Misplaced Pages

Tenebrionoidea

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A phenotypic trait , simply trait , or character state is a distinct variant of a phenotypic characteristic of an organism ; it may be either inherited or determined environmentally, but typically occurs as a combination of the two. For example, having eye color is a character of an organism, while blue, brown and hazel versions of eye color are traits . The term trait is generally used in genetics , often to describe phenotypic expression of different combinations of alleles in different individual organisms within a single population , such as the famous purple vs. white flower coloration in Gregor Mendel 's pea plants. By contrast, in systematics , the term character state is employed to describe features that represent fixed diagnostic differences among taxa , such as the absence of tails in great apes , relative to other primate groups.

#521478

42-524: See text. The Tenebrionoidea are a very large and diverse superfamily of beetles . It generally corresponds to the Heteromera of earlier authors. Tenebrionoidea contains the following families: The largest family by far is Tenebrionidae, with (as of 2014) approximately 20,000 species and almost two-thirds of the species richness of the superfamily. The Tenebrionoidea show a range of different morphologies. However, one characteristic of most adults

84-499: A BioCode that would regulate all taxon names, but this attempt has so far failed because of firmly entrenched traditions in each community. Consider a particular species, the red fox , Vulpes vulpes : in the context of the Zoological Code , the specific epithet vulpes (small v ) identifies a particular species in the genus Vulpes (capital V ) which comprises all the "true" foxes. Their close relatives are all in

126-420: A "hybrid formula" that specifies the parentage, or may be given a name. For hybrids receiving a hybrid name , the same ranks apply, prefixed with notho (Greek: 'bastard'), with nothogenus as the highest permitted rank. If a different term for the rank was used in an old publication, but the intention is clear, botanical nomenclature specifies certain substitutions: Classifications of five species follow:

168-567: A fast evolutionary radiation that occurred long ago, such as the main taxa of placental mammals . In his landmark publications, such as the Systema Naturae , Carl Linnaeus used a ranking scale limited to kingdom, class, order, genus, species, and one rank below species. Today, the nomenclature is regulated by the nomenclature codes . There are seven main taxonomic ranks: kingdom, phylum or division, class, order, family, genus, and species. In addition, domain (proposed by Carl Woese )

210-399: A group of organisms (a taxon ) in a hierarchy that reflects evolutionary relationships. Thus, the most inclusive clades (such as Eukarya and Opisthokonta ) have the highest ranks, whereas the least inclusive ones (such as Homo sapiens or Bufo bufo ) have the lowest ranks. Ranks can be either relative and be denoted by an indented taxonomy in which the level of indentation reflects

252-638: A lower level may be denoted by adding the prefix " infra ", meaning lower , to the rank. For example, infra order (below suborder) or infra family (below subfamily). Botanical ranks categorize organisms based (often) on their relationships ( monophyly is not required by that clade, which does not even mention this word, nor that of " clade "). They start with Kingdom, then move to Division (or Phylum), Class, Order, Family, Genus, and Species. Taxa at each rank generally possess shared characteristics and evolutionary history. Understanding these ranks aids in taxonomy and studying biodiversity. There are definitions of

294-399: A new rank at will, at any time, if they feel this is necessary. In doing so, there are some restrictions, which will vary with the nomenclature code that applies. The following is an artificial synthesis, solely for purposes of demonstration of absolute rank (but see notes), from most general to most specific: Ranks are assigned based on subjective dissimilarity, and do not fully reflect

336-506: A particular gene. Blood groups in humans is a classic example. The ABO blood group proteins are important in determining blood type in humans, and this is determined by different alleles of the one locus. Schizotypy is an example of a psychological phenotypic trait found in schizophrenia-spectrum disorders. Studies have shown that gender and age influences the expression of schizotypal traits. For instance, certain schizotypal traits may develop further during adolescence, whereas others stay

378-459: A particular organism, it is usually not necessary to specify names at ranks other than these first two, within a set of taxa covered by a given rank-based code. However, this is not true globally because most rank-based codes are independent from each other, so there are many inter-code homonyms (the same name used for different organisms, often for an animal and for a taxon covered by the botanical code). For this reason, attempts were made at creating

420-419: A single individual and are passed on to successive generations. The biochemistry of the intermediate proteins determines how they interact in the cell. Therefore, biochemistry predicts how different combinations of alleles will produce varying traits. Extended expression patterns seen in diploid organisms include facets of incomplete dominance , codominance , and multiple alleles . Incomplete dominance

462-576: A taxon in a category above the species level). It should be a natural group (that is, non-artificial, non- polyphyletic ), as judged by a biologist, using all the information available to them. Equally ranked higher taxa in different phyla are not necessarily equivalent in terms of time of origin, phenotypic distinctiveness or number of lower-ranking included taxa (e.g., it is incorrect to assume that families of insects are in some way evolutionarily comparable to families of mollusks). Of all criteria that have been advocated to rank taxa, age of origin has been

SECTION 10

#1732772913522

504-421: A wide range of other feeding strategies including feeding on wood or on decaying plant material, pollen -feeding (by many Oedemeridae and Anthicidae), and acting as ectoparasitoids of other insects (Ripiphoridae). A small number of species are predators or feed on living plant tissue. Tenebrionoidea show a particular diversity in arid environments. One adaptation shown by some (e.g. Onymacris unguicularis )

546-564: Is also called a binomial , that is, a two-term name. For example, the zoological name for the human species is Homo sapiens . This is usually italicized in print or underlined when italics are not available. In this case, Homo is the generic name and it is capitalized; sapiens indicates the species and it is not capitalized. While not always used, some species include a subspecific epithet. For instance, modern humans are Homo sapiens sapiens , or H. sapiens sapiens . In zoological nomenclature, higher taxon names are normally not italicized, but

588-405: Is an obvious, observable, and measurable characteristic of an organism; it is the expression of genes in an observable way. An example of a phenotypic trait is a specific hair color or eye color. Underlying genes, that make up the genotype , determine the hair color, but the hair color observed is the phenotype. The phenotype is dependent on the genetic make-up of the organism, and also influenced by

630-443: Is having 5 tarsomeres on the fore- and midlegs, and 4 tarsomeres on the hindleg (tarsal formula 5-5-4). Occasionally, males have tarsal formula reduced to 4-4-4, 3-3-3 or 3-4-4. Larval Tenebrionoidea can be distinguished by various features of the head: a posteriorly diverging gula with well developed gular ridges, posterior tentorial arms being shifted anteriorly, asymmetric mandibles, the M. craniocardinalis vestigial or absent, and

672-467: Is not a requirement of the zoological and botanical codes. A classification in which all taxa have formal ranks cannot adequately reflect knowledge about phylogeny. Since taxon names are dependent on ranks in rank-based (Linnaean) nomenclature, taxa without ranks cannot be given names. Alternative approaches, such as phylogenetic nomenclature , as implemented under the PhyloCode and supported by

714-435: Is now widely used as a fundamental rank, although it is not mentioned in any of the nomenclature codes, and is a synonym for dominion ( Latin : dominium ), introduced by Moore in 1974. A taxon is usually assigned a rank when it is given its formal name. The basic ranks are species and genus. When an organism is given a species name it is assigned to a genus, and the genus name is part of the species name. The species name

756-428: Is the ability to gather water from fog in order to drink. This Tenebrionoidea -related article is a stub . You can help Misplaced Pages by expanding it . Taxonomic rank In biology , taxonomic rank (which some authors prefer to call nomenclatural rank because ranking is part of nomenclature rather than taxonomy proper, according to some definitions of these terms) is the relative or absolute level of

798-453: Is the condition in which neither allele dominates the other in one heterozygote. Instead the phenotype is intermediate in heterozygotes. Thus you can tell that each allele is present in the heterozygote. Codominance refers to the allelic relationship that occurs when two alleles are both expressed in the heterozygote, and both phenotypes are seen simultaneously. Multiple alleles refers to the situation when there are more than 2 common alleles of

840-438: Is usually associated with a certain body plan , which is also, however, an arbitrary criterion. Enigmatic taxa are taxonomic groups whose broader relationships are unknown or undefined. (See Incertae sedis .) There are several acronyms intended to help memorise the taxonomic hierarchy, such as "King Phillip came over for great spaghetti". (See taxonomy mnemonic .) Phenotypic trait A phenotypic trait

882-789: The Botanical Code , the Prokaryotic Code , the Code for Viruses , the draft BioCode and the PhyloCode all recommend italicizing all taxon names (of all ranks). There are rules applying to the following taxonomic ranks in the International Code of Zoological Nomenclature : superfamily, family, subfamily, tribe, subtribe, genus, subgenus, species, subspecies. The International Code of Zoological Nomenclature divides names into "family-group names", "genus-group names" and "species-group names". The Code explicitly mentions

SECTION 20

#1732772913522

924-483: The International Society for Phylogenetic Nomenclature , or using circumscriptional names , avoid this problem. The theoretical difficulty with superimposing taxonomic ranks over evolutionary trees is manifested as the boundary paradox which may be illustrated by Darwinian evolutionary models. There are no rules for how many species should make a genus, a family, or any other higher taxon (that is,

966-558: The PhyloCode , the code of phylogenetic nomenclature , does not require absolute ranks. Taxa are hierarchical groups of organisms, and their ranks describes their position in this hierarchy. High-ranking taxa (e.g. those considered to be domains or kingdoms, for instance) include more sub-taxa than low-ranking taxa (e.g. those considered genera, species or subspecies). The rank of these taxa reflects inheritance of traits or molecular features from common ancestors. The name of any species and genus are basic ; which means that to identify

1008-427: The fruit fly familiar in genetics laboratories ( Drosophila melanogaster ), humans ( Homo sapiens ), the peas used by Gregor Mendel in his discovery of genetics ( Pisum sativum ), the "fly agaric" mushroom Amanita muscaria , and the bacterium Escherichia coli . The eight major ranks are given in bold; a selection of minor ranks are given as well. Taxa above the genus level are often given names based on

1050-418: The type genus , with a standard termination. The terminations used in forming these names depend on the kingdom (and sometimes the phylum and class) as set out in the table below. Pronunciations given are the most Anglicized . More Latinate pronunciations are also common, particularly / ɑː / rather than / eɪ / for stressed a . There is an indeterminate number of ranks, as a taxonomist may invent

1092-633: The American Ornithologists' Union published in 1886 states "No one appears to have suspected, in 1842 [when the Strickland code was drafted], that the Linnaean system was not the permanent heritage of science, or that in a few years a theory of evolution was to sap its very foundations, by radically changing men's conceptions of those things to which names were to be furnished." Such ranks are used simply because they are required by

1134-475: The M. tentoriopharyngalis posterior subdivided into several bundles. The body is usually sub-parallel and slightly flattened, but other shapes have evolved to suit different needs, such as cylindrical for boring larvae, strongly flattened for larvae living under bark, and c-shaped and grub-like for larvae with specialised developmental strategies (e.g. post- triungulin larvae of Rhipiphoridae and Meloidae). Many tenebrionoid families are fungus feeders, but there are

1176-795: The environmental conditions to that of the organism is subjected across its ontogenetic development, including various epigenetic processes. Regardless of the degree of influence of genotype versus environment, the phenotype encompasses all of the characteristics of an organism, including traits at multiple levels of biological organization , ranging from behavior and evolutionary history of life traits (e.g., litter size), through morphology (e.g., body height and composition), physiology (e.g., blood pressure), cellular characteristics (e.g., membrane lipid composition, mitochondrial densities), components of biochemical pathways, and even messenger RNA . Different phenotypic traits are caused by different forms of genes , or alleles , which arise by mutation in

1218-432: The family Canidae , which includes dogs, wolves, jackals, and all foxes; the next higher major taxon, Carnivora (considered an order), includes caniforms (bears, seals, weasels, skunks, raccoons and all those mentioned above), and feliforms (cats, civets, hyenas, mongooses). Carnivorans are one group of the hairy, warm-blooded, nursing members of the class Mammalia , which are classified among animals with notochords in

1260-599: The following ranks for these categories: The rules in the Code apply to the ranks of superfamily to subspecies, and only to some extent to those above the rank of superfamily. Among "genus-group names" and "species-group names" no further ranks are officially allowed, which creates problems when naming taxa in these groups in speciose clades, such as Rana . Zoologists sometimes use additional terms such as species group , species subgroup , species complex and superspecies for convenience as extra, but unofficial, ranks between

1302-464: The following taxonomic categories in the International Code of Nomenclature for Cultivated Plants : cultivar group , cultivar , grex . The rules in the ICN apply primarily to the ranks of family and below, and only to some extent to those above the rank of family. (See also descriptive botanical name .) Taxa at the rank of genus and above have a botanical name in one part (unitary name); those at

Tenebrionoidea - Misplaced Pages Continue

1344-480: The gradational nature of variation within nature. These problems were already identified by Willi Hennig , who advocated dropping them in 1969, and this position gathered support from Graham C. D. Griffiths only a few years later. In fact, these ranks were proposed in a fixist context and the advent of evolution sapped the foundations of this system, as was recognised long ago; the introduction of The Code of Nomenclature and Check-list of North American Birds Adopted by

1386-434: The hierarchy of taxa (hence, their ranks) does not necessarily reflect the hierarchy of clades . While older approaches to taxonomic classification were phenomenological, forming groups on the basis of similarities in appearance, organic structure and behavior, two important new methods developed in the second half of the 20th century changed drastically taxonomic practice. One is the advent of cladistics , which stemmed from

1428-405: The most basic (or important) is the species, but this opinion is not universally shared. Thus, species are not necessarily more sharply defined than taxa at any other rank, and in fact, given the phenotypic gaps created by extinction, in practice, the reverse is often the case. Ideally, a taxon is intended to represent a clade , that is, the phylogeny of the organisms under discussion, but this

1470-409: The most frequently advocated. Willi Hennig proposed it in 1966, but he concluded in 1969 that this system was unworkable and suggested dropping absolute ranks. However, the idea of ranking taxa using the age of origin (either as the sole criterion, or as one of the main ones) persists under the name of time banding, and is still advocated by several authors. For animals, at least the phylum rank

1512-479: The phylum Chordata , and with them among all animals in the kingdom Animalia . Finally, at the highest rank all of these are grouped together with all other organisms possessing cell nuclei in the domain Eukarya . The International Code of Zoological Nomenclature defines rank as: "The level, for nomenclatural purposes, of a taxon in a taxonomic hierarchy (e.g. all families are for nomenclatural purposes at

1554-455: The rank of species and above (but below genus) have a botanical name in two parts ( binary name ); all taxa below the rank of species have a botanical name in three parts (an infraspecific name ). To indicate the rank of the infraspecific name, a "connecting term" is needed. Thus Poa secunda subsp. juncifolia , where "subsp". is an abbreviation for "subspecies", is the name of a subspecies of Poa secunda . Hybrids can be specified either by

1596-462: The rank, or absolute, in which various terms, such as species , genus , family , order , class , phylum , kingdom , and domain designate rank. This page emphasizes absolute ranks and the rank-based codes (the Zoological Code , the Botanical Code , the Code for Cultivated Plants , the Prokaryotic Code , and the Code for Viruses ) require them. However, absolute ranks are not required in all nomenclatural systems for taxonomists; for instance,

1638-653: The rank-based codes; because of this, some systematists prefer to call them nomenclatural ranks . In most cases, higher taxonomic groupings arise further back in time, simply because the most inclusive taxa necessarily appeared first. Furthermore, the diversity in some major taxa (such as vertebrates and angiosperms ) is better known that that of others (such as fungi , arthropods and nematodes ) not because they are more diverse than other taxa, but because they are more easily sampled and studied than other taxa, or because they attract more interest and funding for research. Of these many ranks, many systematists consider that

1680-468: The same rank, which lies between superfamily and subfamily)." Note that the discussions on this page generally assume that taxa are clades ( monophyletic groups of organisms), but this is required neither by the International Code of Zoological Nomenclature nor by the Botanical Code , and some experts on biological nomenclature do not think that this should be required, and in that case,

1722-485: The subgenus and species levels in taxa with many species, e.g. the genus Drosophila . (Note the potentially confusing use of "species group" as both a category of ranks as well as an unofficial rank itself. For this reason, Alain Dubois has been using the alternative expressions "nominal-series", "family-series", "genus-series" and "species-series" (among others) at least since 2000. ) At higher ranks (family and above)

Tenebrionoidea - Misplaced Pages Continue

1764-727: The works of the German entomologist Willi Hennig . Cladistics is a method of classification of life forms according to the proportion of characteristics that they have in common (called synapomorphies ). It is assumed that the higher the proportion of characteristics that two organisms share, the more recently they both came from a common ancestor. The second one is molecular systematics, based on genetic analysis , which can provide much additional data that prove especially useful when few phenotypic characters can resolve relationships, as, for instance, in many viruses , bacteria and archaea , or to resolve relationships between taxa that arose in

#521478