The Thomson MO5 is a home computer introduced in France in June 1984 to compete against systems such as the ZX Spectrum and Commodore 64 . It had a release price of 2390 FF .
51-455: At the same time, Thomson also released the up-market Thomson TO7/70 machine. The MO5 was not sold in vast quantities outside France and was largely discontinued in favour of the improved Thomson MO6 in 1986. MO5s were used as educational tools in French schools for a period (see Computing for All , a French government plan to introduce computers to the country's pupils), and could be used as
102-473: A " nano-machine" terminal for the "Nanoréseau" educational network. The computer boots directly to the built-in Microsoft BASIC interpreter ( MO5 Basic 1.0 ). The Thomson MO5 runs on a Motorola 6809E processor clocked at 1 MHz and features 48 KB of RAM (16 KB used as video memory, 32 KB as free user RAM) and 16 KB of ROM (4 KB for the monitor and 12 KB for
153-455: A 4-level alpha channel ); the Cineon file format , for example, used this. Some SGI systems had 10- (or more) bit digital-to-analog converters for the video signal and could be set up to interpret data stored this way for display. BMP files define this as one of its formats, and it is called "HiColor" by Microsoft . Video cards with 10 bits per component started coming to market in
204-506: A 5-pin DIN connector . The tape player's output is also routed to the computer's sound output. The keyboard has 58 keys and includes a reset button. A cartridge port was available. A RAM expansion adding extra 64 KB and a " Nanoréseau" network card could be plugged into it, but was incompatible with early MO5 machines. Around two hundred software titles are known to exist for the MO5. The MO5
255-462: A bit depth of 8 bits to 16 bits per sample. As of 2020, some smartphones have started using 30-bit color depth, such as the OnePlus ;8 Pro , Oppo Find X2 & Find X2 Pro, Sony Xperia 1 II , Xiaomi Mi 10 Ultra , Motorola Edge+ , ROG Phone 3 and Sharp Aquos Zero 2. Using 12 bits per color channel produces 36 bits, 68,719,476,736 colors. If an alpha channel of
306-552: A color channel is also known as radiometric resolution , especially in the context of satellite images . With the relatively low color depth, the stored value is typically a number representing the index into a color map or palette (a form of vector quantization ). The colors available in the palette itself may be fixed by the hardware or modifiable by software. Modifiable palettes are sometimes referred to as pseudocolor palettes. Old graphics chips, particularly those used in home computers and video game consoles , often have
357-412: A color cube in the palette for a direct-color system (and so all programs would use the same palette). Usually fewer levels of blue were provided than others, since the normal human eye is less sensitive to the blue component than to either red or green (two thirds of the eye's receptors process the longer wavelengths ). Popular sizes were: 4,096 colors, usually from a fully-programmable palette (though it
408-505: A contemporary laser printer) but color proved more popular. 4 colors, usually from a selection of fixed palettes. Gray-scale early NeXTstation , color Macintoshes, Atari ST medium resolution. 8 colors, almost always all combinations of full-intensity red, green, and blue. Many early home computers with TV displays, including the ZX Spectrum and BBC Micro . 16 colors, usually from a selection of fixed palettes. Used by IBM CGA (at
459-405: A monitor using a RGB SCART (Peritel) connector, with a resolution of 320x200 (with 2 colors for each 8 x 1 pixels). The TO7 prototype, called Thomson T9000 , was developed in 1980. The differences regarding the production model are a different startup menu and buggier BIOS . The Thomson TO7 runs on a Motorola 6809 processor clocked at 1 MHz and features 22 KB of RAM (8 KB for
510-455: A visually lossless low-latency algorithm based on predictive DPCM and YCoCg-R color space and allows increased resolutions and color depths and reduced power consumption." At WinHEC 2008, Microsoft announced that color depths of 30 bits and 48 bits would be supported in Windows 7 , along with the wide color gamut scRGB . High Efficiency Video Coding (HEVC or H.265) defines
561-413: A yellow subpixel. However, formats and media that allow or make use of the extended color gamut are at present extremely rare. Because humans are overwhelmingly trichromats or dichromats one might suppose that adding a fourth "primary" color could provide no practical benefit. However humans can see a broader range of colors than a mixture of three colored lights can display. The deficit of colors
SECTION 10
#1732790987849612-462: Is RGB on a SCART connector , with the refresh rate being 625-line compatible 50Hz. Audio featured a single channel sound generator with five octaves. A "game expansion" was capable of four channel, six octaves sound. The keyboard has 58 keys and includes arrow keys . Besides cartridges, the machine used cassette tapes for file storage. An upgraded version, the Thomson TO7/70 ,
663-414: Is also often used to refer to all color depths greater or equal to 24. Deep color consists of a billion or more colors. 2 is 1,073,741,824. Usually this is 10 bits each of red, green, and blue (10 bpc). If an alpha channel of the same size is added then each pixel takes 40 bits. Some earlier systems placed three 10-bit channels in a 32-bit word , with 2 bits unused (or used as
714-554: Is assigned 5 bits, plus one unused bit (or used for a mask channel or to switch to indexed color); this allows 32,768 colors to be represented. However, an alternate assignment which reassigns the unused bit to the G channel allows 65,536 colors to be represented, but without transparency. These color depths are sometimes used in small devices with a color display, such as mobile phones, and are sometimes considered sufficient to display photographic images. Occasionally 4 bits per color are used plus 4 bits for alpha, giving 4,096 colors. Among
765-421: Is only one aspect of color representation, expressing the precision with which the amount of each primary can be expressed; the other aspect is how broad a range of colors can be expressed (the gamut ). The definition of both color precision and gamut is accomplished with a color encoding specification which assigns a digital code value to a location in a color space . The number of bits of resolved intensity in
816-527: Is used by virtually every computer and phone display and the vast majority of image storage formats . Almost all cases of 32 bits per pixel assigns 24 bits to the color, and the remaining 8 are the alpha channel or unused. 2 gives 16,777,216 color variations. The human eye can discriminate up to ten million colors, and since the gamut of a display is smaller than the range of human vision, this means this should cover that range with more detail than can be perceived. However, displays do not evenly distribute
867-506: The 320 × 200 pixels active area doesn't cover the entire screen, and is surrounded by a border. The video output is RGB on a SCART connector , with the refresh rate being 625-line compatible 50 Hz. Audio is limited to 1-bit square wave tones, outputted via the TV using the SCART connector. The machine used cassette tapes for file storage, played on a proprietary player connected using
918-773: The Nvidia Quadro graphics cards manufactured after 2006 support 30-bit deep color and Pascal or later GeForce and Titan cards when paired with the Studio Driver as do some models of the Radeon HD ;5900 series such as the HD ;5970. The ATI FireGL V7350 graphics card supports 40- and 64-bit pixels (30 and 48 bit color depth with an alpha channel). The DisplayPort specification also supports color depths greater than 24 bpp in version 1.3 through " VESA Display Stream Compression , which uses
969-418: The bit order was PBGR. The desaturated colours were obtained by mixing of the original RGB components within the video hardware. This is done by a PROM circuit, where a two bit mask controls colour mixing ratios of 0%, 33%, 66% and 100% of the saturated hue. This approach allows the display of Orange instead of "desaturated white", and Gray instead of "desaturated black". According to the values specified on
1020-488: The color gamut of a display, since it is no longer limited to the interior of a triangle formed by three primaries at its corners, e.g. the CIE 1931 color space . Recent technologies such as Texas Instruments 's BrilliantColor augment the typical red, green, and blue channels with up to three other primaries: cyan, magenta, and yellow. Cyan would be indicated by negative values in the red channel, magenta by negative values in
1071-436: The open standard image file format OpenEXR which supported 16-bit-per-channel half-precision floating-point numbers. At values near 1.0, half precision floating point values have only the precision of an 11-bit integer value, leading some graphics professionals to reject half-precision in situations where the extended dynamic range is not needed. Virtually all television displays and computer displays form images by varying
SECTION 20
#17327909878491122-486: The BASIC interpreter). Graphics were generated by a EFGJ03L (or MA4Q-1200) gate array capable of 40 × 25 text display and a resolution of 320 × 200 pixels with 16 colours (limited by 8 × 1 pixel colour attribute areas). The hardware colour palette is 4-bit RGBI , with eight basic RGB (red, green, blue) colours and a intensity bit (called P for "Pastel") that controlled saturation ("saturated" or "pastel"). In memory,
1173-664: The Main ;10 profile, which allows for 8 or 10 bits per sample with 4:2:0 chroma subsampling . The Main 10 profile was added at the October ;2012 HEVC meeting based on proposal JCTVC-K0109 which proposed that a 10-bit profile be added to HEVC for consumer applications. The proposal stated that this was to allow for improved video quality and to support the Rec. 2020 color space that will be used by UHDTV . The second version of HEVC has five profiles that allow for
1224-580: The TO-7 can be run on the TO-7/70, but the reverse is not possible. At least three games were released for the TO7/70. This microcomputer - or microprocessor -related article is a stub . You can help Misplaced Pages by expanding it . Color depth#12-bit color Color depth or colour depth (see spelling differences ), also known as bit depth , is either the number of bits used to indicate
1275-457: The TO7. The TO7 is built around a 1 MHz Motorola 6809 processor. ROM cartridges , designed as MEMO7 , can be introduced through a memory bay. The user interface uses Microsoft BASIC , included in the kit cartridge. The keyboard features a plastic membrane , and further user input is obtained through a lightpen . Cooling is provided by a rear radiator. A standard television can serve as
1326-444: The ability to use a different palette per sprites and tiles in order to increase the maximum number of simultaneously displayed colors, while minimizing use of then-expensive memory (and bandwidth). For example, in the ZX Spectrum the picture is stored in a two-color format, but these two colors can be separately defined for each rectangular block of 8×8 pixels. The palette itself has a color depth (number of bits per entry). While
1377-443: The best VGA systems only offered an 18-bit (262,144 color) palette from which colors could be chosen, all color Macintosh video hardware offered a 24-bit (16 million color) palette. 24-bit palettes are nearly universal on any recent hardware or file format using them. If instead the color can be directly figured out from the pixel values, it is "direct color". Palettes were rarely used for depths greater than 12 bits per pixel, as
1428-413: The bottom 2 bits of 8-bit data, but if 16 bits were used it would lose none of the 8-bit data). In addition, digital cameras are able to produce 10 or 12 bits per channel in their raw data; as 16 bits is the smallest addressable unit larger than that, using it would make it easier to manipulate the raw data. Some systems started using those bits for numbers outside the 0–1 range rather than for increasing
1479-564: The color of a single pixel , or the number of bits used for each color component of a single pixel. When referring to a pixel, the concept can be defined as bits per pixel (bpp). When referring to a color component, the concept can be defined as bits per component , bits per channel , bits per color (all three abbreviated bpc), and also bits per pixel component , bits per color channel or bits per sample (bps). Modern standards tend to use bits per component, but historical lower-depth systems used bits per pixel more often. Color depth
1530-400: The colors in human perception space, so humans can see the changes between some adjacent colors as color banding . Monochromatic images set all three channels to the same value, resulting in only 256 different colors; some software attempts to dither the gray level into the color channels to increase this, although in modern software this is more often used for subpixel rendering to increase
1581-420: The computer's technical manual ( “Manuel Technique du MO5” , p. 11-19), the hardware palette was: PBGR B2B1 G2G1 R2R1 PBGR B2B1 G2G1 R2R1 Displayed colors are only approximate due to different transfer and color spaces used on web pages ( sRGB ) and analog video ( BT.601 ) Video RAM was 16 KB. As common on home computers designed to be connected to an ordinary TV screen,
Thomson MO5 - Misplaced Pages Continue
1632-769: The first hardware to use the standard were the Sharp X68000 and IBM's Extended Graphics Array (XGA). The term "high color" has recently been used to mean color depths greater than 24 bits. Almost all of the least expensive LCDs (such as typical twisted nematic types) provide 18-bit color (64×64×64 = 262,144 combinations) to achieve faster color transition times, and use either dithering or frame rate control to approximate 24-bit-per-pixel true color, or throw away 6 bits of color information entirely. More expensive LCDs (typically IPS ) can display 24-bit color depth or greater. 24 bits almost always use 8 bits each of R, G, and B (8 bpc). As of 2018, 24-bit color depth
1683-582: The fraction. The Cineon imaging system used 10-bit professional video displays with the video hardware adjusted so that a value of 95 was black and 685 was white. The amplified signal tended to reduce the lifetime of the CRT. More bits also encouraged the storage of light as linear values, where the number directly corresponds to the amount of light emitted. Linear levels makes calculation of computer graphics much easier. However, linear color results in disproportionately more samples near white and fewer near black, so
1734-414: The green channel, and yellow by negative values in the blue channel, validating the use of otherwise fictitious negative numbers in the color channels. Mitsubishi and Samsung (among others) use BrilliantColor in some of their TV sets to extend the range of displayable colors. The Sharp Aquos line of televisions has introduced Quattron technology, which augments the usual RGB pixel components with
1785-604: The late 1990s. An early example was the Radius ThunderPower card for the Macintosh, which included extensions for QuickDraw and Adobe Photoshop plugins to support editing 30-bit images. Some vendors call their 24-bit color depth with FRC panels 30-bit panels; however, true deep color displays have 10-bit or more color depth without FRC. The HDMI 1.3 specification defines a bit depth of 30 bits (as well as 36 and 48 bit depths). In that regard,
1836-600: The lowest resolution), EGA , and by the least common denominator VGA standard at higher resolution. Color Macintoshes, Atari ST low resolution, Commodore 64 , and Amstrad CPCs also supported 4-bit color. 32 colors from a programmable palette, used by the Original Amiga chipset . 64 colors. Used by the Master System , Enhanced Graphics Adapter, GIME for TRS-80 Color Computer 3, Pebble Time smartwatch (64 color e-paper display), and Parallax Propeller using
1887-472: The memory consumed by the palette would exceed the necessary memory for direct color on every pixel. 2 colors, often black and white direct color. Sometimes 1 meant black and 0 meant white, the inverse of modern standards. Most of the first graphics displays were of this type, the X Window System was developed for such displays, and this was assumed for a 3M computer . In the late 1980s there were professional displays with resolutions up to 300 dpi (the same as
1938-453: The quality of 16-bit linear is about equal to 12-bit sRGB . Floating point numbers can represent linear light levels spacing the samples semi-logarithmically. Floating point representations also allow for drastically larger dynamic ranges as well as negative values. Most systems first supported 32-bit per channel single-precision , which far exceeded the accuracy required for most applications. In 1999, Industrial Light & Magic released
1989-422: The reference VGA circuit. 256 colors, usually from a fully-programmable palette: Most early color Unix workstations, Super VGA , color Macintosh , Atari TT , Amiga AGA chipset , Falcon030 , Acorn Archimedes . Both X and Windows provided elaborate systems to try to allow each program to select its own palette, often resulting in incorrect colors in any window other than the one with focus. Some systems placed
2040-422: The resolution. Numbers greater than 1 were for colors brighter than the display could show, as in high-dynamic-range imaging (HDRI). Negative numbers can increase the gamut to cover all possible colors, and for storing the results of filtering operations with negative filter coefficients. The Pixar Image Computer used 12 bits to store numbers in the range [-1.5, 2.5), with 2 bits for the integer portion and 10 for
2091-454: The same size is added then there are 48 bits per pixel. Using 16 bits per color channel produces 48 bits, 281,474,976,710,656 colors. If an alpha channel of the same size is added then there are 64 bits per pixel. Image editing software such as Adobe Photoshop started using 16 bits per channel fairly early in order to reduce the quantization on intermediate results (i.e. if an operation is divided by 4 and then multiplied by 4, it would lose
Thomson MO5 - Misplaced Pages Continue
2142-470: The space resolution on LCD screens where the colors have slightly different positions. The DVD-Video and Blu-ray Disc standards support a bit depth of 8 bits per color in YCbCr with 4:2:0 chroma subsampling . YCbCr can be losslessly converted to RGB. MacOS refers to 24-bit colour as "millions of colours". The term true colour is sometimes used to mean what this article is calling direct colour . It
2193-406: The strength of just three primary colors : red, green, and blue. For example, bright yellow is formed by roughly equal red and green contributions, with no blue contribution. For storing and manipulating images, alternative ways of expanding the traditional triangle exist: One can convert image coding to use fictitious primaries, that are not physically possible but that have the effect of extending
2244-433: The triangle to enclose a much larger color gamut. An equivalent, simpler change is to allow negative numbers in color channels, so that the represented colors can extend out of the color triangle formed by the primaries. However these only extend the colors that can be represented in the image encoding; neither trick extends the gamut of colors that can actually be rendered on a display device. Supplementary colors can widen
2295-647: The use of the Thomson EF9369 graphics chip, and the MO5NR could generate 4096 colors , and display up to 16 simultaneously depending on the resolution used: Sound was also updated to four voices and five octaves. Thomson TO7 The Thomson TO7 , also called Thomson 9000 is a home computer introduced by Thomson SA in November 1982, with an original retail price of 3750 FF . By 1983 over 40000 units were produced. About 84 games were released for
2346-485: The user, 8 KB used as video memory and 8K x 6 bits color memory) and 20KB of ROM (4KB for the monitor and 16KB on MEMO7 cartridges). As common on home computers designed to be connected to an ordinary TV screen, the 320 x 200 pixels active area doesn't cover the entire screen, and is surrounded by a border. Graphics were limited to 8 colours (generated by combination of RGB primaries ) with proximity constraints (2 colors for each 8 x 1 pixel area). The video output
2397-403: Was also improved, with four voices and seven octaves. The Thomson MO5NR ("NR" for "Nanoréseau" , a network standard - see Computing for All ) was introduced in 1986 and added a 58 key AZERTY keyboard and an integrated " Nanoréseau" network controller . Memory was expanded to 128 KB and the machine came with a new version of BASIC (Microsoft Basic 128 1.0). Graphics were improved by
2448-469: Was often set to a 16×16×16 color cube). Some Silicon Graphics systems, Color NeXTstation systems, and Amiga systems in HAM mode have this color depth. RGBA4444, a related 16 bpp representation providing the color cube and 16 levels of transparency, is a common texture format in mobile graphics. In high-color systems, two bytes (16 bits) are stored for each pixel. Most often, each component (R, G, and B)
2499-457: Was released in 1984 with an introductory price of 3590 FF. It was used as an educational tool in French schools under the Computing for All plan, where the TO7/70 could be used as a used a " nano-machine" terminal for the "Nanoréseau" educational network. Among improvements RAM was increased to 64 KB - "70" on the version name stands for 64+6 (64KB RAM + 6KB ROM). The 6809 processor
2550-570: Was replaced by a Motorola 6809E and the color palette was extended from 8 to 16 colors. Graphics were similar to the Thomson MO5 and generated by a Motorola MCA1300 gate array capable of 40×25 text display and a resolution of 320 x 200 pixels with 16 colours (limited by 8 x 1 pixel colour attribute areas). The colour palette is 4-bit RGBI , with 8 basic RGB colours and a intensity bit (called P for "Pastel") that controlled saturation ("saturated" or "pastel"). Software developed for
2601-416: Was sold in a version featuring a mechanical keyboard and a white casing, in a limited edition named MO5 Michel Platini . An improved version, named Thomson MO5E ("E" for "Export", a model designed for foreign markets) was presented in 1985. It had a different casing featuring a mechanical keyboard, a parallel port , two joystick ports , an internal PAL modulator and an integrated power supply. Sound
SECTION 50
#1732790987849#848151