644-567: The transducers are connected to systems or networks via a wired or wireless means. A transducer electronic data sheet (TEDS) is a standardized method of storing transducer ( sensors or actuators ) identification, calibration, correction data, and manufacturer-related information. TEDS formats are defined in the IEEE 1451 set of smart transducer interface standards developed by the IEEE Instrumentation and Measurement Society 's Sensor Technology Technical Committee that describe
672-412: The way that the memory programs and erases. EEPROM can be programmed and erased electrically using field electron emission (more commonly known in the industry as "Fowler–Nordheim tunneling"). EPROMs can't be erased electrically and are programmed by hot-carrier injection onto the floating gate. Erase is by an ultraviolet light source, although in practice many EPROMs are encapsulated in plastic that
700-476: Was disclosed by Fairchild and Siemens . They used SONOS ( polysilicon - oxynitride - nitride - oxide - silicon ) structure with thickness of silicon dioxide less than 30 Å , and SIMOS (stacked-gate injection MOS ) structure, respectively, for using Fowler-Nordheim tunnelling hot-carrier injection . Around 1976 to 1978, Intel's team, including George Perlegos , made some inventions to improve this tunneling E PROM technology. In 1978, they developed
728-455: Was invented by Bernward and patented by Siemens in 1974. In February 1977, Israeli-American Eliyahou Harari at Hughes Aircraft Company patented in the US a modern EEPROM technology, based on Fowler-Nordheim tunnelling through a thin silicon dioxide layer between the floating-gate and the wafer . Hughes went on to produce this new EEPROM devices. In May 1977, some important research result
756-584: Was patented by Fujio Masuoka , the inventor of flash memory , at Toshiba and IBM patented another later that year. In 1974, NEC patented a electrically erasable carrier injection device. The next year, NEC applied for the trademark "EEPROM®" with the Japan Patent Office. The trademark was granted in 1978. The theoretical basis of these devices is avalanche hot-carrier injection . In general, programmable memories, including EPROM, of early 1970s had reliability and endurance problems such as
784-612: Was presented at the 3rd Conference on Solid State Devices , Tokyo in Japan by Yasuo Tarui, Yutaka Hayashi, and Kiyoko Nagai at Electrotechnical Laboratory ; a Japanese national research institute. They fabricated an electrically re-programmable non-volatile memory in 1972, and continued this study for more than 10 years. However this early memory depended on capacitors to work, which modern EEPROM lacks. In 1972 IBM patented an electrically re-programmable non-volatile memory invention. Later that year, an avalanche injection type MOS
#177822