The Devonian Temple Butte Formation , also called Temple Butte Limestone , outcrops through most of the Grand Canyon of Arizona , USA; it also occurs in southeast Nevada . Within the eastern Grand Canyon, it consists of thin, discontinuous and relatively inconspicuous lenses that fill paleovalleys cut into the underlying Muav Limestone . Within these paleovalleys, it at most, is only about 100 feet (30 m) thick at its maximum. Within the central and western Grand Canyon, the exposures are continuous. However, they tend to merge with cliffs of the much thicker and overlying Redwall Limestone .
89-534: Within the western and central parts of the Grand Canyon, the Temple Butte Formation consists of a westward thickening layer of interbedded dolomite , sandy dolomite, sandstone, mudstone, and limestone that vary in color from purple, reddish-purple, dark gray, to light-gray. Within the eastern part of the Grand Canyon, the Temple Butte Formation fills shallow paleovalleys, which are eroded into
178-400: A (usually small) angle. Sometimes multiple sets of layers with different orientations exist in the same rock, a structure called cross-bedding . Cross-bedding is characteristic of deposition by a flowing medium (wind or water). The opposite of cross-bedding is parallel lamination, where all sedimentary layering is parallel. Differences in laminations are generally caused by cyclic changes in
267-418: A French mineralogist and geologist whom it is named after. He recognized and described the distinct characteristics of dolomite in the late 18th century, differentiating it from limestone. Most dolomite was formed as a magnesium replacement of limestone or of lime mud before lithification . The geological process of conversion of calcite to dolomite is known as dolomitization and any intermediate product
356-476: A basal conglomerate within the overlying Redwall Limestone . Within the area of Frenchman Mountain , Clark County, Nevada , over 610 m (2,000 ft) of limestone and dolomite occupy the interval between the Muav and Redwall limestones , whereas in the Grand Canyon exist less than 30 m (98 ft) of Temple Butte Formation. These limestone and dolomite beds represent sediments that accumulated during
445-424: A diagenetic structure common in carbonate rocks is a stylolite . Stylolites are irregular planes where material was dissolved into the pore fluids in the rock. This can result in the precipitation of a certain chemical species producing colouring and staining of the rock, or the formation of concretions . Concretions are roughly concentric bodies with a different composition from the host rock. Their formation can be
534-434: A drop of dilute hydrochloric acid is dropped on it. This distinguishes dolomite from limestone, which is also soft but reacts vigorously with dilute hydrochloric acid. Dolomite usually weathers to a characteristic dull yellow-brown color due to the presence of ferrous iron. This is released and oxidized as the dolomite weathers. Dolomite is usually granular in appearance, with a texture resembling grains of sugar . Under
623-405: A high percentage of CaMg(CO 3 ) 2 in which natural caves or solution tubes have formed. Both calcium and magnesium go into solution when dolomite rock is dissolved. The speleothem precipitation sequence is: calcite , Mg-calcite, aragonite , huntite and hydromagnesite . Hence, the most common speleothem (secondary deposit) in caves within dolomite rock karst , is calcium carbonate in
712-544: A high-calcium limestone, such as manufacture of sodium carbonate . Dolomite is used for production of magnesium chemicals, such as Epsom salt , and is used as a magnesium supplement. It is also used in the manufacture of refractory materials . As with limestone caves , natural caves and solution tubes typically form in dolomite rock as a result of the dissolution by weak carbonic acid. Caves can also, less commonly, form through dissolution of rock by sulfuric acid . Calcium carbonate speleothems (secondary deposits) in
801-463: A particular sedimentary environment. Examples of bed forms include dunes and ripple marks . Sole markings, such as tool marks and flute casts, are grooves eroded on a surface that are preserved by renewed sedimentation. These are often elongated structures and can be used to establish the direction of the flow during deposition. Ripple marks also form in flowing water. There can be symmetric or asymmetric. Asymmetric ripples form in environments where
890-465: A red colour does not necessarily mean the rock formed in a continental environment or arid climate. The presence of organic material can colour a rock black or grey. Organic material is formed from dead organisms, mostly plants. Normally, such material eventually decays by oxidation or bacterial activity. Under anoxic circumstances, however, organic material cannot decay and leaves a dark sediment, rich in organic material. This can, for example, occur at
979-566: A result, attempts to precipitate dolomite from seawater precipitate high-magnesium calcite instead. This substance, which has an excess of calcium over magnesium and lacks calcium-magnesium ordering, is sometimes called protodolomite . Raising the temperature makes it easier for magnesium to shed its hydration shell, and dolomite can be precipitated from seawater at temperatures in excess of 60 °C (140 °F). Protodolomite also rapidly converts to dolomite at temperatures of 250 °C (482 °F) or higher. The high temperatures necessary for
SECTION 10
#17327724012261068-489: A rock is usually expressed with the Wentworth scale, though alternative scales are sometimes used. The grain size can be expressed as a diameter or a volume, and is always an average value, since a rock is composed of clasts with different sizes. The statistical distribution of grain sizes is different for different rock types and is described in a property called the sorting of the rock. When all clasts are more or less of
1157-465: A sediment after its initial deposition. This includes compaction and lithification of the sediments. Early stages of diagenesis, described as eogenesis , take place at shallow depths (a few tens of meters) and is characterized by bioturbation and mineralogical changes in the sediments, with only slight compaction. The red hematite that gives red bed sandstones their color is likely formed during eogenesis. Some biochemical processes, like
1246-431: A sedimentary rock may have been present in the original sediments or may formed by precipitation during diagenesis. In the second case, a mineral precipitate may have grown over an older generation of cement. A complex diagenetic history can be established by optical mineralogy , using a petrographic microscope . Carbonate rocks predominantly consist of carbonate minerals such as calcite, aragonite or dolomite . Both
1335-516: A small-scale property of a rock, but determines many of its large-scale properties, such as the density , porosity or permeability . The 3D orientation of the clasts is called the fabric of the rock. The size and form of clasts can be used to determine the velocity and direction of current in the sedimentary environment that moved the clasts from their origin; fine, calcareous mud only settles in quiet water while gravel and larger clasts are moved only by rapidly moving water. The grain size of
1424-952: A term for a fissile mudrock (regardless of grain size) although some older literature uses the term "shale" as a synonym for mudrock. Biochemical sedimentary rocks are created when organisms use materials dissolved in air or water to build their tissue. Examples include: Chemical sedimentary rock forms when mineral constituents in solution become supersaturated and inorganically precipitate . Common chemical sedimentary rocks include oolitic limestone and rocks composed of evaporite minerals, such as halite (rock salt), sylvite , baryte and gypsum . This fourth miscellaneous category includes volcanic tuff and volcanic breccias formed by deposition and later cementation of lava fragments erupted by volcanoes, and impact breccias formed after impact events . Alternatively, sedimentary rocks can be subdivided into compositional groups based on their mineralogy: Sedimentary rocks are formed when sediment
1513-417: A texture, only the average size of the crystals and the fabric are necessary. Most sedimentary rocks contain either quartz ( siliciclastic rocks) or calcite ( carbonate rocks ). In contrast to igneous and metamorphic rocks, a sedimentary rock usually contains very few different major minerals. However, the origin of the minerals in a sedimentary rock is often more complex than in an igneous rock. Minerals in
1602-425: A valuable indicator of the biological and ecological environment that existed after the sediment was deposited. On the other hand, the burrowing activity of organisms can destroy other (primary) structures in the sediment, making a reconstruction more difficult. Secondary structures can also form by diagenesis or the formation of a soil ( pedogenesis ) when a sediment is exposed above the water level. An example of
1691-453: A very high ratio of calcium to magnesium. Dolomite is used for many of the same purposes as limestone, including as construction aggregate ; in agriculture to neutralize soil acidity and supply calcium and magnesium; as a source of carbon dioxide ; as dimension stone ; as a filler in fertilizers and other products; as a flux in metallurgy ; and in glass manufacturing . It cannot substitute for limestone in chemical processes that require
1780-503: Is deposited out of air, ice, wind, gravity, or water flows carrying the particles in suspension . This sediment is often formed when weathering and erosion break down a rock into loose material in a source area. The material is then transported from the source area to the deposition area. The type of sediment transported depends on the geology of the hinterland (the source area of the sediment). However, some sedimentary rocks, such as evaporites , are composed of material that form at
1869-466: Is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite , CaMg(CO 3 ) 2 . It occurs widely, often in association with limestone and evaporites , though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). One of the first geologists to distinguish dolomite from limestone was Déodat Gratet de Dolomieu;
SECTION 20
#17327724012261958-421: Is a structure where beds with a smaller grain size occur on top of beds with larger grains. This structure forms when fast flowing water stops flowing. Larger, heavier clasts in suspension settle first, then smaller clasts. Although graded bedding can form in many different environments, it is a characteristic of turbidity currents . The surface of a particular bed, called the bedform , can also be indicative of
2047-409: Is called bedding . Single beds can be a couple of centimetres to several meters thick. Finer, less pronounced layers are called laminae, and the structure a lamina forms in a rock is called lamination . Laminae are usually less than a few centimetres thick. Though bedding and lamination are often originally horizontal in nature, this is not always the case. In some environments, beds are deposited at
2136-467: Is characterized by its nearly ideal 1:1 stoichiometric ratio of magnesium to calcium. It is distinct from high-magnesium limestone in that the magnesium and calcium form ordered layers within the individual dolomite mineral grains, rather than being arranged at random, as they are in high-magnesium calcite grains. In natural dolomite, magnesium is typically between 44 and 50 percent of total magnesium plus calcium, indicating some substitution of calcium into
2225-429: Is higher when the sedimentation rate is high (so that a carcass is quickly buried), in anoxic environments (where little bacterial activity occurs) or when the organism had a particularly hard skeleton. Larger, well-preserved fossils are relatively rare. Fossils can be both the direct remains or imprints of organisms and their skeletons. Most commonly preserved are the harder parts of organisms such as bones, shells, and
2314-413: Is known as dolomitic limestone . The "dolomite problem" refers to the vast worldwide depositions of dolomite in the past geologic record in contrast to the limited amounts of dolomite formed in modern times. Recent research has revealed sulfate-reducing bacteria living in anoxic conditions precipitate dolomite which indicates that some past dolomite deposits may be due to microbial activity. Dolomite
2403-491: Is mirrored by the broad categories of rudites , arenites , and lutites , respectively, in older literature. The subdivision of these three broad categories is based on differences in clast shape (conglomerates and breccias), composition (sandstones), or grain size or texture (mudrocks). Conglomerates are dominantly composed of rounded gravel, while breccias are composed of dominantly angular gravel. Sandstone classification schemes vary widely, but most geologists have adopted
2492-626: Is no consistent trend in its abundance with age, but most dolomite appears to have formed at high stands of sea level. Little dolomite is found in Cenozoic beds (beds less than 65 million years old), which has been a time of generally low sea levels. Times of high sea level also tend to be times of a greenhouse Earth , and it is possible that greenhouse conditions are the trigger for dolomite formation. Many dolomites show clear textural indications that they are secondary dolomites, formed by replacement of limestone. However, although much research has gone into understanding this process of dolomitization ,
2581-423: Is not seen to precipitate in the oceans. Likewise, geologists have not been successful at precipitating dolomite from seawater at normal temperatures and pressures in laboratory experiments. This is likely due to a very high activation energy for nucleating crystals of dolomite. The magnesium ion is a relatively small ion, and it acquires a tightly bound hydration shell when dissolved in water. In other words,
2670-401: Is reduced. Sediments are typically saturated with groundwater or seawater when originally deposited, and as pore space is reduced, much of these connate fluids are expelled. In addition to this physical compaction, chemical compaction may take place via pressure solution . Points of contact between grains are under the greatest strain, and the strained mineral is more soluble than the rest of
2759-419: Is resistant to erosion and can either contain bedded layers or be unbedded. It is less soluble than limestone in weakly acidic groundwater , but it can still develop solution features ( karst ) over time. Dolomite rock can act as an oil and natural gas reservoir. Dolomite takes its name from the 18th-century French mineralogist Déodat Gratet de Dolomieu (1750–1801), who was one of the first to describe
Temple Butte Formation - Misplaced Pages Continue
2848-416: Is secondary, formed by replacement of calcium by magnesium in limestone. The preservation of the original limestone texture can range from almost perfectly preserved to completely destroyed. Under a microscope, dolomite rhombs are sometimes seen to replace oolites or skeletal particles of the original limestone. There is sometimes selective replacement of fossils, with the fossil remaining mostly calcite and
2937-541: Is stained by Alizarin Red S while dolomite grains are not. Dolomite rock consisting of well-formed grains with planar surfaces is described as planar or idiotopic dolomite, while dolomite consisting of poorly-formed grains with irregular surfaces is described as nonplanar or xenotopic dolomite. The latter likely forms by recrystallization of existing dolomite at elevated temperature (over 50 to 100 °C (122 to 212 °F)). The texture of dolomite often shows that it
3026-543: Is subject to high rates of evaporation. This results in precipitation of gypsum and aragonite , raising the magnesium to calcium ratio of the remaining brine. The brine is also dense, so it sinks into the pore space of any underlying limestone ( seepage refluxion ), flushing out the existing pore fluid and causing dolomitization. The Permian Basin of North America has been put forward as an example of an environment in which this process took place. A variant of this model has been proposed for sabkha environments in which brine
3115-635: Is sucked up into the dolomitizing limestone by evaporation of capillary fluids, a process called evaporative pumping . Another model is the mixing-zone or Dorag model, in which meteoric water mixes with seawater already present in the pore space, increasing the chemical activity of magnesium relative to calcium and causing dolomitization. The formation of Pleistocene dolomite reefs in Jamaica has been attributed to this process. However, this model has been heavily criticized, with one 2004 review paper describing it bluntly as "a myth". A 2021 paper argued that
3204-493: Is the most stable, followed by feldspar , micas , and finally other less stable minerals that are only present when little weathering has occurred. The amount of weathering depends mainly on the distance to the source area, the local climate and the time it took for the sediment to be transported to the point where it is deposited. In most sedimentary rocks, mica, feldspar and less stable minerals have been weathered to clay minerals like kaolinite , illite or smectite . Among
3293-476: Is thermodynamically favorable, with a Gibbs free energy of about -2.2 kcal/mol. In theory, ordinary seawater contains sufficient dissolved magnesium to cause dolomitization. However, because of the very slow rate of diffusion of ions in solid mineral grains at ordinary temperatures, the process can occur only by simultaneous dissolution of calcite and crystallization of dolomite. This in turn requires that large volumes of magnesium-bearing fluids are flushed through
3382-463: The history of life . The scientific discipline that studies the properties and origin of sedimentary rocks is called sedimentology . Sedimentology is part of both geology and physical geography and overlaps partly with other disciplines in the Earth sciences , such as pedology , geomorphology , geochemistry and structural geology . Sedimentary rocks can be subdivided into four groups based on
3471-682: The organic material of a dead organism undergoes chemical reactions in which volatiles such as water and carbon dioxide are expulsed. The fossil, in the end, consists of a thin layer of pure carbon or its mineralized form, graphite . This form of fossilisation is called carbonisation . It is particularly important for plant fossils. The same process is responsible for the formation of fossil fuels like lignite or coal. Structures in sedimentary rocks can be divided into primary structures (formed during deposition) and secondary structures (formed after deposition). Unlike textures, structures are always large-scale features that can easily be studied in
3560-501: The Dott scheme, which uses the relative abundance of quartz, feldspar, and lithic framework grains and the abundance of a muddy matrix between the larger grains. Six sandstone names are possible using the descriptors for grain composition (quartz-, feldspathic-, and lithic-) and the amount of matrix (wacke or arenite). For example, a quartz arenite would be composed of mostly (>90%) quartz grains and have little or no clayey matrix between
3649-538: The Temple Butte Formation are major unconformities. Within the Grand Canyon region, its base is a major unconformity within the Paleozoic rock record. The time represented by this unconfomity spans about 100 million years, including part of Late Cambrian , all of Ordovician and Silurian , and most of Early and Middle Devonian time. The upper contact is a disconformity that typically consists of nearly horizontal surfaces with little or no relief and overlain locally by
Temple Butte Formation - Misplaced Pages Continue
3738-583: The Temple Butte Formation at Iceberg Ridge contains Famennian conodonts. Finally, farther to the north in Nevada, on South Virgin Peak Ridge, an outcrop of quartz arenite and pinkish-gray sandy dolomite at the base of Temple Butte Formation, has yielded fossil fish plates identified as Holonema , Asterolepis and sarcopterygians of middle Devonian age. Dolomite (rock) Dolomite (also known as dolomite rock , dolostone or dolomitic rock )
3827-646: The Temple Butte Formation, where it is also known as the Sultan Limestone. From outcrops that form parts of Iceberg Ridge in Mohave County, Arizona , and the Lake Mead National Recreation Area , rare silicified corals, crinoid plates, gastropods, and massive stromatoporoid colonies have been found in dolomite outcrops of the Temple Butte Formation (Sultan Limestone). In addition, the upper 25 m (82 ft) of
3916-474: The accumulation or deposition of mineral or organic particles at Earth's surface , followed by cementation . Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment , and may be composed of geological detritus (minerals) or biological detritus (organic matter). The geological detritus originated from weathering and erosion of existing rocks, or from
4005-470: The activity of bacteria , can affect minerals in a rock and are therefore seen as part of diagenesis. Deeper burial is accompanied by mesogenesis , during which most of the compaction and lithification takes place. Compaction takes place as the sediments come under increasing overburden (lithostatic) pressure from overlying sediments. Sediment grains move into more compact arrangements, grains of ductile minerals (such as mica ) are deformed, and pore space
4094-399: The bottom of deep seas and lakes. There is little water mixing in such environments; as a result, oxygen from surface water is not brought down, and the deposited sediment is normally a fine dark clay. Dark rocks, rich in organic material, are therefore often shales. The size , form and orientation of clasts (the original pieces of rock) in a sediment is called its texture . The texture is
4183-504: The cement and the clasts (including fossils and ooids ) of a carbonate sedimentary rock usually consist of carbonate minerals. The mineralogy of a clastic rock is determined by the material supplied by the source area, the manner of its transport to the place of deposition and the stability of that particular mineral. The resistance of rock-forming minerals to weathering is expressed by the Goldich dissolution series . In this series, quartz
4272-421: The cement to produce secondary porosity . At sufficiently high temperature and pressure, the realm of diagenesis makes way for metamorphism , the process that forms metamorphic rock . The color of a sedimentary rock is often mostly determined by iron , an element with two major oxides: iron(II) oxide and iron(III) oxide . Iron(II) oxide (FeO) only forms under low oxygen ( anoxic ) circumstances and gives
4361-639: The continents of the Earth's crust is extensive (73% of the Earth's current land surface), but sedimentary rock is estimated to be only 8% of the volume of the crust. Sedimentary rocks are only a thin veneer over a crust consisting mainly of igneous and metamorphic rocks . Sedimentary rocks are deposited in layers as strata , forming a structure called bedding . Sedimentary rocks are often deposited in large structures called sedimentary basins . Sedimentary rocks have also been found on Mars . The study of sedimentary rocks and rock strata provides information about
4450-572: The current is in one direction, such as rivers. The longer flank of such ripples is on the upstream side of the current. Symmetric wave ripples occur in environments where currents reverse directions, such as tidal flats. Mudcracks are a bed form caused by the dehydration of sediment that occasionally comes above the water surface. Such structures are commonly found at tidal flats or point bars along rivers. Secondary sedimentary structures are those which formed after deposition. Such structures form by chemical, physical and biological processes within
4539-663: The dominant particle size. Most geologists use the Udden-Wentworth grain size scale and divide unconsolidated sediment into three fractions: gravel (>2 mm diameter), sand (1/16 to 2 mm diameter), and mud (<1/16 mm diameter). Mud is further divided into silt (1/16 to 1/256 mm diameter) and clay (<1/256 mm diameter). The classification of clastic sedimentary rocks parallels this scheme; conglomerates and breccias are made mostly of gravel, sandstones are made mostly of sand , and mudrocks are made mostly of mud. This tripartite subdivision
SECTION 50
#17327724012264628-489: The field. Sedimentary structures can indicate something about the sedimentary environment or can serve to tell which side originally faced up where tectonics have tilted or overturned sedimentary layers. Sedimentary rocks are laid down in layers called beds or strata . A bed is defined as a layer of rock that has a uniform lithology and texture. Beds form by the deposition of layers of sediment on top of each other. The sequence of beds that characterizes sedimentary rocks
4717-404: The flow calms and the particles settle out of suspension . Most authors presently use the term "mudrock" to refer to all rocks composed dominantly of mud. Mudrocks can be divided into siltstones, composed dominantly of silt-sized particles; mudstones with subequal mixture of silt- and clay-sized particles; and claystones, composed mostly of clay-sized particles. Most authors use " shale " as
4806-531: The formation of dolomite helps explain the rarity of Cenozoic dolomites, since Cenozoic seawater temperatures seldom exceeded 40 °C. It is possible that microorganisms are capable of precipitating primary dolomite. This was first demonstrated in samples collected at Lagoa Vermelha , Brazil in association with sulfate-reducing bacteria ( Desulfovibrio ), leading to the hypothesis that sulfate ion inhibits dolomite nucleation. Later laboratory experiments suggest bacteria can precipitate dolomite independently of
4895-484: The forms of stalactites , stalagmites , flowstone etc., can also form in caves within dolomite rock. “Dolomite is a common rock type, but a relatively uncommon mineral in speleothems”. Both the 'Union Internationale de Spéléologie' (UIS) and the American 'National Speleological Society' (NSS), extensively use in their publications, the terms "dolomite" or "dolomite rock" when referring to the natural bedrock containing
4984-485: The grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact. The increased pressure and temperature stimulate further chemical reactions, such as the reactions by which organic material becomes lignite or coal. Lithification follows closely on compaction, as increased temperatures at depth hasten the precipitation of cement that binds the grains together. Pressure solution contributes to this process of cementation , as
5073-510: The grains, a lithic wacke would have abundant lithic grains and abundant muddy matrix, etc. Although the Dott classification scheme is widely used by sedimentologists, common names like greywacke , arkose , and quartz sandstone are still widely used by non-specialists and in popular literature. Mudrocks are sedimentary rocks composed of at least 50% silt- and clay-sized particles. These relatively fine-grained particles are commonly transported by turbulent flow in water or air, and deposited as
5162-404: The greater temperatures characterizing deeper burial, if a mechanism exists to flush magnesium-bearing fluids through the beds. Mineral dolomite has a 12% to 13% smaller volume than calcite per alkali cation. Thus dolomitization likely increases porosity and contributes to the sugary texture of dolomite. Dolomite is supersaturated in normal seawater by a factor of greater than ten, but dolomite
5251-587: The host rock. For example, a shell consisting of calcite can dissolve while a cement of silica then fills the cavity. In the same way, precipitating minerals can fill cavities formerly occupied by blood vessels , vascular tissue or other soft tissues. This preserves the form of the organism but changes the chemical composition, a process called permineralization . The most common minerals involved in permineralization are various forms of amorphous silica ( chalcedony , flint , chert ), carbonates (especially calcite), and pyrite . At high pressure and temperature,
5340-435: The lithologies dehydrates. Clay can be easily compressed as a result of dehydration, while sand retains the same volume and becomes relatively less dense. On the other hand, when the pore fluid pressure in a sand layer surpasses a critical point, the sand can break through overlying clay layers and flow through, forming discordant bodies of sedimentary rock called sedimentary dykes . The same process can form mud volcanoes on
5429-437: The magnesium ion is surrounded by a clump of water molecules that are strongly attracted to its positive charge. Calcium is a larger ion and this reduces the strength of binding of its hydration shell, so it is much easier for a calcium ion than a magnesium ion to shed its hydration shell and bind to a growing crystal. It is also more difficult to nucleate a seed crystal of ordered dolomite than disordered high-magnesium calcite. As
SECTION 60
#17327724012265518-461: The magnesium layers. A small amount of ferrous iron typically substitutes for magnesium, particularly in more ancient dolomites. Carbonate rock tends to be either almost all calcite or almost all dolomite, with intermediate compositions being quite uncommon. Dolomite outcrops are recognized in the field by their softness (mineral dolomite has a Mohs hardness of 4 or less, well below common silicate minerals) and because dolomite bubbles feebly when
5607-451: The mechanism of dolomitization, the tendency of carbonate rock to be either almost all calcite or almost all dolomite suggests that, once the process is started, it completes rapidly. The process likely occurs at shallow depths of burial, under 100 meters (330 ft), where there is an inexhaustible supply of magnesium-rich seawater and the original limestone is more likely to be porous. On the other hand, dolomitization can proceed rapidly at
5696-571: The microscope, thin sections of dolomite usually show individual grains that are well-shaped rhombs , with considerable pore space. As a result, subsurface dolomite is generally more porous than subsurface limestone and makes up 80% of carbonate rock petroleum reservoirs . This texture contrasts with limestone, which is usually a mixture of grains, micrite (very fine-grained carbonate mud) and sparry cement. The optical properties of calcite and mineral dolomite are difficult to distinguish, but calcite almost never crystallizes as regular rhombs, and calcite
5785-450: The mineral dissolved from strained contact points is redeposited in the unstrained pore spaces. This further reduces porosity and makes the rock more compact and competent . Unroofing of buried sedimentary rock is accompanied by telogenesis , the third and final stage of diagenesis. As erosion reduces the depth of burial, renewed exposure to meteoric water produces additional changes to the sedimentary rock, such as leaching of some of
5874-427: The mineral. The term dolomite refers to both the calcium-magnesium carbonate mineral and to sedimentary rock formed predominantly of this mineral. The term dolostone was introduced in 1948 to avoid confusion between the two. However, the usage of the term dolostone is controversial, because the name dolomite was first applied to the rock during the late 18th century and thus has technical precedence. The use of
5963-492: The mixing zone serves as domain of intense microbial activity which promotes dolomitization. A third model postulates that normal seawater is the dolomitizing fluid, and the necessary large volumes are flushed through the dolomitizing limestone through tidal pumping. Dolomite formation at Sugarloaf Key , Florida, may be an example of this process. A similar process might occur during rises in sea level, as large volumes of water move through limestone platform rock. Regardless of
6052-469: The most stable polymorph form of calcite. Speleothem types known to have a dolomite constituent include: coatings, crusts, moonmilk , flowstone , coralloids, powder, spar and rafts. Although there are reports of dolomite speleothems known to exist in a number of caves around the world, they are usually in relatively small quantities and form in very fine-grained deposits. Sedimentary rock Sedimentary rocks are types of rock that are formed by
6141-619: The period of time represented by the two disconformities that form the upper and lower contacts of the Temple Butte Formation in the Grand Canyon. Despite the occurrence of abundant marine invertebrate and vertebrate fossils within the laterally and temporally equivalent Jerome Member of the Martin Formation in central Arizona, the Temple Butte Formation has yielded surprisingly few identifiable fossils within its Grand Canyon outcrops. These fossils include indeterminate brachiopods , gastropods , corals and placoganoid fish from
6230-438: The place of deposition. The nature of a sedimentary rock, therefore, not only depends on the sediment supply, but also on the sedimentary depositional environment in which it formed. As sediments accumulate in a depositional environment, older sediments are buried by younger sediments, and they undergo diagenesis. Diagenesis includes all the chemical, physical, and biological changes, exclusive of surface weathering, undergone by
6319-427: The pore space in the dolomitizing limestone. Several processes have been proposed for dolomitization. The hypersaline model (also known as the evaporative reflux model ) is based on the observation that dolomite is very commonly found in association with limestone and evaporites , with the limestone often interbedded with the dolomite. According to this model, dolomitization takes place in a closed basin where seawater
6408-401: The process remains poorly understood. There are also fine-grained dolomites showing no textural indications that they formed by replacement, and it is uncertain whether they formed by replacement of limestone that left no textural traces or are true primary dolomites. This dolomite problem was first recognized over two centuries ago but is still not fully resolved. The dolomitization reaction
6497-627: The processes responsible for their formation: clastic sedimentary rocks, biochemical (biogenic) sedimentary rocks, chemical sedimentary rocks, and a fourth category for "other" sedimentary rocks formed by impacts, volcanism , and other minor processes. Clastic sedimentary rocks are composed of rock fragments ( clasts ) that have been cemented together. The clasts are commonly individual grains of quartz , feldspar , clay minerals , or mica . However, any type of mineral may be present. Clasts may also be lithic fragments composed of more than one mineral. Clastic sedimentary rocks are subdivided according to
6586-456: The question of whether this can lead to precipitation of dolomite. Dolomitization can sometimes be reversed, and a dolomite bed converted back to limestone. This is indicated by a texture of pseudomorphs of mineral dolomite that have been replaced with calcite. Dedolomitized limestone is typically associated with gypsum or oxidized pyrite , and dedolomitization is thought to occur at very shallow depths through infiltration of surface water with
6675-480: The result of localized precipitation due to small differences in composition or porosity of the host rock, such as around fossils, inside burrows or around plant roots. In carbonate rocks such as limestone or chalk , chert or flint concretions are common, while terrestrial sandstones sometimes contain iron concretions. Calcite concretions in clay containing angular cavities or cracks are called septarian concretions . After deposition, physical processes can deform
6764-454: The rock a grey or greenish colour. Iron(III) oxide (Fe 2 O 3 ) in a richer oxygen environment is often found in the form of the mineral hematite and gives the rock a reddish to brownish colour. In arid continental climates rocks are in direct contact with the atmosphere, and oxidation is an important process, giving the rock a red or orange colour. Thick sequences of red sedimentary rocks formed in arid climates are called red beds . However,
6853-469: The same size, the rock is called 'well-sorted', and when there is a large spread in grain size, the rock is called 'poorly sorted'. The form of the clasts can reflect the origin of the rock. For example, coquina , a rock composed of clasts of broken shells, can only form in energetic water. The form of a clast can be described by using four parameters: Chemical sedimentary rocks have a non-clastic texture, consisting entirely of crystals. To describe such
6942-433: The sediment supply, caused, for example, by seasonal changes in rainfall, temperature or biochemical activity. Laminae that represent seasonal changes (similar to tree rings ) are called varves . Any sedimentary rock composed of millimeter or finer scale layers can be named with the general term laminite . When sedimentary rocks have no lamination at all, their structural character is called massive bedding. Graded bedding
7031-402: The sediment, producing a third class of secondary structures. Density contrasts between different sedimentary layers, such as between sand and clay, can result in flame structures or load casts , formed by inverted diapirism . While the clastic bed is still fluid, diapirism can cause a denser upper layer to sink into a lower layer. Sometimes, density contrasts occur or are enhanced when one of
7120-443: The sediment. They can be indicators of circumstances after deposition. Some can be used as way up criteria . Organic materials in a sediment can leave more traces than just fossils. Preserved tracks and burrows are examples of trace fossils (also called ichnofossils). Such traces are relatively rare. Most trace fossils are burrows of molluscs or arthropods . This burrowing is called bioturbation by sedimentologists. It can be
7209-535: The solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement , which are called agents of denudation . Biological detritus was formed by bodies and parts (mainly shells) of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies ( marine snow ). Sedimentation may also occur as dissolved minerals precipitate from water solution . The sedimentary rock cover of
7298-453: The subsurface that is useful for civil engineering , for example in the construction of roads , houses , tunnels , canals or other structures. Sedimentary rocks are also important sources of natural resources including coal , fossil fuels , drinking water and ores . The study of the sequence of sedimentary rock strata is the main source for an understanding of the Earth's history , including palaeogeography , paleoclimatology and
7387-400: The sulfate concentration. With time other pathways of interaction between microbial activity and dolomite formation have been added to the discord regarding their role in modulation and generation of polysaccharides , manganese and zinc within the porewater. Meanwhile, a contrary view held by other researchers is that microorganisms precipitate only high-magnesium calcite but leave open
7476-422: The surrounding matrix composed of dolomite grains. Sometimes dolomite rhombs are seen cut across the fossil outline. However, some dolomite shows no textural indications that it was formed by replacement of limestone. Dolomite is widespread in its occurrences, though not as common as limestone. It is typically found in association with limestone or evaporite beds and is often interbedded with limestone. There
7565-543: The term dolostone was not recommended by the Glossary of Geology published by the American Geological Institute . In old USGS publications, dolomite was referred to as magnesian limestone , a term now reserved for magnesium -deficient dolomites or magnesium-rich limestones. Dolomite rock is defined as sedimentary carbonate rock composed of more than 50% mineral dolomite . Dolomite
7654-527: The three major types of rock, fossils are most commonly found in sedimentary rock. Unlike most igneous and metamorphic rocks, sedimentary rocks form at temperatures and pressures that do not destroy fossil remnants. Often these fossils may only be visible under magnification . Dead organisms in nature are usually quickly removed by scavengers , bacteria , rotting and erosion, but under exceptional circumstances, these natural processes are unable to take place, leading to fossilisation. The chance of fossilisation
7743-469: The underlying Tonto Group . The Temple Butte strata filling these paleovalleys consist of interbedded mudstone, sandstone, dolomite, and conglomerate – that vary in color from purple, reddish-purple, to light gray. Typically, the paleovalley-fill consists of a distinct pale, reddish purple dolomite or sandy dolomite. These paleovalleys range in depth from as much as 30 m (98 ft), to as shallow as 12 m (39 ft). The upper and lower contacts of
7832-510: The walls of lower Kanab Canyon and fish plates identified as Bothriolepis from Sapphire Canyon. Possible cylindrical trace fossils occur in dolomite beds near the base of the Temple Butte at the type section and Tuckup Canyon. Finally, latest Givetian to late Frasnian conodonts have been recovered from the Temple Butte Formation at Matkatamiba Canyon at River Mile 148.4. West of the Grand Canyon, fossils have been recovered from
7921-404: The woody tissue of plants. Soft tissue has a much smaller chance of being fossilized, and the preservation of soft tissue of animals older than 40 million years is very rare. Imprints of organisms made while they were still alive are called trace fossils , examples of which are burrows , footprints , etc. As a part of a sedimentary rock, fossils undergo the same diagenetic processes as does
#225774