71-479: Tiangong may refer to: Space station [ edit ] The Tiangong space station (Chinese large modular space station), a Chinese space station launched in modules in the 2020s Smaller space stations for testing: Tiangong-1 (2011) Tiangong-2 (2016) Tiangong-3 , cancelled Tiangong program , an overview of the Chinese space station program as
142-563: A new core module. "Following our current design, we can continue to launch an extension module to dock with the forward section of the space station, and the extension module can carry a new hub for docking with the subsequent space vehicles," Wang told CCTV . In October 2023, CAST presented new plan on the 74th International Astronautical Congress to expand the Tiangong to 180 tons, six-module assembly, with at least 15 years of operational life. A multi-functional module with six docking ports
213-559: A platform for building capacity for scientific and technological innovation. The construction of the station is based on the experience gained from its precursors, Tiangong-1 and Tiangong-2 . The first module, the Tianhe ("Harmony of the Heavens") core module, was launched on 29 April 2021. This was followed by multiple crewed and uncrewed missions and the addition of two laboratory cabin modules . The first, Wentian ("Quest for
284-575: A refrigerator for scientific experiment. Beginning with the Shenzhou 14 , China officially started the final construction phase for the space station, with three astronauts tasked to oversee the arrival of two labotorary modules in 2022. On 5 June 2022, Shenzhou 14 crew arrived at the space station, docking at the Earth-facing nadir port. Shenzhou 14 crew will begin the assembly for both Wentian and Mengtian modules, arriving in second half of
355-664: A service section, and a docking hub. The living quarters will contain a kitchen and toilet, fire control equipment, atmospheric processing and control equipment, computers, scientific apparatus, communications equipment to send and receive communications via ground control in Beijing , and other equipment. In 2018 a full-scale mockup of CCM was publicly presented at China International Aviation & Aerospace Exhibition in Zhuhai. The video from CMSA revealed that two of these core modules have been built. Artist impressions have also depicted
426-545: A single multi-functional module with six docking ports instead. In October 2023, China announced revised plans to expand the station to six modules starting in 2027. The Tianhe Core Cabin Module (CCM) provides life support and living quarters for three crew members and provides guidance, navigation, and orientation control for the station. The module also provides the station's power, propulsion, and life support systems. The module consists of three sections: living quarters,
497-620: A whole Others [ edit ] Shijiazhuang Tiangong , football (soccer) club for Shijiazhuang, Hebei Tiangong International , steel company Tiangong Kaiwu , encyclopedia written by Song Yingxing Tiangong University , formerly known as Tianjin Polytechnic University, in Tianjin , China Tiangongyuan station (Beijing Subway) , subway station in Beijing, China Jade Emperor , also known as Tian Gong ,
568-711: Is a modular design, with modules docked together while in low Earth orbit , between 340 and 450 km (210 and 280 mi) above the surface. It is China's first long-term space station, part of the Tiangong program and the core of the "Third Step" of the China Manned Space Program ; it has a pressurised volume of 340 m (12,000 cu ft), slightly over one third the size of the International Space Station . The space station aims to provide opportunities for space-based experiments and
639-513: Is different from Wikidata All article disambiguation pages All disambiguation pages Tiangong space station Tiangong ( Chinese : 天宫 ; pinyin : Tiāngōng ; lit. 'Sky Palace'), officially the Tiangong space station ( Chinese : 天宫空间站 ; pinyin : Tiāngōng kōngjiānzhàn ), is a permanently crewed space station constructed by China and operated by China Manned Space Agency . Tiangong
710-601: Is fitted with conventional chemical propulsion and ion thrusters to adjust and maintain the station's orbit. Four Hall-effect thrusters are mounted on the hull of the Tianhe core module . The development of the Hall-effect thrusters is considered a sensitive topic in China, with scientists "working to improve the technology without attracting attention". Hall-effect thrusters are created with crewed mission safety in mind with an effort to prevent erosion and damage caused by
781-543: Is primarily used to transfer extravehicular experiments and other hardware outside the station during astronaut EVAs. A dual-arm connector is installed on the Chinarm , providing it the capability to link with the Wentian robotic arm, extending its reach and weight-carrying limits. The Mengtian module carries a payload release mechanism, installed to assist in cargo transfer. The robotic arm can retrieve experiments from
SECTION 10
#1732771736053852-509: Is provided by two steerable solar power arrays on each module, which use gallium arsenide photovoltaic cells to convert sunlight into electricity. Energy is stored to power the station when it passes into the Earth's shadow. Resupply spacecraft will replenish fuel for the station's propulsion engines for station keeping, to counter the effects of atmospheric drag. The solar arrays are designed to last up to 15 years. The Tiangong space station
923-477: Is specifically designed for conveying payloads from inside the station to the exterior. Both LCMs provide a pressurised environment for researchers to conduct science experiments in freefall or microgravity which could not be conducted on Earth for more than a few minutes. Experiments can also be placed on the outside of the modules for exposure to the space environment , cosmic rays , vacuum, and solar winds . Overall, Wentian prioritises life science , while
994-579: The China Academy of Space Technology (CAST), the combined 15-meter Chinarm will have greater range and weight-carrying capacity. During spacewalks, various preparations were performed on the robotic arm for manipulation and construction of future modules. On 26 December 2021, Shenzhou 13 crew Zhai Zhigang and Ye Guangfu conducted the second spacewalk to install a panoramic camera, which will be used for space station monitoring and robotic arm observation. They also practiced various movements with
1065-578: The International Space Station (ISS) in 2011, although China, Russia and Europe mutually vowed intentions to maintain a cooperative and multilateral approach in space. Between 2007 and 2011, the space agencies of Russia, Europe, and China carried out the ground-based preparations in the Mars500 project, which complement the ISS -based preparations for a human mission to Mars . Tiangong has involved cooperation with France, Sweden, and Russia. Cooperation in
1136-460: The International Space Station , are modular space stations, assembled in orbit from pieces launched separately. Modular design can greatly improve reliability, reduce costs, shorten development cycles, and meet diversified task requirements. The initial target configuration for the end of 2022 consisted of three modules. Previous plans suggested expanding to six modules by duplicating the initial three, but as of 2023, planning has shifted to adding
1207-744: The Mengtian focus on microgravity experiments. The axial port of the LCMs is fitted with rendezvous equipment for docking at the axial port of the CCM. A mechanical arm called the indexing robotic arm, externally resembling the Lyappa arm used on the Mir space station, moves Wentian LCM to the starboard side, and the Mengtian LCM module to a port-side port of the CCM. The Indexing robot arms differentiate from
1278-494: The Wentian module from the forward port to the starboard lateral docking port, which is its planned permanent location on 30 September 2022 at 04:44 UTC. The relocation process was largely automated with the assistance of the Indexing robotic arm. In October 2022, CMSA prepared to launch the third and final module, Mengtian , to complete the construction for the Tiangong space station. On 31 October 2022, Mengtian module
1349-546: The first , second , third , fourth , fifth and future probes of the Chinese Lunar Exploration Program are called Chang'e – after the Moon goddess. The name "Tiangong" means "heavenly palace". Across China, the launch of Tiangong-1 was reported to have inspired a variety of feelings, including love poetry. The rendezvous of the space vehicles has been compared to the reunion of the cowherd and
1420-570: The 30 days the two astronauts were aboard Tiangong-2, they conducted a number of scientific and technical experiments on the physiological effects of weightlessness , tests on human-machine collaboration on in-orbit maintenance technology and released an accompanying satellite successfully. Accompanying photography and near-distance fly-by observation were also carried out. They collected abundant data and made some achievements in programs of gamma-ray burst polarimeter, space cold atomic clock and preparation of new materials. Shenzhou 11 separated from
1491-807: The Amateur Radio payload for the Chinese Space Station, proposed by the Chinese Radio Amateurs Club (CRAC), Aerospace System Engineering Research Institute of Shanghai (ASES) and Harbin Institute of Technology (HIT). The payload will provide resources for radio amateurs worldwide to contact onboard astronauts or communicate with each other, aim to inspire students to take interests and careers in science, technology, engineering, and math, and encourage more people to get interested in amateur radio . The first phase of
SECTION 20
#17327717360531562-582: The Chinese system with both current and future docking mechanisms on the ISS, which are also based on APAS. It has a circular transfer passage that has a diameter of 800 mm (31 in). The androgynous variant has a mass of 310 kg and the non-androgynous variant has a mass of 200 kg. The Chinese Docking Mechanism was used for the first time on Shenzhou 8 and Tiangong 1 space stations and will be used on future Chinese space stations and with future CMSA cargo resupply vehicles. Electrical power
1633-615: The Heavens"), launched on 24 July 2022; the second, Mengtian ("Dreaming of the Heavens"), launched on 31 October 2022. The names used in the space program, previously all chosen from the revolutionary history of the People's Republic, have been replaced with mystical-religious ones. Thus, the space capsule Divine Vessel ( 神舟 ; Shénzhōu ), spaceplane Divine Dragon ( 神龙 ; Shénlóng ), land-based high-power laser Divine Light ( 神光 ; Shénguāng ), and supercomputer Divine Might ( 神威 ; Shénwēi ). These poetic names continue as
1704-631: The Italian Space Agency signed an initial cooperative agreement, covering areas of collaboration within space transportation, telecommunications, Earth observation, and so on. On 22 February 2017, the CMSA and the Italian Space Agency (ASI) signed an agreement to cooperate on long-term human spaceflight activities. The agreement holds importance due to Italy's leading position in the field of human spaceflight with regards to
1775-589: The Lyappa arm as they are used when docking is needed in the same plane, while the Lyappa arm controls the pitch of the spacecraft to re-dock it at a different plane. The Chinarm on the Tianhe module can be used as a backup for docking relocation. Real-time communications, including live audio and video links, are provided by the Tianlian II series of data relay satellites. A constellation of three satellites
1846-451: The Tiangong space station can be further expanded into six modules possibly enabling more astronaut participation in the future. The construction of the Chinese Space Station officially began in April 2021. The planned 11 missions include three module launches, four crewed missions, and four autonomous cargo flights. On 29 April 2021, the first component of the station, Tianhe core module,
1917-582: The Wentian and Mengtian laboratory modules, respectively. Over 1,000 experiments are tentatively approved by CMSA, and scheduled to be conducted on the space station. Agriculture in microgravity was explored with cultivation of rice and Arabidopsis thaliana as sustainable food sources for long-term spaceflight. The programmed experiment equipment racks for the three modules as of June 2016 were: The space station features space lectures and popular science experiments to educate, motivate and inspire
1988-487: The accelerated ion particles. A magnetic field and specially designed ceramic shield were created to repel damaging particles and maintain the integrity of the thrusters. According to a report by the Chinese Academy of Sciences , the ion drive used on Tiangong ran continuously for 8,240 hours without a glitch during the testing phase, indicating its suitability for Tiangong's designated 15-year lifespan. These are
2059-474: The cargo airlock, then install them onto the external adapters fitted on the module exterior. It can also be used to launch microsatellites . Two Indexing robotic arms, developed by the Shanghai Academy of Spaceflight Technology , are fitted on top of docking ports for the two laboratory modules to help relocate them during construction. In 2011, it was announced that the future space station
2130-487: The cargo spacecraft manually. In March 2022, Shenzhou 13 crew began the preparation to undock from the space station. The crew landed in China on 16 April 2022, after staying 182 days in the low-Earth orbit. Soon afterward, China launched Tianzhou 4 cargo spacecraft in preparation for the next crewed mission in May. The automated freighter docked with the space station on 9 May 2022, and carried vital maintenance equipment and
2201-697: The construction of the space station in 2022. Tiangong modules are self-contained and pre-assembled, in contrast to the US Orbital Segment of the ISS, which required spacewalking to interconnect cables, piping, and structural elements manually. The assembly method of the station can be compared with the Soviet-Russian Mir space station and the Russian orbital segment of the International Space Station, making China
Tiangong - Misplaced Pages Continue
2272-404: The creation and exploitation of the International Space Station (Node 2, Node 3, Columbus, Cupola, Leonardo, Raffaello, Donatello, PMM, etc.) and it signified Italy's increased anticipation in China's developing space station programme. The European Space Agency (ESA) started human spaceflight training with CMSA in 2017, with the ultimate goal of sending ESA astronauts to Tiangong. To prepare for
2343-438: The crew member Chen Dong and Liu Yang performed their first spacewalk from the new Wentian airlock, installing and adjusting various external equipment as well as testing emergency return procedures. On 17 September 2022, astronauts Chen Dong and Cai Xuzhe performed the second spacewalk, installing external pumps and verified emergency rescue capability. On 30 September 2022, all crew members worked in coordination, moving
2414-414: The crew rotation operation, China commenced its permanent space presence. According to CMSA, the Tiangong space station is expected to be expanded from three to six modules, with improved versions of the Tianhe , Wentian , and Mengtian modules. According to Wang Xiang, commander of the space station system at the China Academy of Space Technology (CAST), the potential next phase would be adding
2485-401: The development of a docking mechanism used for space stations. Deputy Chief Designer, Huang Weifen, stated that near the end of 2009, China Manned Space Agency (CMSA) began to train astronauts on how to dock spacecraft. In accordance to the plan, by the end of 2022, the fully assembled Tiangong space station had three 22 metric-ton modules in a basic T-shape. Because of the modular design,
2556-575: The field of crewed space flight between the China Manned Space Agency (CMSA, formerly known as CMSEO) and the Italian Space Agency (ASI) was examined in 2011, and participation in the development of China crewed space stations and cooperation with China in the fields such as visiting astronauts, and scientific research was discussed. In November 2011, the China National Space Administration and
2627-456: The first spacewalks to test the next-generation EVA suit and robotic Chinarm , making Wang Yaping China's first female spacewalker. One of the missions in the 6.5-hour extravehicular activity was to install a dual-arm connector to the 10-meter-long robotic arm. The connector can provide the capability for Chinarm to extend in length with another 5-meter-long segment mounted on the Wentian module that will arrive in 2022. According to Gao Shen of
2698-456: The first visitors to the Tiangong station. The first crew mission began the examination of the core module and verification of key technologies. On 4 July 2021, Liu Boming and Tang Hongbo began their first spacewalk in upgraded Chinese Feitian spacesuits , outfitting the space stations with extravehicular activity (EVA) equipment, such as foot restraints and the standing platform for Chinarm . Shenzhou 12 commander Nie Haisheng stayed inside
2769-553: The future missions, selected ESA astronauts lived together with their Chinese counterparts and engaged in training sessions such as splashes-down survival, language learning, and spacecraft operations. However, in January 2023, ESA announced that the agency will not send its astronauts to China's space station due to political and financial reasons. Tiangong-2 Tiangong-2 ( Chinese : 天 宫 二 号 ; pinyin : Tiāngōng èrhào ; lit. 'Celestial Palace 2')
2840-476: The help of Chinarm controlled by the monitoring astronaut Wang Yaping inside the station. During the construction phase of the station in 2021, according to documents filed by China Manned Space Agency (CMSA) with the United Nations Office for Outer Space Affairs and reported by Reuters, the station had two "close encounters" with SpaceX 's Starlink satellites on 1 July and 21 October, with
2911-622: The name of Taoist deity, the Ruler of Heaven Sky Bow , Romanized as Tiengong or Tiangong , Taiwanese surface-to-air missiles Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Tiangong . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Tiangong&oldid=1217112801 " Category : Disambiguation pages Hidden categories: Short description
Tiangong - Misplaced Pages Continue
2982-494: The national sense of cohesion and pride." On 31 October 2013, CMSA announced the new names for the whole space station program: According to CMSA, which operates the space station, the purpose and mission of Tiangong is to develop and gain experience in spacecraft rendezvous technology, permanent human operations in orbit, long-term autonomous spaceflight of the space station, regenerative life support technology and autonomous cargo and fuel supply technology. It will also serve
3053-485: The orbiting Tiangong-2 space laboratory on 17 November 2016, reentry module landed successfully at the expected site in central Inner Mongolia Autonomous Region at about 13:59 Beijing Time. On 22 April 2017, the cargo vessel Tianzhou-1 successfully docked with Tiangong-2 marking the first successful docking and refuelling with the orbiting space laboratory. It subsequently performed a second docking and refueling on 15 June 2017. On 12 September 2017, Tianzhou-1 performed
3124-522: The payload is capable of providing the following functions utilising the VHF/UHF amateur radio band: The space station is a third-generation modular space station . First-generation space stations, such as early Salyut , Almaz , and Skylab , were single-piece stations and not designed for resupply. Second generation Salyut 6 and 7, and Tiangong 1 and 2 stations, are designed for mid-mission resupply. Third-generation stations, such as Mir and
3195-553: The platform for the next-generation orbit transportation vehicles, scientific and practical applications at large-scale in orbit, and technology for future deep space exploration . CMSA also encourages commercial activities led by the private sector and hopes their involvement could bring cost-effective aerospace innovations. Space tourism at the space station is also considered. The space station will have 23 experimental racks in an enclosed, pressurised environment. There will also be platforms for exposed experiments; 22 and 30 on
3266-508: The remaining modules of which launched in 2022. The China Manned Space Engineering Office published a brief description of Tiangong-2 and its successor Tiangong-3 in 2008, indicating that at least two crewed spaceships would be launched to dock with Tiangong-2. Tiangong-2 was originally expected to be launched by the China National Space Agency (CNSA) by 2015 to replace the prototype module Tiangong-1 , which
3337-399: The same day. Wentian is the second module for the Tiangong space station, and the first laboratory cabin module (LCM). The module is equipped with an airlock cabin, which will become the primary entry-exit point for future EVAs. The module also feature backup avionics, propulsion, and life support systems, improving Tiangong space station's operational redundancy . On 2 September 2022,
3408-464: The scientific payload, the LCM is equipped with multiple internal science racks and 22 payload adapters on the exterior for various types of experiments. Aside from scientific equipment, the module features three additional living quarters designed for short-term stay, which will be used during crew rotation. Wentian was launched and docked with the Tianhe on 24 July 2022. The second LCM, Mengtian ,
3479-511: The second nation to develop and use automatic rendezvous and docking for modular space station construction. The technologies in the construction are derived from decades of Chinese crewed spaceflight experiences, including those gained from Tiangong-1 and Tiangong-2 prototypes, as well as the purchase of aerospace technology from Russia in the early 1990s. A representative of the Chinese crewed space program stated that around 2000, China and Russia were engaged in technological exchanges regarding
3550-451: The space station. It also contained gifts for China's first crew handover ceremony in orbit. The completed station had extra capacity for expanded crew activities and living space for six, allowing crew rotation. On 29 November 2022, the Shenzhou 15 crew Fei Junlong , Deng Qingming , and Zhang Lu was launched to the space station. The crew spent one week together for handover and verification for sustainable six-man operations. With
3621-493: The space station. They tested the guidance system and recorded lighting conditions while approaching the Tianhe from different angles. The crew landed in the Gobi Desert of Inner Mongolia on the same day. Tianzhou 3 cargo spacecraft, which arrived at the launch facility a month earlier, was immediately rolled out onto the launch pad for the next supply mission. On 20 September 2021, Tianzhou 3 autonomous freighter
SECTION 50
#17327717360533692-537: The station and tested the robotic arm movements. Liu Boming and Nie Haisheng completed the second spacewalk on 20 August 2021 and installed various devices outside of the station, including a thermal control system, a panoramic camera, and other equipment. On 16 September 2021, the Shenzhou 12 crew entered the returning spacecraft and undocked from Tianhe . Before leaving the orbit, the crew performed various radial rendezvous (R-Bar) maneuvers to circumnavigate around
3763-486: The station conducting evasive adjustment maneuvers. On 5 January 2022, Shenzhou 13 team used the 10-meter long Chinarm to relocate the Tianzhou 2 supply ship by 20 degrees before returning it to the original location. This maneuver was conducted to practice the procedures, equipment, and backup operation system needed for future module assembly. On 13 January, the crew tested the emergency docking system by controlling
3834-498: The third and final docking and refuelling with Tiangong-2, with what is termed a fast docking which took 6.5 hours, rather than 2 days, to complete. In June 2018, Tiangong-2 performed orbital maneuvers lowering the orbit to 292 × 297 kilometers, likely in preparation for deorbiting. It then returned to its usual orbit. In July 2019, the China Manned Space Engineering Office announced that it
3905-471: The two core modules docked together to enlarge the overall station. The first of two Laboratory Cabin Modules (LCM), Wentian , provides additional avionics, propulsion, and life support systems as backup functions for the CCM. The Wentian is also fitted with an independent airlock cabin to serve as the main entry-exit point for extravehicular activities (EVA), replacing the Tianhe docking hub. For
3976-466: The weaver girl . Wang Wenbao, director of the China Manned Space Agency (CMSA), told a news conference in 2011: "Considering past achievements and the bright future, we feel the manned space programme should have a more vivid symbol, and that the future space station should carry a resounding and encouraging name. We now feel that the public should be involved in the names and symbols, as this major project will enhance national prestige and strengthen
4047-430: The world's first Hall thrusters to be used on a human-rated mission. The Tiangong station features five robotic arms. The longest one is the 10-meter-long, ISS Canadian-style SSRMS robotic arm, nicknamed Chinarm , mounted on the Tianhe core module. The Wentian module features a smaller, 5 m (16 ft) long SSRMS robotic arm that is 5 times more accurate in positioning than the Chinarm . The Wentian arm
4118-461: The year. The crew installed carbon dioxide reduction system for the space station, tested Feitian spacesuits, and debugged Tianhe core module. On 19 July 2022, Tianzhou 3 was undocked from the station, making way for the arrival of the Wentian module. On 24 July 2022, the Wentian laboratory module was launched from the Wenchang space center and rendezvoused with the Tianhe core module on
4189-455: The younger Chinese generation and world audience in science and technology. Each lecture is concluded with a question-and-answer session with school children's questions from classrooms across China. The first and second Tiangong space lesson was conducted in December 2021 and March 2022, as a part of the Shenzhou 13 mission. This tradition continued with the Shenzhou 14 . The CSSARC is
4260-499: Was a Chinese space laboratory and part of the Project 921-2 space station program. Tiangong-2 was launched on 15 September 2016. It was deorbited as planned on 19 July 2019. Tiangong-2 was neither designed nor planned to be a permanent orbital station; rather, it was intended as a testbed for key technologies used in the Tiangong station (Chinese large modular space station) of which the first module launched on 29 April 2021 and
4331-597: Was launched from the Wenchang Satellite Launch Center in preparation for the arrival of Shenzhou 13 crew. The Shenzhou 13 was the first six-month mission on the Tiangong station, whereas previous Shenzhou 12 was only three months in length. The Shenzhou 13 docked with the space station on 15 October 2021. Missions for the Shenzhou 13 crew included orbit experiments, spacewalks, and for the station's future expansion. On 7 November 2021, Shenzhou 13 crew Zhai Zhigang and Wang Yaping conducted
SECTION 60
#17327717360534402-517: Was launched from the Wenchang space center, and docked with the station 13 hours later. The assembly of the Mengtian marks the final step in the 1.5-year construction process. According to China Academy of Space Technology , the rendezvous and docking process for Mengtian was conducted expeditiously, as then L-shaped Tiangong station consumed large amount of energy to stay oriented in its asymmetrical arrangement. On 3 November 2022, Mengtian
4473-531: Was launched in September 2011. In March 2011, Chinese officials stated that Tiangong-2 was scheduled to be launched by 2015. An uncrewed cargo spacecraft will dock with the station, allowing for resupply. In September 2014, its launch was postponed to September 2016. Plans for visits in October 2016 by the crewed mission Shenzhou 11 and the uncrewed resupply craft Tianzhou were made public. The station
4544-567: Was launched into geostationary orbits , providing communication and data support for the station. Tiangong is fitted with the Chinese Docking Mechanism used by Shenzhou spacecraft and previous Tiangong prototypes . The Chinese docking mechanism is based on the Russian APAS-89/APAS-95 system. Despite NASA describing it as a "clone" to APAS, there have been contradictory claims on the compatibility of
4615-510: Was launched on 31 October 2022. The Mengtian module is equipped with expanded in-orbit experiment capacity. The module is divided into multiple sections, including the pressurised crew working compartment, the unpressurised cargo section, the cargo airlock/on-orbit release mechanism, as well as the control module section featuring external experiment adapters, a communication antenna, and two solar arrays. In total, it carries 13 experimental racks and 37 external payload adapters. The cargo airlock
4686-478: Was launched to the orbit aboard the Long March 5B rocket from Wenchang Spacecraft Launch Site . On 29 May 2021, Tianzhou 2 autonomous cargo spacecraft was launched to the Tianhe core module in preparation for the Shenzhou 12 crew, who will be responsible for testing Tianhe' s various systems and preparing for future operations. On 17 June 2021, Shenzhou 12 team docked with the space station, marking them
4757-413: Was maneuvered to a special position, utilizing the Earth's gravity to help stabilize the docking process. At 07:12UTC, The Shenzhou 14 crew entered the Mengtian module. On 10 November 2022, Tianzhou 4 cargo spacecraft undocked from the Tiangong, and Tianzhou 5 was prepared to launch on the same day. Tianzhou 5 was launched on 12 November 2022, carrying supplies, experiments, and microsatellites to
4828-467: Was planned as the foundation for the expansion. New sections included 3D printers , robots, improved robotic arms, and space debris observation, detection, and warning systems. The Xuntian space telescope module is planned to launch in 2026. China's incentive to build its own space station was amplified after US Congress prohibited NASA from any direct engagement & cooperation with CNSA thus effectively prohibiting any Chinese participation in
4899-458: Was planned to be assembled from 2020 to 2022. By 2013, the space station's core module was planned to be launched earlier, in 2018, followed by the first laboratory module in 2020, and a second in 2022. By 2018, it was reported that this had slipped to 2020–2023. In February 2020, a total of 11 launches were planned for the whole construction phase, beginning in 2021. In 2021, it was reported China National Space Administration planned to complete
4970-415: Was relocated autonomously from the forward docking port to port-side lateral docking port via Indexing robotic arm, and successfully berthed at its planned permanent location with Tianhe module at 01:32UTC (9:32 BJT ), forming a T-shape. Subsequently, CMSA announced the construction of the Tiangong space station is officially complete. Designer of Mengtian module, Li Guangxing, explained the space station
5041-505: Was successfully launched from Jiuquan aboard a Long March 2F rocket on 15 September 2016. Shenzhou 11 (Only Expedition) successfully docked with Tiangong-2 on 19 October 2016. Aboard the Shenzhou 11, launched from Jiuquan Satellite Launch Center in the Gobi desert, were Commander Jing Haipeng and Chen Dong who formed the inaugural crew for the space laboratory. It was China's first crewed mission for more than three years. During
#52947