Misplaced Pages

Thermal power station

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A thermal power station , also known as a thermal power plant , is a type of power station in which the heat energy generated from various fuel sources (e.g., coal , natural gas , nuclear fuel , etc.) is converted to electrical energy . The heat from the source is converted into mechanical energy using a thermodynamic power cycle (such as a Diesel cycle , Rankine cycle , Brayton cycle , etc.). The most common cycle involves a working fluid (often water) heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then directed to a turbine, where it rotates the turbine's blades. The rotating turbine is mechanically connected to an electric generator which converts rotary motion into electricity. Fuels such as natural gas or oil can also be burnt directly in gas turbines ( internal combustion ), skipping the steam generation step. These plants can be of the open cycle or the more efficient combined cycle type.

#482517

93-504: The majority of the world's thermal power stations are driven by steam turbines, gas turbines, or a combination of the two. The efficiency of a thermal power station is determined by how effectively it converts heat energy into electrical energy, specifically the ratio of saleable electricity to the heating value of the fuel used. Different thermodynamic cycles have varying efficiencies, with the Rankine cycle generally being more efficient than

186-448: A steam drum , and the furnace with its steam generating tubes and superheater coils. Necessary safety valves are located at suitable points to protect against excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD) fan , air preheater (AP), boiler furnace, induced draft (ID) fan, fly ash collectors ( electrostatic precipitator or baghouse ), and the flue-gas stack . The boiler feed water used in

279-435: A vacuum of about −95 kPa (−28 inHg) relative to atmospheric pressure. The large decrease in volume that occurs when water vapor condenses to liquid creates the vacuum that generally increases the efficiency of the turbines. The limiting factor is the temperature of the cooling water and that, in turn, is limited by the prevailing average climatic conditions at the power station's location (it may be possible to lower

372-495: A 500 MW unit is about 14.2 m/s (500 ft/s or 225,000 US gal/min) at full load. The condenser tubes are typically made stainless steel or other alloys to resist corrosion from either side. Nevertheless, they may become internally fouled during operation by bacteria or algae in the cooling water or by mineral scaling, all of which inhibit heat transfer and reduce thermodynamic efficiency . Many plants include an automatic cleaning system that circulates sponge rubber balls through

465-660: A gas turbine, in the form of hot exhaust gas, can be used to raise steam by passing this gas through a heat recovery steam generator (HRSG). The steam is then used to drive a steam turbine in a combined cycle plant that improves overall efficiency. Power stations burning coal, fuel oil , or natural gas are often called fossil fuel power stations . Some biomass -fueled thermal power stations have appeared also. Non-nuclear thermal power stations, particularly fossil-fueled plants, which do not use cogeneration are sometimes referred to as conventional power stations . Commercial electric utility power stations are usually constructed on

558-442: A gas turbine. The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator. Geothermal plants do not need boilers because they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids. A fossil fuel steam generator includes an economizer ,

651-410: A generator on a common shaft. There is usually a high-pressure turbine at one end, followed by an intermediate-pressure turbine, and finally one, two, or three low-pressure turbines, and the shaft that connects to the generator. As steam moves through the system and loses pressure and thermal energy, it expands in volume, requiring increasing diameter and longer blades at each succeeding stage to extract

744-480: A large scale and designed for continuous operation. Virtually all electric power stations use three-phase electrical generators to produce alternating current (AC) electric power at a frequency of 50 Hz or 60 Hz . Large companies or institutions may have their own power stations to supply heating or electricity to their facilities, especially if steam is created anyway for other purposes. Steam-driven power stations have been used to drive most ships in most of

837-552: A more detailed treatment of this and the above frequency ranges, see Electromagnetic spectrum . Gravitational waves are also described in Hertz. Current observations are conducted in the 30–7000 Hz range by laser interferometers like LIGO , and the nanohertz (1–1000 nHz) range by pulsar timing arrays . Future space-based detectors are planned to fill in the gap, with LISA operating from 0.1–10 mHz (with some sensitivity from 10 μHz to 100 mHz), and DECIGO in

930-460: A pressure below atmospheric pressure . Where cooling water is in short supply, an air-cooled condenser is often used. An air-cooled condenser is however, significantly more expensive and cannot achieve as low a steam turbine exhaust pressure (and temperature) as a water-cooled surface condenser. Surface condensers are also used in applications and industries other than the condensing of steam turbine exhaust in power plants. In thermal power plants,

1023-558: A set of tubes in the furnace. Here the steam picks up more energy from hot flue gases outside the tubing, and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves before the high-pressure turbine. Nuclear-powered steam plants do not have such sections but produce steam at essentially saturated conditions. Experimental nuclear plants were equipped with fossil-fired superheaters in an attempt to improve overall plant operating cost. The condenser condenses

SECTION 10

#1732791237483

1116-523: A specific type of large heat exchanger used in a pressurized water reactor (PWR) to thermally connect the primary (reactor plant) and secondary (steam plant) systems, which generates steam. In a boiling water reactor (BWR), no separate steam generator is used and water boils in the reactor core. In some industrial settings, there can also be steam-producing heat exchangers called heat recovery steam generators (HRSG) which utilize heat from some industrial process, most commonly utilizing hot exhaust from

1209-423: A stationary stator and a spinning rotor , each containing miles of heavy copper conductor. There is generally no permanent magnet , thus preventing black starts . In operation it generates up to 21,000 amperes at 24,000 volts AC (504 MWe) as it spins at either 3,000 or 3,600 rpm , synchronized to the power grid . The rotor spins in a sealed chamber cooled with hydrogen gas, selected because it has

1302-405: A trip-out are avoided by flushing out such gases from the combustion zone before igniting the coal. The steam drum (as well as the superheater coils and headers) have air vents and drains needed for initial start up. Fossil fuel power stations often have a superheater section in the steam generating furnace. The steam passes through drying equipment inside the steam drum on to the superheater,

1395-478: A typical late 20th-century power station, superheated steam from the boiler is delivered through 14–16-inch-diameter (360–410 mm) piping at 2,400 psi (17 MPa; 160 atm) and 1,000 °F (540 °C) to the high-pressure turbine, where it falls in pressure to 600 psi (4.1 MPa; 41 atm) and to 600 °F (320 °C) in temperature through the stage. It exits via 24–26-inch-diameter (610–660 mm) cold reheat lines and passes back into

1488-427: Is 1/time (T ). Expressed in base SI units, the unit is the reciprocal second (1/s). In English, "hertz" is also used as the plural form. As an SI unit, Hz can be prefixed ; commonly used multiples are kHz (kilohertz, 10  Hz ), MHz (megahertz, 10  Hz ), GHz (gigahertz, 10  Hz ) and THz (terahertz, 10  Hz ). One hertz (i.e. one per second) simply means "one periodic event occurs per second" (where

1581-442: Is also bellmouthed for streamlined entry of water. This is to avoid eddies at the inlet of each tube giving rise to erosion, and to reduce flow friction. Some makers also recommend plastic inserts at the entry of tubes to avoid eddies eroding the inlet end. In smaller units some manufacturers use ferrules to seal the tube ends instead of rolling. To take care of length wise expansion of tubes some designs have expansion joint between

1674-428: Is also dosed with pH control agents such as ammonia or morpholine to keep the residual acidity low and thus non-corrosive. The boiler is a rectangular furnace about 50 feet (15 m) on a side and 130 feet (40 m) tall. Its walls are made of a web of high pressure steel tubes about 2.3 inches (58 mm) in diameter. Fuel such as pulverized coal is air-blown into the furnace through burners located at

1767-494: Is also used to describe the clock speeds at which computers and other electronics are driven. The units are sometimes also used as a representation of the energy of a photon , via the Planck relation E  =  hν , where E is the photon's energy, ν is its frequency, and h is the Planck constant . The hertz is defined as one per second for periodic events. The International Committee for Weights and Measures defined

1860-447: Is closed by a fabricated box cover known as a waterbox, with flanged connection to the tube sheet or condenser shell. The waterbox is usually provided with man holes on hinged covers to allow inspection and cleaning. These waterboxes on inlet side will also have flanged connections for cooling water inlet butterfly valves , small vent pipe with hand valve for air venting at higher level, and hand-operated drain valve at bottom to drain

1953-455: Is contained within the water flowing through the tubes can ultimately end up on either the condenser tubesheet (discussed previously) or within the tubing itself. Tube-side fouling for surface condensers falls into five main categories; particulate fouling like silt and sediment, biofouling like slime and biofilms , scaling and crystallization such as calcium carbonate, macrofouling which can include anything from zebra mussels that can grow on

SECTION 20

#1732791237483

2046-473: Is expensive and has seldom been implemented. Government regulations and international agreements are being enforced to reduce harmful emissions and promote cleaner power generation. Almost all coal-fired power stations , petroleum, nuclear , geothermal , solar thermal electric , and waste incineration plants , as well as all natural gas power stations are thermal. Natural gas is frequently burned in gas turbines as well as boilers . The waste heat from

2139-473: Is limited, and governed by the laws of thermodynamics . The Carnot efficiency dictates that higher efficiencies can be attained by increasing the temperature of the steam. Sub-critical pressure fossil fuel power stations can achieve 36–40% efficiency. Supercritical designs have efficiencies in the low to mid 40% range, with new "ultra critical" designs using pressures above 4,400 psi (30 MPa) and multiple stage reheat reaching 45–48% efficiency. Above

2232-458: Is pumped from the outlet or the hotwell for reuse as boiler feedwater . For most water-cooled surface condensers, the shell is under [partial] vacuum during normal operating conditions. For water-cooled surface condensers, the shell's internal vacuum is most commonly supplied by and maintained by an external steam jet ejector system. Such an ejector system uses steam as the motive fluid to remove any non-condensible gases that may be present in

2325-488: Is rare in new plants, due to environmental concerns of toxic copper alloys. Also depending on the steam cycle water treatment for the boiler, it may be desirable to avoid tube materials containing copper. Titanium condenser tubes are usually the best technical choice, however the use of titanium condenser tubes has been virtually eliminated by the sharp increases in the costs for this material. The tube lengths range to about 85 ft (26 m) for modern power plants, depending on

2418-476: Is returned to the downcomers and the steam is passed through a series of steam separators and dryers that remove water droplets from the steam. The dry steam then flows into the superheater coils. The boiler furnace auxiliary equipment includes coal feed nozzles and igniter guns, soot blowers , water lancing, and observation ports (in the furnace walls) for observation of the furnace interior. Furnace explosions due to any accumulation of combustible gases after

2511-464: Is separated from the water inside a drum at the top of the furnace. The saturated steam is introduced into superheat pendant tubes that hang in the hottest part of the combustion gases as they exit the furnace. Here the steam is superheated to 1,000 °F (540 °C) to prepare it for the turbine. Plants that use gas turbines to heat the water for conversion into steam use boilers known as heat recovery steam generators (HRSG). The exhaust heat from

2604-465: Is the air-cooled condenser . The process is similar to that of a radiator and fan. Exhaust heat from the low-pressure section of a steam turbine runs through the condensing tubes, the tubes are usually finned and ambient air is pushed through the fins with the help of a large fan. The steam condenses to water to be reused in the water-steam cycle. Air-cooled condensers typically operate at a higher temperature than water-cooled versions. While saving water,

2697-493: Is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle ) per second . The hertz is an SI derived unit whose formal expression in terms of SI base units is s , meaning that one hertz is one per second or the reciprocal of one second . It is used only in the case of periodic events. It is named after Heinrich Rudolf Hertz (1857–1894),

2790-452: Is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz). with the latter known as microwaves . Light is electromagnetic radiation that is even higher in frequency, and has frequencies in the range of tens of terahertz (THz, infrared ) to a few petahertz (PHz, ultraviolet ), with the visible spectrum being 400–790 THz. Electromagnetic radiation with frequencies in the low terahertz range (intermediate between those of

2883-793: The Manhattan Elevated Railway . Each of seventeen units weighed about 500 tons and was rated 6000 kilowatts; a contemporary turbine set of similar rating would have weighed about 20% as much. The energy efficiency of a conventional thermal power station is defined as saleable energy produced as a percent of the heating value of the fuel consumed. A simple cycle gas turbine achieves energy conversion efficiencies from 20 to 35%. Typical coal-based power plants operating at steam pressures of 170 bar and 570 °C run at efficiency of 35 to 38%, with state-of-the-art fossil fuel plants at 46% efficiency. Combined-cycle systems can reach higher values. As with all heat engines, their efficiency

Thermal power station - Misplaced Pages Continue

2976-403: The critical point for water of 705 °F (374 °C) and 3,212 psi (22.15 MPa), there is no phase transition from water to steam, but only a gradual decrease in density . Currently most nuclear power stations must operate below the temperatures and pressures that coal-fired plants do, in order to provide more conservative safety margins within the systems that remove heat from

3069-552: The steam boiler is a means of transferring heat energy from the burning fuel to the mechanical energy of the spinning steam turbine . The total feed water consists of recirculated condensate water and purified makeup water . Because the metallic materials it contacts are subject to corrosion at high temperatures and pressures, the makeup water is highly purified before use. A system of water softeners and ion exchange demineralizes produces water so pure that it coincidentally becomes an electrical insulator , with conductivity in

3162-409: The vapor pressure of water is much less than atmospheric pressure, the condenser generally works under vacuum . Thus leaks of non-condensible air into the closed loop must be prevented. Typically the cooling water causes the steam to condense at a temperature of about 25 °C (77 °F) and that creates an absolute pressure in the condenser of about 2–7  kPa (0.59–2.07  inHg ), i.e.

3255-449: The 0.1–10 Hz range. In computers, most central processing units (CPU) are labeled in terms of their clock rate expressed in megahertz ( MHz ) or gigahertz ( GHz ). This specification refers to the frequency of the CPU's master clock signal . This signal is nominally a square wave , which is an electrical voltage that switches between low and high logic levels at regular intervals. As

3348-540: The 18th century, with notable improvements being made by James Watt . When the first commercially developed central electrical power stations were established in 1882 at Pearl Street Station in New York and Holborn Viaduct power station in London, reciprocating steam engines were used. The development of the steam turbine in 1884 provided larger and more efficient machine designs for central generating stations. By 1892

3441-468: The 1970s. In some usage, the "per second" was omitted, so that "megacycles" (Mc) was used as an abbreviation of "megacycles per second" (that is, megahertz (MHz)). Sound is a traveling longitudinal wave , which is an oscillation of pressure . Humans perceive the frequency of a sound as its pitch . Each musical note corresponds to a particular frequency. An infant's ear is able to perceive frequencies ranging from 20 Hz to 20 000  Hz ;

3534-742: The 20th century. Shipboard power stations usually directly couple the turbine to the ship's propellers through gearboxes. Power stations in such ships also provide steam to smaller turbines driving electric generators to supply electricity. Nuclear marine propulsion is, with few exceptions, used only in naval vessels. There have been many turbo-electric ships in which a steam-driven turbine drives an electric generator which powers an electric motor for propulsion . Cogeneration plants, often called combined heat and power (CHP) facilities, produce both electric power and heat for process heat or space heating, such as steam and hot water. The reciprocating steam engine has been used to produce mechanical power since

3627-942: The Otto or Diesel cycles. In the Rankine cycle, the low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate even more high pressure steam. The design of thermal power stations depends on the intended energy source. In addition to fossil and nuclear fuel , some stations use geothermal power , solar energy , biofuels , and waste incineration . Certain thermal power stations are also designed to produce heat for industrial purposes, provide district heating , or desalinate water , in addition to generating electrical power. Emerging technologies such as supercritical and ultra-supercritical thermal power stations operate at higher temperatures and pressures for increased efficiency and reduced emissions. Cogeneration or CHP (Combined Heat and Power) technology,

3720-560: The United States are about 90 percent efficient in converting the energy of falling water into electricity while the efficiency of a wind turbine is limited by Betz's law , to about 59.3%, and actual wind turbines show lower efficiency. The direct cost of electric energy produced by a thermal power station is the result of cost of fuel, capital cost for the plant, operator labour, maintenance, and such factors as ash handling and disposal. Indirect social or environmental costs, such as

3813-411: The ability of the water to cool as it circulates. This is done by pumping the warm water from the condenser through either natural draft, forced draft or induced draft cooling towers (as seen in the adjacent image) that reduce the temperature of the water by evaporation, by about 11 to 17 °C (52 to 63 °F)—expelling waste heat to the atmosphere. The circulation flow rate of the cooling water in

Thermal power station - Misplaced Pages Continue

3906-489: The air in the air preheater for better economy. Secondary air is mixed with the coal/primary air flow in the burners. The induced draft fan assists the FD fan by drawing out combustible gases from the furnace, maintaining slightly below atmospheric pressure in the furnace to avoid leakage of combustion products from the boiler casing. A steam turbine generator consists of a series of steam turbines interconnected to each other and

3999-451: The atmosphere, or once-through cooling (OTC) water from a river, lake or ocean. In the United States, about two-thirds of power plants use OTC systems, which often have significant adverse environmental impacts. The impacts include thermal pollution and killing large numbers of fish and other aquatic species at cooling water intakes . The heat absorbed by the circulating cooling water in the condenser tubes must also be removed to maintain

4092-476: The average adult human can hear sounds between 20 Hz and 16 000  Hz . The range of ultrasound , infrasound and other physical vibrations such as molecular and atomic vibrations extends from a few femtohertz into the terahertz range and beyond. Electromagnetic radiation is often described by its frequency—the number of oscillations of the perpendicular electric and magnetic fields per second—expressed in hertz. Radio frequency radiation

4185-432: The boiler, where the steam is reheated in special reheat pendant tubes back to 1,000 °F (540 °C). The hot reheat steam is conducted to the intermediate-pressure turbine, where it falls in both temperature and pressure and exits directly to the long-bladed low-pressure turbines and finally exits to the condenser. The generator, typically about 30 feet (9 m) long and 12 feet (3.7 m) in diameter, contains

4278-498: The circulating water returning to the sea or river source is not affected. On the steam (shell) side of the condenser: The concentration of undissolved gases is high over air zone tubes. Therefore, these tubes are exposed to higher corrosion rates. Some times these tubes are affected by stress corrosion cracking, if original stress is not fully relieved during manufacture. To overcome these effects of corrosion some manufacturers provide higher corrosive resistant tubes in this area. As

4371-536: The cooling water side of the condenser: The tubes, the tube sheets and the water boxes may be made up of materials having different compositions and are always in contact with circulating water. This water, depending on its chemical composition, will act as an electrolyte between the metallic composition of tubes and water boxes. This will give rise to electrolytic corrosion which will start from more anodic materials first. Sea water based condensers , in particular when sea water has added chemical pollutants , have

4464-507: The design of large turbines, since they are highly optimized for one particular speed. The electricity flows to a distribution yard where transformers increase the voltage for transmission to its destination. Steam condenser A surface condenser is a water-cooled shell and tube heat exchanger installed to condense exhaust steam from a steam turbine in thermal power stations . These condensers are heat exchangers which convert steam from its gaseous to its liquid state at

4557-411: The economic value of environmental impacts, or environmental and health effects of the complete fuel cycle and plant decommissioning, are not usually assigned to generation costs for thermal stations in utility practice, but may form part of an environmental impact assessment. Those indirect costs belong to the broader concept of externalities . In the nuclear plant field, steam generator refers to

4650-472: The efficiency of the cycle is reduced (resulting in more carbon dioxide per megawatt-hour of electricity). From the bottom of the condenser, powerful condensate pumps recycle the condensed steam (water) back to the water/steam cycle. Power station furnaces may have a reheater section containing tubes heated by hot flue gases outside the tubes. Exhaust steam from the high-pressure turbine is passed through these heated tubes to collect more energy before driving

4743-440: The event being counted may be a complete cycle); 100 Hz means "one hundred periodic events occur per second", and so on. The unit may be applied to any periodic event—for example, a clock might be said to tick at 1 Hz , or a human heart might be said to beat at 1.2 Hz . The occurrence rate of aperiodic or stochastic events is expressed in reciprocal second or inverse second (1/s or s ) in general or, in

SECTION 50

#1732791237483

4836-440: The exhaust steam from a steam turbine driving an electrical generator as well in other applications. There are many fabrication design variations depending on the manufacturer, the size of the steam turbine, and other site-specific conditions. The shell is the condenser's outermost body and contains the heat exchanger tubes. The shell is fabricated from carbon steel plates and is stiffened as needed to provide rigidity for

4929-403: The first person to provide conclusive proof of the existence of electromagnetic waves . For high frequencies, the unit is commonly expressed in multiples : kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz). Some of the unit's most common uses are in the description of periodic waveforms and musical tones , particularly those used in radio - and audio-related applications. It

5022-421: The four corners, or along one wall, or two opposite walls, and it is ignited to rapidly burn, forming a large fireball at the center. The thermal radiation of the fireball heats the water that circulates through the boiler tubes near the boiler perimeter. The water circulation rate in the boiler is three to four times the throughput. As the water in the boiler circulates it absorbs heat and changes into steam. It

5115-403: The gas turbines is used to make superheated steam that is then used in a conventional water-steam generation cycle, as described in the gas turbine combined-cycle plants section. The water enters the boiler through a section in the convection pass called the economizer . From the economizer it passes to the steam drum and from there it goes through downcomers to inlet headers at the bottom of

5208-417: The heat of steam per unit mass at the inlet to the turbine and the heat of steam per unit mass at the outlet from the turbine represents the heat which is converted to mechanical power. Therefore, the more the conversion of heat per pound or kilogram of steam to mechanical power in the turbine, the better is its efficiency. By condensing the exhaust steam of a turbine at a pressure below atmospheric pressure,

5301-449: The hertz has become the primary unit of measurement accepted by the general populace to determine the performance of a CPU, many experts have criticized this approach, which they claim is an easily manipulable benchmark . Some processors use multiple clock cycles to perform a single operation, while others can perform multiple operations in a single cycle. For personal computers, CPU clock speeds have ranged from approximately 1 MHz in

5394-615: The highest known heat transfer coefficient of any gas and for its low viscosity , which reduces windage losses. This system requires special handling during startup, with air in the chamber first displaced by carbon dioxide before filling with hydrogen. This ensures that a highly explosive hydrogen– oxygen environment is not created. The power grid frequency is 60 Hz across North America and 50 Hz in Europe , Oceania , Asia ( Korea and parts of Japan are notable exceptions), and parts of Africa . The desired frequency affects

5487-413: The highest normally usable radio frequencies and long-wave infrared light) is often called terahertz radiation . Even higher frequencies exist, such as that of X-rays and gamma rays , which can be measured in exahertz (EHz). For historical reasons, the frequencies of light and higher frequency electromagnetic radiation are more commonly specified in terms of their wavelengths or photon energies : for

5580-428: The intermediate and then low-pressure turbines. External fans are provided to give sufficient air for combustion. The Primary air fan takes air from the atmosphere and, first warms the air in the air preheater for better economy. Primary air then passes through the coal pulverizers, and carries the coal dust to the burners for injection into the furnace. The Secondary air fan takes air from the atmosphere and, first warms

5673-459: The late 1970s ( Atari , Commodore , Apple computers ) to up to 6 GHz in IBM Power microprocessors . Various computer buses , such as the front-side bus connecting the CPU and northbridge , also operate at various frequencies in the megahertz range. Higher frequencies than the International System of Units provides prefixes for are believed to occur naturally in the frequencies of

SECTION 60

#1732791237483

5766-450: The local economy by creating jobs in construction, maintenance, and fuel extraction industries. On the other hand, burning of fossil fuels releases greenhouse gases (contributing to climate change) and air pollutants such as sulfur oxides and nitrogen oxides (leading to acid rain and respiratory diseases). Carbon capture and storage (CCS) technology can reduce the greenhouse gas emissions of fossil-fuel-based thermal power stations, however it

5859-415: The middle of this series of feedwater heaters, and before the second stage of pressurization, the condensate plus the makeup water flows through a deaerator that removes dissolved air from the water, further purifying and reducing its corrosiveness. The water may be dosed following this point with hydrazine , a chemical that removes the remaining oxygen in the water to below 5 parts per billion (ppb). It

5952-444: The nuclear fuel. This, in turn, limits their thermodynamic efficiency to 30–32%. Some advanced reactor designs being studied, such as the very-high-temperature reactor , Advanced Gas-cooled Reactor , and supercritical water reactor , would operate at temperatures and pressures similar to current coal plants, producing comparable thermodynamic efficiency. The energy of a thermal power station not utilized in power production must leave

6045-630: The plant in the form of heat to the environment. This waste heat can go through a condenser and be disposed of with cooling water or in cooling towers . If the waste heat is instead used for district heating , it is called cogeneration . An important class of thermal power station is that associated with desalination facilities; these are typically found in desert countries with large supplies of natural gas , and in these plants freshwater production and electricity are equally important co-products. Other types of power stations are subject to different efficiency limitations. Most hydropower stations in

6138-418: The purpose of a surface condenser is to condense the exhaust steam from a steam turbine to obtain maximum efficiency , and also to convert the turbine exhaust steam into pure water (referred to as steam condensate) so that it may be reused in the steam generator or boiler as boiler feed water. The steam turbine itself is a device to convert the heat in steam to mechanical power . The difference between

6231-405: The range of 0.3–1.0 microsiemens per centimeter. The makeup water in a 500 MWe plant amounts to perhaps 120 US gallons per minute (7.6 L/s) to replace water drawn off from the boiler drums for water purity management, and to also offset the small losses from steam leaks in the system. The feed water cycle begins with condensate water being pumped out of the condenser after traveling through

6324-507: The remaining energy. The entire rotating mass may be over 200 metric tons and 100 feet (30 m) long. It is so heavy that it must be kept turning slowly even when shut down (at 3 rpm ) so that the shaft will not bow even slightly and become unbalanced. This is so important that it is one of only six functions of blackout emergency power batteries on site. (The other five being emergency lighting , communication , station alarms, generator hydrogen seal system, and turbogenerator lube oil.) For

6417-564: The rules for capitalisation of a common noun ; i.e., hertz becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case. The hertz is named after the German physicist Heinrich Hertz (1857–1894), who made important scientific contributions to the study of electromagnetism . The name was established by the International Electrotechnical Commission (IEC) in 1935. It

6510-409: The second as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium -133 atom" and then adds: "It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9 192 631 770  hertz , ν hfs Cs = 9 192 631 770  Hz ." The dimension of the unit hertz

6603-432: The shell and the tube sheet allowing the latter to move longitudinally. In smaller units some sag is given to the tubes to take care of tube expansion with both end water boxes fixed rigidly to the shell. Generally the tubes are made of stainless steel , copper alloys such as brass or bronze, cupro nickel , or titanium depending on several selection criteria. The use of copper bearing alloys such as brass or cupro nickel

6696-418: The shell. When required by the selected design, intermediate plates are installed to serve as baffle plates that provide the desired flow path of the condensing steam. The plates also provide support that help prevent sagging of long tube lengths. At the bottom of the shell, where the condensate collects, an outlet is installed. In some designs, a sump (often referred to as the hotwell) is provided. Condensate

6789-685: The simultaneous production of electricity and useful heat from the same fuel source, improves the overall efficiency by using waste heat for heating purposes. Older, less efficient thermal power stations are being decommissioned or adapted to use cleaner and renewable energy sources. Thermal power stations produce 70% of the world's electricity. They often provide reliable, stable, and continuous baseload power supply essential for economic growth. They ensure energy security by maintaining grid stability, especially in regions where they complement intermittent renewable energy sources dependent on weather conditions. The operation of thermal power stations contributes to

6882-399: The size of the condenser. The size chosen is based on transportability from the manufacturers’ site and ease of erection at the installation site. The outer diameter of condenser tubes typically ranges from 3/4 inch to 1-1/4 inch, based on condenser cooling water friction considerations and overall condenser size. The tube sheet at each end with tube ends rolled, for each end of the condenser

6975-413: The specific case of radioactivity , in becquerels . Whereas 1 Hz (one per second) specifically refers to one cycle (or periodic event) per second, 1 Bq (also one per second) specifically refers to one radionuclide event per second on average. Even though frequency, angular velocity , angular frequency and radioactivity all have the dimension T , of these only frequency is expressed using

7068-456: The steam from the exhaust of the turbine into liquid to allow it to be pumped. If the condenser can be made cooler, the pressure of the exhaust steam is reduced and efficiency of the cycle increases. The surface condenser is a shell and tube heat exchanger in which cooling water is circulated through the tubes. The exhaust steam from the low-pressure turbine enters the shell, where it is cooled and converted to condensate (water) by flowing over

7161-427: The steam pressure drop between the inlet and exhaust of the turbine is increased, which increases the amount of heat available for conversion to mechanical power. Most of the heat liberated due to condensation of the exhaust steam is carried away by the cooling medium (water or air) used by the surface condenser. The adjacent diagram depicts a typical water-cooled surface condenser as used in power stations to condense

7254-420: The steam turbines. The condensate flow rate at full load in a 500 MW plant is about 6,000 US gallons per minute (400 L/s). The water is usually pressurized in two stages, and typically flows through a series of six or seven intermediate feed water heaters, heated up at each point with steam extracted from an appropriate extraction connection on the turbines and gaining temperature at each stage. Typically, in

7347-443: The surface condenser. The Venturi effect , which is a particular case of Bernoulli's principle , applies to the operation of steam jet ejectors. Motor driven mechanical vacuum pumps , such as the liquid ring type, are also popular for this service. At each end of the shell, a sheet of sufficient thickness usually made of stainless steel is provided, with holes for the tubes to be inserted and rolled. The inlet end of each tube

7440-433: The temperature beyond the turbine limits during winter, causing excessive condensation in the turbine). Plants operating in hot climates may have to reduce output if their source of condenser cooling water becomes warmer; unfortunately this usually coincides with periods of high electrical demand for air conditioning . The condenser generally uses either circulating cooling water from a cooling tower to reject waste heat to

7533-487: The tube ends get corroded there is the possibility of cooling water leakage to the steam side contaminating the condensed steam or condensate, which is harmful to steam generators . The other parts of water boxes may also get affected in the long run requiring repairs or replacements involving long duration shut-downs. Cathodic protection is typically employed to overcome this problem. Sacrificial anodes of zinc (being cheapest) plates are mounted at suitable places inside

7626-455: The tubes as shown in the adjacent diagram. Such condensers use steam ejectors or rotary motor -driven exhausts for continuous removal of air and gases from the steam side to maintain vacuum . For best efficiency, the temperature in the condenser must be kept as low as practical in order to achieve the lowest possible pressure in the condensing steam. Since the condenser temperature can almost always be kept significantly below 100 °C where

7719-451: The tubes to scrub them clean without the need to take the system off-line. The cooling water used to condense the steam in the condenser returns to its source without having been changed other than having been warmed. If the water returns to a local water body (rather than a circulating cooling tower), it is often tempered with cool 'raw' water to prevent thermal shock when discharged into that body of water. Another form of condensing system

7812-429: The tubesheet, to wood or other debris that blocks the tubing, and finally, corrosion products (discussed previously). Depending on the extent of the fouling, the impact can be quite severe on the condenser's ability to condense the exhaust steam coming from the turbine. As fouling builds up within the tubing, an insulating effect is created and the heat-transfer characteristics of the tubes are diminished, often requiring

7905-405: The turbine to be slowed to a point where the condenser can handle the exhaust steam produced. Typically, this can be quite costly to power plants in the form of reduced output, increase fuel consumption and increased CO 2 emissions. This "derating" of the turbine to accommodate the condenser's fouled or blocked tubing is an indication that the plant needs to clean the tubing in order to return to

7998-431: The turbine was considered a better alternative to reciprocating engines; turbines offered higher speeds, more compact machinery, and stable speed regulation allowing for parallel synchronous operation of generators on a common bus. After about 1905, turbines entirely replaced reciprocating engines in almost all large central power stations. The largest reciprocating engine-generator sets ever built were completed in 1901 for

8091-553: The turbine's nameplate capacity . A variety of methods for cleaning are available, including online and offline options, depending on the plant's site-specific conditions. National and international test codes are used to standardize the procedures and definitions used in testing large condensers. In the U.S., ASME publishes several performance test codes on condensers and heat exchangers. These include ASME PTC 12.2-2010, Steam Surface Condensers, and PTC 30.1-2007, Air cooled Steam Condensers. Hertz The hertz (symbol: Hz )

8184-480: The unit hertz. Thus a disc rotating at 60 revolutions per minute (rpm) is said to have an angular velocity of 2 π  rad/s and a frequency of rotation of 1 Hz . The correspondence between a frequency f with the unit hertz and an angular velocity ω with the unit radians per second is The hertz is named after Heinrich Hertz . As with every SI unit named for a person, its symbol starts with an upper case letter (Hz), but when written in full, it follows

8277-438: The water boxes. These zinc plates will get corroded first being in the lowest range of anodes. Hence these zinc anodes require periodic inspection and replacement. This involves comparatively less down time. The water boxes made of steel plates are also protected inside by epoxy paint. As one might expect, with millions of gallons of circulating water flowing through the condenser tubing from seawater or fresh water, anything that

8370-400: The water walls. From these headers the water rises through the water walls of the furnace where some of it is turned into steam and the mixture of water and steam then re-enters the steam drum. This process may be driven purely by natural circulation (because the water is the downcomers is denser than the water/steam mixture in the water walls) or assisted by pumps. In the steam drum, the water

8463-441: The waterbox for maintenance. Similarly on the outlet waterbox the cooling water connection will have large flanges, butterfly valves , vent connection also at higher level and drain connections at lower level. Similarly thermometer pockets are located at inlet and outlet pipes for local measurements of cooling water temperature. In smaller units, some manufacturers make the condenser shell as well as waterboxes of cast iron . On

8556-402: The worst corrosion characteristics. River water with pollutants are also undesirable for condenser cooling water. The corrosive effect of sea or river water has to be tolerated and remedial methods have to be adopted. One method is the use of sodium hypochlorite , or chlorine , to ensure there is no marine growth on the pipes or the tubes. This practice must be strictly regulated to make sure

8649-490: Was adopted by the General Conference on Weights and Measures (CGPM) ( Conférence générale des poids et mesures ) in 1960, replacing the previous name for the unit, "cycles per second" (cps), along with its related multiples, primarily "kilocycles per second" (kc/s) and "megacycles per second" (Mc/s), and occasionally "kilomegacycles per second" (kMc/s). The term "cycles per second" was largely replaced by "hertz" by

#482517