An explosion is a rapid expansion in volume of a given amount of matter associated with an extreme outward release of energy , usually with the generation of high temperatures and release of high-pressure gases . Explosions may also be generated by a slower expansion that would normally not be forceful, but is not allowed to expand, so that when whatever is containing the expansion is broken by the pressure that builds as the matter inside tries to expand, the matter expands forcefully. An example of this is a volcanic eruption created by the expansion of magma in a magma chamber as it rises to the surface. Supersonic explosions created by high explosives are known as detonations and travel through shock waves . Subsonic explosions are created by low explosives through a slower combustion process known as deflagration .
91-627: The Tunguska event was a large explosion of between 3 and 50 megatons that occurred near the Podkamennaya Tunguska River in Yeniseysk Governorate (now Krasnoyarsk Krai ), Russia , on the morning of 30 June 1908. The explosion over the sparsely populated East Siberian taiga flattened an estimated 80 million trees over an area of 2,150 km (830 sq mi) of forest, and eyewitness accounts suggest up to three people may have died. The explosion
182-443: A shaped charge the explosive forces are focused to produce a greater local explosion; shaped charges are often used by military to breach doors or walls. The speed of the reaction is what distinguishes an explosive reaction from an ordinary combustion reaction. Unless the reaction occurs very rapidly, the thermally expanding gases will be moderately dissipated in the medium, with no large differential in pressure and no explosion. As
273-403: A magnetic explosion . Strictly a physical process, as opposed to chemical or nuclear, e.g., the bursting of a sealed or partially sealed container under internal pressure is often referred to as an explosion. Examples include an overheated boiler or a simple tin can of beans tossed into a fire. Boiling liquid expanding vapor explosions are one type of mechanical explosion that can occur when
364-477: A 10-metre (33 ft) fragment survived the explosion and struck the ground. Lake Cheko is a small bowl-shaped lake about 8 km (5.0 mi) north-northwest of the hypocentre. The hypothesis has been disputed by other impact crater specialists. A 1961 investigation had dismissed a modern origin of Lake Cheko, saying that the presence of metres-thick silt deposits on the lake bed suggests an age of at least 5,000 years, but more recent research suggests that only
455-493: A boulder found at the event site, known as John's stone, is a remnant of the meteorite, but oxygen isotope analysis of the quartzite suggests that it is of hydrothermal origin, and probably related to Permian-Triassic Siberian Traps magmatism. In 2013, a team of researchers published the results of an analysis of micro-samples from a peat bog near the centre of the affected area, which show fragments that may be of extraterrestrial origin. The leading scientific explanation for
546-500: A certain collision with local destruction. On 30 June 1908 N.S. (cited as 17 June 1908 O.S. before the implementation of the Soviet calendar in 1918), at around 7:17 AM local time, Evenki natives and Russian settlers in the hills northwest of Lake Baikal observed a bluish light, nearly as bright as the Sun , moving across the sky and leaving a thin trail. Closer to the horizon, there
637-402: A different place, there was another flash, and loud thunder came. This was the third thunder strike. Wind came again, knocked us off our feet, struck the fallen trees. We looked at the fallen trees, watched the tree tops get snapped off, watched the fires. Suddenly Chekaren yelled "Look up" and pointed with his hand. I looked there and saw another flash, and it made another thunder. But the noise
728-449: A giant billow of black smoke, and a loud knocking (not thunder) was heard as if large stones were falling, or artillery was fired. All buildings shook. At the same time the cloud began emitting flames of uncertain shapes. All villagers were stricken with panic and took to the streets, women cried, thinking it was the end of the world. The author of these lines was meantime in the forest about 6 versts [6.4 km] north of Kirensk and heard to
819-508: A gigantic spread-eagled butterfly with a "wingspan" of 70 km (43 mi) and a "body length" of 55 km (34 mi). Upon closer examination, Kulik found holes that he erroneously concluded were meteorite holes; he did not have the means at that time to excavate the holes. During the next 10 years, there were three more expeditions to the area. Kulik found several dozen little "pothole" bogs, each 10 to 50 metres (33 to 164 feet) in diameter, that he thought might be meteoric craters. After
910-480: A hut by the river with my brother Chekaren. We were sleeping. Suddenly we both woke up at the same time. Somebody shoved us. We heard whistling and felt strong wind. Chekaren said "Can you hear all those birds flying overhead?" We were both in the hut, couldn't see what was going on outside. Suddenly, I got shoved again, this time so hard I fell into the fire. I got scared. Chekaren got scared too. We started crying out for father, mother, brother, but no one answered. There
1001-598: A joint US-European team was consistent with an iron meteorite. The February 2013 Chelyabinsk bolide event provided ample data for scientists to create new models for the Tunguska event. Researchers used data from both Tunguska and Chelyabinsk to perform a statistical study of over 50 million combinations of bolide and entry properties that could produce Tunguska-scale damage when breaking apart or exploding at similar altitudes. Some models focused on combinations of properties which created scenarios with similar effects to
SECTION 10
#17327662903571092-574: A laborious exercise in draining one of these bogs (the so-called "Suslov's crater", 32 m [105 ft] in diameter), he found an old tree stump on the bottom, ruling out the possibility that it was a meteoric crater. In 1938, Kulik arranged for an aerial photographic survey of the area covering the central part of the leveled forest (250 square kilometres [97 sq mi]). The original negatives of these aerial photographs (1,500 negatives, each 18 by 18 centimetres [7.1 by 7.1 inches]) were burned in 1975 by order of Yevgeny Krinov , then Chairman of
1183-404: A large crater where it struck the ground, but no such crater has been found. It has been hypothesised that the asteroid's passage through the atmosphere caused pressures and temperatures to build up to a point where the asteroid abruptly disintegrated in a huge explosion. The destruction would have to have been so complete that no remnants of substantial size survived, and the material scattered into
1274-679: A merger signal of about 100 ms duration, during which time is it estimated to have radiated away nine solar masses in the form of gravitational energy. The most common artificial explosives are chemical explosives, usually involving a rapid and violent oxidation reaction that produces large amounts of hot gas. Gunpowder was the first explosive to be invented and put to use. Other notable early developments in chemical explosive technology were Frederick Augustus Abel 's development of nitrocellulose in 1865 and Alfred Nobel 's invention of dynamite in 1866. Chemical explosions (both intentional and accidental) are often initiated by an electric spark or flame in
1365-418: A metre or so of the sediment layer on the lake bed is "normal lacustrine sedimentation", a depth consistent with an age of about 100 years. Acoustic-echo soundings of the lake floor support the hypothesis that the Tunguska event formed the lake. The soundings revealed a conical shape for the lake bed, which is consistent with an impact crater. Magnetic readings indicate a possible metre-sized chunk of rock below
1456-514: A months-long decrease in atmospheric transparency consistent with an increase in suspended dust particles. Though the region of Siberia in which the explosion occurred was very sparsely populated in 1908, there are accounts of the event from eyewitnesses who were in the surrounding area at the time, and regional newspapers reported the event shortly after it occurred. According to the testimony of S. Semenov, as recorded by Russian mineralogist Leonid Kulik 's expedition in 1930: At breakfast time I
1547-413: A possible candidate for the Tunguska object's parent body as the asteroid made a close approach of 0.06945 AU (27 LD ) from Earth on 27 June 1908, three days before the Tunguska impact. The team suspected that 2005 NB 56 's orbit likely fits with the Tunguska object's modelled orbit, even with the effects of weak non-gravitational forces. In 2013, analysis of fragments from the Tunguska site by
1638-402: A probability of 83% that the object moved on an asteroidal path originating from the asteroid belt , rather than on a cometary one (probability of 17%). Proponents of the comet hypothesis have suggested that the object was an extinct comet with a stony mantle that allowed it to penetrate the atmosphere. The chief difficulty in the asteroid hypothesis is that a stony object should have produced
1729-401: A process whereby a stony asteroid could have exhibited the Tunguska impactor's behaviour. Their models show that when the forces opposing a body's descent become greater than the cohesive force holding it together, it blows apart, releasing nearly all its energy at once. The result is no crater, with damage distributed over a fairly wide radius, and all the damage resulting from the thermal energy
1820-425: A railway upon which dozens of trains are travelling at the same time. Afterward, for 5 to 6 minutes an exact likeness of artillery fire was heard: 50 to 60 salvoes in short, equal intervals, which got progressively weaker. After 1.5–2 minutes after one of the "barrages" six more thumps were heard, like cannon firing, but individual, loud and accompanied by tremors. The sky, at the first sight, appeared to be clear. There
1911-401: A result, even a nuclear weapon with a small yield is significantly more powerful than the largest conventional explosives available, with a single weapon capable of completely destroying an entire city. Explosive force is released in a direction perpendicular to the surface of the explosive. If a grenade is in mid air during the explosion, the direction of the blast will be 360°. In contrast, in
SECTION 20
#17327662903572002-537: A small portion of the mass of the explosive material. A material in which the first three factors exist cannot be accepted as an explosive unless the reaction can be made to occur when needed. Fragmentation is the accumulation and projection of particles as the result of a high explosives detonation. Fragments could originate from: parts of a structure (such as glass , bits of structural material , or roofing material), revealed strata and/or various surface-level geologic features (such as loose rocks , soil , or sand ),
2093-407: A vessel containing a pressurized liquid is ruptured, causing a rapid increase in volume as the liquid evaporates. Note that the contents of the container may cause a subsequent chemical explosion, the effects of which can be dramatically more serious, such as a propane tank in the midst of a fire. In such a case, to the effects of the mechanical explosion when the tank fails are added the effects from
2184-641: A wood fire burns in a fireplace, for example, there certainly is the evolution of heat and the formation of gases, but neither is liberated rapidly enough to build up a sudden substantial pressure differential and then cause an explosion. This can be likened to the difference between the energy discharge of a battery , which is slow, and that of a flash capacitor like that in a camera flash, which releases its energy all at once. The generation of heat in large quantities accompanies most explosive chemical reactions. The exceptions are called entropic explosives and include organic peroxides such as acetone peroxide . It
2275-421: A zone, roughly 8 kilometres (5.0 mi) across, where the trees were scorched and devoid of branches, but still standing upright. Trees farther from the centre had been partly scorched and knocked down away from the centre, creating a large radial pattern of downed trees. In the 1960s, it was established that the zone of levelled forest occupied an area of 2,150 km (830 sq mi), its shape resembling
2366-422: Is absorbed during the formation of the compound from its elements; such a reaction is called an endothermic reaction. In explosive technology only materials that are exothermic —that have a net liberation of heat and have a negative heat of formation—are of interest. Reaction heat is measured under conditions either of constant pressure or constant volume. It is this heat of reaction that may be properly expressed as
2457-568: Is consistent with what would be expected from a fragment of Comet Encke, and a hypothetical risk corridor has now been calculated demonstrating that if the impactor had arrived a few minutes earlier it would have exploded over the US or Canada. It is now known that bodies of this kind explode at frequent intervals tens to hundreds of kilometres above the ground. Military satellites have been observing these explosions for decades. In 2019 astronomers searched for hypothesized asteroids ~100 metres in diameter from
2548-424: Is formed from its constituents, heat may either be absorbed or released. The quantity of heat absorbed or given off during transformation is called the heat of formation . Heats of formations for solids and gases found in explosive reactions have been determined for a temperature of 25 °C and atmospheric pressure, and are normally given in units of kilojoules per gram-molecule. A positive value indicates that heat
2639-443: Is generally attributed to a meteor air burst , the atmospheric explosion of a stony asteroid about 50–60 metres (160–200 feet) wide. The asteroid approached from the east-south-east, probably with a relatively high speed of about 27 km/s (60,000 mph) (~ Ma 80). Though the incident is classified as an impact event , the object is thought to have exploded at an altitude of 5 to 10 kilometres (3 to 6 miles) rather than hitting
2730-545: Is similar to the blast energy equivalent of the 1980 volcanic eruption of Mount St. Helens . The researchers also concluded impactors of this size hit the Earth only at an average interval scale of millennia. In June 2007, scientists from the University of Bologna identified a lake in the Tunguska region as a possible impact crater from the event. They do not dispute that the Tunguska body exploded in midair, but believe that
2821-407: Is the rapid liberation of heat that causes the gaseous products of most explosive reactions to expand and generate high pressures . This rapid generation of high pressures of the released gas constitutes the explosion. The liberation of heat with insufficient rapidity will not cause an explosion. For example, although a unit mass of coal yields five times as much heat as a unit mass of nitroglycerin ,
Tunguska event - Misplaced Pages Continue
2912-571: The Tunguska event of 1908 is believed to have resulted from a meteor air burst . Black hole mergers, likely involving binary black hole systems, are capable of radiating many solar masses of energy into the universe in a fraction of a second, in the form of a gravitational wave . This is capable of transmitting ordinary energy and destructive forces to nearby objects, but in the vastness of space, nearby objects are rare. The gravitational wave observed on 21 May 2019, known as GW190521 , produced
3003-509: The blast wave produced by large air-burst explosions. The trees directly below the explosion are stripped as the blast wave moves vertically downward, but remain standing upright, while trees farther away are knocked over because the blast wave is travelling closer to horizontal when it reaches them. Soviet experiments performed in the mid-1960s, with model forests (made of matches on wire stakes) and small explosive charges slid downward on wires, produced butterfly-shaped blast patterns similar to
3094-454: The nominative singular is versta , but the form usually used with numbers is the genitive plural verst — 10 verst, 25 verst, etc. — whence the English form. A mezhevaya versta ( Russian : межевая верста , literally 'border verst') is twice as long as a verst. "The verst of the 17th century was 700 sazhens or 1.49 km as against the 500 sazhens or 1.067 km it became at
3185-442: The "heat of explosion." A chemical explosive is a compound or mixture which, upon the application of heat or shock, decomposes or rearranges with extreme rapidity, yielding much gas and heat. Many substances not ordinarily classed as explosives may do one, or even two, of these things. A reaction must be capable of being initiated by the application of shock, heat, or a catalyst (in the case of some explosive chemical reactions) to
3276-403: The 1260 mm long core sample pulled from the bottom of the lake, representing an age older than the Tunguska event. Additionally, there are problems with impact physics: It is unlikely that a stony meteorite in the right size range would have the mechanical strength necessary to survive atmospheric passage intact while retaining a velocity high enough to excavate a crater that size on reaching
3367-441: The 17th an unusual atmospheric event was observed. At 7:43 the noise akin to a strong wind was heard. Immediately afterward a horrific thump sounded, followed by an earthquake that literally shook the buildings as if they were hit by a large log or a heavy rock. The first thump was followed by a second, and then a third. Then the interval between the first and the third thumps was accompanied by an unusual underground rattle, similar to
3458-552: The 1960s. In 1978, Slovak astronomer Ľubor Kresák suggested that the body was a fragment of Comet Encke , a periodic comet with a period of just over three years that stays entirely within Jupiter's orbit. It is also responsible for the Beta Taurids , an annual meteor shower with a maximum activity around 28–29 June. The Tunguska event coincided with that shower's peak activity, the Tunguska object's approximate trajectory
3549-654: The Committee on Meteorites of the USSR Academy of Sciences, as part of an initiative to dispose of flammable nitrate film . Positive prints were preserved for further study in Tomsk . Expeditions sent to the area in the 1950s and 1960s found microscopic silicate and magnetite spheres in siftings of the soil. Similar spheres were predicted to exist in the felled trees, although they could not be detected by contemporary means. Later expeditions did identify such spheres in
3640-501: The Earth shook, and when I was on the ground, I pressed my head down, fearing rocks would smash it. When the sky opened up, hot wind raced between the houses, like from cannons, which left traces in the ground like pathways, and it damaged some crops. Later we saw that many windows were shattered, and in the barn, a part of the iron lock snapped. Testimony of Chuchan of the Shanyagir tribe, as recorded by I. M. Suslov in 1926: We had
3731-427: The Earth's atmosphere. The largest asteroid air burst observed with modern instrumentation was the 500-kiloton Chelyabinsk meteor in 2013, which shattered windows and produced meteorites. In 2020, a group of Russian scientists used a range of computer models to calculate the passage of asteroids with diameters of 200, 100, and 50 metres at oblique angles across Earth's atmosphere. They used a range of assumptions about
Tunguska event - Misplaced Pages Continue
3822-400: The Earth's surface, leaving no impact crater . The Tunguska event is the largest impact event on Earth in recorded history , though much larger impacts occurred in prehistoric times. An explosion of this magnitude would be capable of destroying a large metropolitan area . The event has been depicted in numerous works of fiction . The equivalent Torino scale rating for the impactor is 8:
3913-616: The Sun, and presumably on most other stars as well. The energy source for solar flare activity comes from the tangling of magnetic field lines resulting from the rotation of the Sun's conductive plasma. Another type of large astronomical explosion occurs when a meteoroid or an asteroid impacts the surface of another object, or explodes in its atmosphere , such as a planet. This occurs because the two objects are moving at very high speed relative to each other (a minimum of 11.2 kilometres per second (7.0 mi/s) for an Earth impacting body ). For example,
4004-456: The Taurid swarm between 5–11 July, and 21 July – 10 August. As of February 2020, there have been no reports of discoveries of any such objects. In 1983, astronomer Zdeněk Sekanina published a paper criticising the comet hypothesis. He pointed out that a body composed of cometary material, travelling through the atmosphere along such a shallow trajectory, ought to have disintegrated, whereas
4095-418: The Tunguska body apparently remained intact into the lower atmosphere. Sekanina also argued that the evidence pointed to a dense rocky object, probably of asteroidal origin. This hypothesis was further boosted in 2001, when Farinella , Foschini, et al. released a study calculating the probabilities based on orbital modelling extracted from the atmospheric trajectories of the Tunguska object. They concluded with
4186-695: The aid of flashbulbs) in Sweden and Scotland. It has been theorized that this sustained glowing effect was due to light passing through high-altitude ice particles that had formed at extremely low temperatures as a result of the explosion – a phenomenon that decades later was reproduced by Space Shuttles . In the United States, a Smithsonian Astrophysical Observatory program at the Mount Wilson Observatory in California observed
4277-599: The area's isolation and significant political upheaval affecting Russia in the 1910s. In 1921, the Russian mineralogist Leonid Kulik led a team to the Podkamennaya Tunguska River basin to conduct a survey for the Soviet Academy of Sciences . Although they never visited the central blast area, the many local accounts of the event led Kulik to believe that a giant meteorite impact had caused
4368-690: The atmosphere; from there, it drifted downwind, in a sort of wick, which eventually found an ignition source such as lightning. Once the gas was ignited, the fire streaked along the wick, and then down to the source of the leak in the ground, whereupon there was an explosion. Explosion For an explosion to occur, there must be a rapid, forceful expansion of matter. There are numerous ways this can happen, both naturally and artificially, such as volcanic eruptions , or two objects striking each other at very high speeds, as in an impact event . Explosive volcanic eruptions occur when magma rises from below, it has dissolved gas in it. The reduction of pressure as
4459-409: The blast releases. During the 1990s, Italian researchers, coordinated by the physicist Giuseppe Longo from the University of Bologna , extracted resin from the core of the trees in the area of impact to examine trapped particles that were present during the 1908 event. They found high levels of material commonly found in rocky asteroids and rarely found in comets. Kelly et al. (2009) contend that
4550-686: The blast were detected in Germany, Denmark, Croatia, and the United Kingdom – and as far away as Batavia, Dutch East Indies , and Washington, D.C. It is estimated that, in some places, the resulting shock wave was equivalent to an earthquake measuring 5.0 on the Richter scale . Over the next few days, night skies in Asia and Europe were aglow. There are contemporaneous reports of brightly lit photographs being successfully taken at midnight (without
4641-665: The bogs. The nitrogen is believed to have been deposited as acid rain , a suspected fallout from the explosion. Other scientists disagree: "Some papers report that hydrogen, carbon and nitrogen isotopic compositions with signatures similar to those of CI and CM carbonaceous chondrites were found in Tunguska peat layers dating from the TE (Kolesnikov et al. 1999, 2003) and that iridium anomalies were also observed (Hou et al. 1998, 2004). Measurements performed in other laboratories have not confirmed these results (Rocchia et al. 1990; Tositti et al. 2006)." Researcher John Anfinogenov has suggested that
SECTION 50
#17327662903574732-510: The bottom of Lake Cheko, they identified a layer of radionuclide contamination from mid-20th century nuclear testing at Novaya Zemlya . The depth of this layer gave an average annual sedimentation rate of between 3.6 and 4.6 mm a year. These sedimentation values are less than half of the 1 cm/year calculated by Gasperini et al. in their 2009 publication on their analysis of the core they took from Lake Cheko in 1999. The Russian scientists in 2017 counted at least 280 such annual varves in
4823-410: The burning substance into heat released to the surroundings, while in the latter, fast combustion ( i.e. detonation ) instead converts more internal energy into work on the surroundings ( i.e. less internal energy converted into heat); c.f. heat and work (thermodynamics) are equivalent forms of energy. See Heat of Combustion for a more thorough treatment of this topic. When a chemical compound
4914-496: The case from a nuclear explosion and estimate that the air burst had an energy range from 3 to 5 megatons of TNT (13 to 21 PJ). The 15-megaton ( Mt ) estimate represents an energy about 1,000 times greater than that of Trinity , and roughly equal to that of the United States' Castle Bravo nuclear test in 1954 (which measured 15.2 Mt) and one third that of the Soviet Union 's Tsar Bomba test in 1961. A 2019 paper suggests
5005-429: The casing surrounding the explosive, and/or any other loose miscellaneous items not vaporized by the shock wave from the explosion. High velocity, low angle fragments can travel hundreds of metres with enough energy to initiate other surrounding high explosive items, injure or kill personnel, and/or damage vehicles or structures. Classical Latin explōdō means "to hiss a bad actor off the stage", "to drive an actor off
5096-414: The coal cannot be used as an explosive (except in the form of coal dust ) because the rate at which it yields this heat is quite slow. In fact, a substance that burns less rapidly ( i.e. slow combustion ) may actually evolve more total heat than an explosive that detonates rapidly ( i.e. fast combustion ). In the former, slow combustion converts more of the internal energy ( i.e. chemical potential ) of
5187-497: The event. Upon returning, he persuaded the Soviet government to fund an expedition to the suspected impact zone, based on the prospect of salvaging meteoric iron . Kulik led a scientific expedition to the Tunguska blast site in 1927. He hired local Evenki hunters to guide his team to the centre of the blast area, where they expected to find an impact crater . To their surprise, there was no crater at ground zero . Instead they found
5278-426: The explosion is a meteor air burst by an asteroid 6–10 km (4–6 mi) above the Earth's surface. Meteoroids enter Earth's atmosphere from outer space every day, travelling at a speed of at least 11 km/s (7 mi/s). The heat generated by compression of air in front of the body ( ram pressure ) as it travels through the atmosphere is immense and most meteoroids burn up or explode before they reach
5369-428: The explosion resulting from the released (initially liquid and then almost instantaneously gaseous) propane in the presence of an ignition source. For this reason, emergency workers often differentiate between the two events. In addition to stellar nuclear explosions , a nuclear weapon is a type of explosive weapon that derives its destructive force from nuclear fission or from a combination of fission and fusion. As
5460-833: The explosive power of the Tunguska event may have been around 20–30 megatons. Since the second half of the 20th century, close monitoring of Earth's atmosphere through infrasound and satellite observation has shown that asteroid air bursts with energies comparable to those of nuclear weapons routinely occur, although Tunguska-sized events, on the order of 5–15 megatons , are much rarer. Eugene Shoemaker estimated that 20-kiloton events occur annually and that Tunguska-sized events occur about once every 300 years. More recent estimates place Tunguska-sized events at about once every thousand years, with 5-kiloton air bursts averaging about once per year. Most of these are thought to be caused by asteroid impactors, as opposed to mechanically weaker cometary materials, based on their typical penetration depths into
5551-439: The ground. Though scientific consensus is that the Tunguska explosion was caused by the impact of a small asteroid, there are some dissenters. Astrophysicist Wolfgang Kundt has proposed that the Tunguska event was caused by the release and subsequent explosion of 10 million tons of natural gas from within the Earth's crust. The basic idea is that natural gas leaked out of the crust and then rose to its equal-density height in
SECTION 60
#17327662903575642-426: The ground. Early estimates of the energy of the Tunguska air burst ranged from 10–15 megatons of TNT (42–63 petajoules ) to 30 megatons of TNT (130 PJ), depending on the exact height of the burst as estimated when the scaling laws from the effects of nuclear weapons are employed. More recent calculations that include the effect of the object's momentum find that more of the energy was focused downward than would be
5733-417: The impact of a fragment of a cosmic body. Sediment cores from the lake's bottom were studied to support or reject this hypothesis. A 175-centimetre-long (69 in) core, collected near the center of the lake, consists of an upper c. 1-metre-thick (39 in) sequence of lacustrine deposits overlaying coarser chaotic material. Pb and Cs indicate that the transition from lower to upper sequence occurred close to
5824-420: The impact was caused by a comet because of the sightings of noctilucent clouds following the impact, a phenomenon caused by massive amounts of water vapour in the upper atmosphere. They compared the noctilucent cloud phenomenon to the exhaust plume from NASA's Endeavour Space Shuttle . A team of Russian researchers led by Edward Drobyshevski in 2009 suggested that the near-Earth asteroid 2005 NB 56 may be
5915-437: The impact with Earth's atmosphere, leaving no obvious traces. The comet hypothesis was further supported by the glowing skies (or "skyglows" or "bright nights") observed across Eurasia for several evenings after the impact, which are possibly explained by dust and ice that had been dispersed from the comet's tail across the upper atmosphere. The cometary hypothesis gained a general acceptance among Soviet Tunguska investigators by
6006-466: The isotopic ratios measured in the adjacent layers, and this abnormality was not found in bogs outside the area. The region of the bogs showing these anomalous signatures also contains an unusually high proportion of iridium , similar to the iridium layer found in the Cretaceous–Paleogene boundary . These unusual proportions are believed to result from debris from the falling body that deposited in
6097-399: The lake (between 100 and 90 cm), and again by subsequent fires (one local fire in the upper 40 cm). In 2017, new research by Russian scientists pointed to a rejection of the theory that the Tunguska event created Lake Cheko. They used soil research to determine that the lake is 280 years old or even much older; in any case clearly older than the Tunguska event. In analyzing soils from
6188-470: The lake's deepest point that may be a fragment of the colliding body. Finally, the lake's long axis points to the Tunguska explosion's hypocentre, about 7.0 km (4.3 mi) away. Work is still being done at Lake Cheko to determine its origins. The main points of the study are that: Cheko, a small lake located in Siberia close to the epicentre of the 1908 Tunguska explosion, might fill a crater left by
6279-421: The limited instrumentation available at the time of the event, modern scientific interpretations of its cause and magnitude have relied chiefly on damage assessments and geological studies conducted many years after the event. Estimates of its energy have ranged from 3–30 megatons of TNT (13–126 petajoules). Only more than a decade after the event did any scientific analysis of the region take place, in part due to
6370-408: The lower unit (below ~100 cm) contains abundant forest tree pollen, but no hydrophytes, suggesting that no lake existed then, but a taiga forest growing on marshy ground (Fig. 5). Pollen and microcharcoal show a progressive reduction in the taiga forest, from the bottom of the core upward. This reduction may have been caused by fires (two local episodes below ~100 cm), then by the TE and the formation of
6461-411: The magma rises causes the gas to bubble out of solution, resulting in a rapid increase in volume, however the size of the magma chamber remains the same. This results in pressure buildup that eventually leads to an explosive eruption. Explosions can also occur outside of Earth in the universe in events such as supernovae , or, more commonly, stellar flares. Humans are also able to create explosions through
6552-586: The north-east some kind of artillery barrage, that repeated at intervals of 15 minutes at least 10 times. In Kirensk in a few buildings in the walls facing north-east window glass shook. Siberian Life newspaper, 27 July 1908: When the meteorite fell, strong tremors in the ground were observed, and near the Lovat village of the Kansk uezd two strong explosions were heard, as if from large-calibre artillery. Krasnoyaretz newspaper, 13 July 1908: Kezhemskoye village. On
6643-452: The object's composition as if it was made of iron, rock, or ice. The model that most closely matched the observed event was an iron asteroid up to 200 metres in diameter, travelling at 11.2 km per second, that glanced off the Earth's atmosphere and returned into solar orbit. The explosion's effect on the trees near the explosion's hypocentre was similar to the effects of the conventional Operation Blowdown . These effects are caused by
6734-511: The pattern found at the Tunguska site. The experiments suggested that the object had approached at an angle of roughly 30 degrees from the ground and 115 degrees from north and had exploded in midair. In 1930, the British meteorologist and mathematician F. J. W. Whipple suggested that the Tunguska body was a small comet . A comet is composed of dust and volatiles , such as water ice and frozen gases, and could have been completely vaporised by
6825-446: The peasants saw to the northwest, rather high above the horizon, some strangely bright (impossible to look at) bluish-white heavenly body, which for 10 minutes moved downwards. The body appeared as a "pipe", i.e., a cylinder. The sky was cloudless, only a small dark cloud was observed in the general direction of the bright body. It was hot and dry. As the body neared the ground (forest), the bright body seemed to smudge, and then turned into
6916-419: The presence of oxygen. Accidental explosions may occur in fuel tanks, rocket engines, etc. A high current electrical fault can create an "electrical explosion" by forming a high-energy electrical arc which rapidly vaporizes metal and insulation material. This arc flash hazard is a danger to people working on energized switchgear . Excessive magnetic pressure within an ultra-strong electromagnet can cause
7007-406: The resin of the trees. Chemical analysis showed that the spheres contained high proportions of nickel relative to iron, which is also found in meteorites, leading to the conclusion they were of extraterrestrial origin. The concentration of the spheres in different regions of the soil was also found to be consistent with the expected distribution of debris from a meteor air burst . Later studies of
7098-436: The spheres found unusual ratios of numerous other metals relative to the surrounding environment, which was taken as further evidence of their extraterrestrial origin. Chemical analysis of peat bogs from the area also revealed numerous anomalies considered consistent with an impact event. The isotopic signatures of carbon, hydrogen, and nitrogen at the layer of the bogs corresponding to 1908 were found to be inconsistent with
7189-476: The stage by making noise", from ex- ("out") + plaudō ("to clap; to applaud"). The modern meaning developed later: In English: Verst A verst ( Russian : верста , versta ) is an obsolete Russian unit of length defined as 500 sazhen . This makes a verst equal to 1.0668 kilometres (3,500 feet). In the English language , verst is singular with the normal plural versts . In Russian,
7280-629: The time of Peter the Great ." In Finland , a virsta was 1,068.84 m according to the Swedish standard, defined in 1827 as 1 ⁄ 10 of a peninkulma , the Finnish language name for the pre-metric Swedish mil , used in Finland since the early 17th century (see Obsolete Finnish units of measurement ), or 600 syli (Swedish fathoms, 1.781 m). Metrication replaced virsta with
7371-927: The time of the Tunguska event. Pollen analysis reveals that remains of aquatic plants are abundant in the top post-1908 sequence but are absent in the lower pre-1908 portion of the core. These results, including organic C, N and δC data, suggest that Lake Cheko formed at the time of the Tunguska event. Pollen assemblages confirm the presence of two different units, above and below the ~100‐cm level (Fig. 4). The upper 100‐cm long section, in addition to pollen of taiga forest trees such as Abies, Betula, Juniperus, Larix, Pinus, Picea, and Populus, contains abundant remains of hydrophytes, i.e. , aquatic plants probably deposited under lacustrine conditions similar to those prevailing today. These include both free-floating plants and rooted plants, growing usually in water up to 3–4 metres in depth (Callitriche, Hottonia, Lemna, Hydrocharis, Myriophyllum, Nuphar, Nymphaea, Potamogeton, Sagittaria). In contrast,
7462-498: The tree-fall pattern as well as the atmospheric and seismic pressure waves of Tunguska. Four different computer models produced similar results; they concluded that the likeliest candidate for the Tunguska impactor was a stony body between 50 and 80 m (164 and 262 ft) in diameter, entering the atmosphere at roughly 55,000 km/h (34,000 mph), exploding at 10 to 14 km (6 to 9 mi) altitude, and releasing explosive energy equivalent to between 10 and 30 megatons. This
7553-438: The upper atmosphere during the explosion would have caused the skyglows. Models published in 1993 suggested that the stony body would have been about 60 metres (200 ft) across, with physical properties somewhere between an ordinary chondrite and a carbonaceous chondrite . Typical carbonaceous chondrite substance tends to be dissolved with water rather quickly unless it is frozen. Christopher Chyba and others have proposed
7644-430: The use of explosives , or through nuclear fission or fusion , as in a nuclear weapon . Explosions frequently occur during bushfires in eucalyptus forests where the volatile oils in the tree tops suddenly combust. Among the largest known explosions in the universe are supernovae , which occur after the end of life of some types of stars . Solar flares are an example of common, much less energetic, explosions on
7735-561: Was a flash producing a billowing cloud, followed by a pillar of fire that cast a red light on the landscape. The pillar split in two and faded, turning to black. About ten minutes later, there was a sound similar to artillery fire. Eyewitnesses closer to the explosion reported that the source of the sound moved from the east to the north of them. The sounds were accompanied by a shock wave that knocked people off their feet and broke windows hundreds of kilometres away. The explosion registered at seismic stations across Eurasia, and air waves from
7826-473: Was a second sun, my eyes were hurting, I even closed them. It was like what the Russians call lightning. And immediately there was a loud thunderclap. This was the second thunder. The morning was sunny, there were no clouds, our Sun was shining brightly as usual, and suddenly there came a second one! Chekaren and I had some difficulty getting out from under the remains of our hut. Then we saw that above, but in
7917-463: Was covered with fire. At that moment I became so hot that I couldn't bear it as if my shirt was on fire; from the northern side, where the fire was, came strong heat. I wanted to tear off my shirt and throw it down, but then the sky shut closed, and a strong thump sounded, and I was thrown a few metres. I lost my senses for a moment, but then my wife ran out and led me to the house. After that such noise came, as if rocks were falling or cannons were firing,
8008-418: Was less than before. This was the fourth strike, like normal thunder. Now I remember well there was also one more thunder strike, but it was small, and somewhere far away, where the Sun goes to sleep. Sibir newspaper, 2 July 1908: On the morning of 17th of June, around 9:00, we observed an unusual natural occurrence. In the north Karelinski village [200 verst (213 km (132 mi)) north of Kirensk]
8099-478: Was no wind and no clouds. Upon closer inspection to the north, i.e. where most of the thumps were heard, a kind of an ashen cloud was seen near the horizon, which kept getting smaller and more transparent and possibly by around 2–3 p.m. completely disappeared. Since the 1908 event, an estimated 1,000 scholarly papers (most in Russian) have been published about the Tunguska explosion. Owing to the site's remoteness and
8190-449: Was noise beyond the hut, we could hear trees falling down. Chekaren and I got out of our sleeping bags and wanted to run out, but then the thunder struck. This was the first thunder. The Earth began to move and rock, the wind hit our hut and knocked it over. My body was pushed down by sticks, but my head was in the clear. Then I saw a wonder: trees were falling, the branches were on fire, it became mighty bright, how can I say this, as if there
8281-408: Was sitting by the house at Vanavara Trading Post [approximately 65 kilometres (40 mi) south of the explosion], facing north. [...] I suddenly saw that directly to the north, over Onkoul's Tunguska Road, the sky split in two and fire appeared high and wide over the forest [as Semenov showed, about 50 degrees up – expedition note]. The split in the sky grew larger, and the entire northern side
#356643