Misplaced Pages

Ukrainian Shield

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In geology, the Ukrainian Shield or the Ukrainian Crystalline Massif is the southwest shield of the East European craton . It has an area of about 200,000 km (77,000 sq mi) and is approximately 1,000 km (620 mi) long and up to 250 km (160 mi) wide.

#735264

71-555: It is a pegmatite geologic province which can be divided into the following megastructures: Middle Prydniprovia , Western Pryazovia , Eastern Pryazovia, Ingulski , Rosynsko- Tikychki , Dnistersko - Buzki and Volyn , which differ in mineralogical composition and geochemical specialization. The Ukrainian Shield and the Voronezh Massif consist of 3.2-3.8 Ga Archean crust in the southwest and east, and 2.3-2.1 Ga Early Proterozoic orogenic belts . The Ilyinets crater

142-930: A grain boundary . Like a grain boundary, a twin boundary has different crystal orientations on its two sides. But unlike a grain boundary, the orientations are not random, but related in a specific, mirror-image way. Mosaicity is a spread of crystal plane orientations. A mosaic crystal consists of smaller crystalline units that are somewhat misaligned with respect to each other. In general, solids can be held together by various types of chemical bonds , such as metallic bonds , ionic bonds , covalent bonds , van der Waals bonds , and others. None of these are necessarily crystalline or non-crystalline. However, there are some general trends as follows: Metals crystallize rapidly and are almost always polycrystalline, though there are exceptions like amorphous metal and single-crystal metals. The latter are grown synthetically, for example, fighter-jet turbines are typically made by first growing

213-515: A molten condition nor entirely in solution, but the high temperature and pressure conditions of metamorphism have acted on them by erasing their original structures and inducing recrystallization in the solid state. Other rock crystals have formed out of precipitation from fluids, commonly water, to form druses or quartz veins. Evaporites such as halite , gypsum and some limestones have been deposited from aqueous solution, mostly owing to evaporation in arid climates. Water-based ice in

284-619: A molten fluid, or by crystallization out of a solution. Some ionic compounds can be very hard, such as oxides like aluminium oxide found in many gemstones such as ruby and synthetic sapphire . Covalently bonded solids (sometimes called covalent network solids ) are typically formed from one or more non-metals, such as carbon or silicon and oxygen, and are often very hard, rigid, and brittle. These are also very common, notable examples being diamond and quartz respectively. Weak van der Waals forces also help hold together certain crystals, such as crystalline molecular solids , as well as

355-559: A pegmatitic gabbro ) is a coarse-grained rock containing patches of much coarser-grained rock of essentially the same composition. Individual crystals in pegmatites can be enormous in size. It is likely that the largest crystals ever found were feldspar crystals in pegmatites from Karelia with masses of thousands of tons. Quartz crystals with masses measured in thousands of pounds and micas over 10 meters (33 ft) across and 4 meters (13 ft) thick have been found. Spodumene crystals over 12 meters (40 ft) long have been found in

426-416: A "crystal" is based on the microscopic arrangement of atoms inside it, called the crystal structure . A crystal is a solid where the atoms form a periodic arrangement. ( Quasicrystals are an exception, see below ). Not all solids are crystals. For example, when liquid water starts freezing, the phase change begins with small ice crystals that grow until they fuse, forming a polycrystalline structure. In

497-412: A composition similar to granite , so that their most common minerals are quartz , feldspar , and mica . However, other pegmatite compositions are known, including compositions similar to nepheline syenite or gabbro . The term pegmatite is thus purely a textural description. Geologists typically prefix the term with a compositional description, so that granitic pegmatite is a pegmatite with

568-450: A few pegmatites have a complex composition, with numerous unusual minerals of rare elements. These complex pegmatites are mined for lithium , beryllium , boron , fluorine , tin , tantalum , niobium , rare earth elements , uranium , and other valuable commodities. The word pegmatite derives from Homeric Greek , πήγνυμι ( pēgnymi ), which means “to bind together”, in reference to the intertwined crystals of quartz and feldspar in

639-555: A fraction of a millimetre to several centimetres across, although exceptionally large crystals are occasionally found. As of 1999 , the world's largest known naturally occurring crystal is a crystal of beryl from Malakialina, Madagascar , 18 m (59 ft) long and 3.5 m (11 ft) in diameter, and weighing 380,000 kg (840,000 lb). Some crystals have formed by magmatic and metamorphic processes, giving origin to large masses of crystalline rock . The vast majority of igneous rocks are formed from molten magma and

710-611: A higher aluminium content (peraluminous granites). Intermediate pegmatites (NYF + LCT pegmatites) are known and may have formed by contamination of an initially NYF magma body with melted undepleted supracrustral rock. Pegmatites often contain rare elements and gemstones . Examples include aquamarine , tourmaline, topaz, fluorite, apatite, and corundum , often along with tin , rare earth, and tungsten minerals, among others. Pegmatites have been mined for both quartz and feldspar. For quartz mining, pegmatites with central quartz masses have been of particular interest. Pegmatites are

781-701: A larger intrusion. Pegmatites in low-grade metamorphic rock tend to be dominated by quartz and carbonate minerals . Pegmatites in metamorphic rock of higher grade are dominted by alkali feldspar . Gabbroic pegmatites typically occur as lenses within bodies of gabbro or diabase . Nepheline syenite pegmatites are common in alkaline igneous complexes. Volcanic rocks : Subvolcanic rocks : Plutonic rocks : Picrite basalt Peridotite Basalt Diabase (Dolerite) Gabbro Andesite Microdiorite Diorite Dacite Microgranodiorite Granodiorite Rhyolite Microgranite Granite Crystal A crystal or crystalline solid

SECTION 10

#1732772765736

852-608: A perfect, exactly repeating pattern. However, in reality, most crystalline materials have a variety of crystallographic defects : places where the crystal's pattern is interrupted. The types and structures of these defects may have a profound effect on the properties of the materials. A few examples of crystallographic defects include vacancy defects (an empty space where an atom should fit), interstitial defects (an extra atom squeezed in where it does not fit), and dislocations (see figure at right). Dislocations are especially important in materials science , because they help determine

923-449: A rate ranging from 1 m to 10 m per day. Pegmatites are the last part of a magma body to crystallize. This final fluid fraction is enriched in volatile and trace elements. The residual magma undergoes phase separation into a melt phase and a hydrous fluid phase saturated with silica , alkalis , and other elements. Such phase separation requires formation from a wet magma, rich enough in water to saturate before more than two-thirds of

994-1042: A simple composition, often being composed entirely of minerals common in granite, such as feldspar, mica, and quartz. The feldspar and quartz often show graphic texture . Rarely, pegmatites are extremely enriched in incompatible elements , such as lithium , caesium , beryllium , tin , niobium , zirconium , uranium , thorium , boron, phosphorus, and fluorine. These complex pegmatites contain unusual minerals of these elements, such as beryl, spodumene, lepidolite, amblygonite, topaz, apatite, fluorite, tourmaline, triphylite , columbite , monazite , and molybdenite . Some of these can be important ore minerals. Some gemstones , such as emerald , are found almost exclusively in pegmatites. Nepheline syenite pegmatites typically contain zirconium, titanium , and rare earth element minerals. Gabbroic pegmatites typically consist of exceptionally coarse interlocking pyroxene and plagioclase . Pegmatites are enriched in volatile and incompatible elements , consistent with their likely origin as

1065-434: A single crystal of titanium alloy, increasing its strength and melting point over polycrystalline titanium. A small piece of metal may naturally form into a single crystal, such as Type 2 telluric iron , but larger pieces generally do not unless extremely slow cooling occurs. For example, iron meteorites are often composed of single crystal, or many large crystals that may be several meters in size, due to very slow cooling in

1136-721: A single solid. Polycrystals include most metals , rocks, ceramics , and ice . A third category of solids is amorphous solids , where the atoms have no periodic structure whatsoever. Examples of amorphous solids include glass , wax , and many plastics . Despite the name, lead crystal, crystal glass , and related products are not crystals, but rather types of glass, i.e. amorphous solids. Crystals, or crystalline solids, are often used in pseudoscientific practices such as crystal therapy , and, along with gemstones , are sometimes associated with spellwork in Wiccan beliefs and related religious movements. The scientific definition of

1207-626: A very coarse texture , with large interlocking crystals usually greater in size than 1 cm (0.4 in) and sometimes greater than 1 meter (3 ft). Most pegmatites are composed of quartz , feldspar , and mica , having a similar silicic composition to granite . However, rarer intermediate composition and mafic pegmatites are known. Many of the world's largest crystals are found within pegmatites. These include crystals of microcline , quartz , mica , spodumene , beryl , and tourmaline . Some individual crystals are over 10 m (33 ft) long. Most pegmatites are thought to form from

1278-435: A wide range of properties. Polyamorphism is a similar phenomenon where the same atoms can exist in more than one amorphous solid form. Crystallization is the process of forming a crystalline structure from a fluid or from materials dissolved in a fluid. (More rarely, crystals may be deposited directly from gas; see: epitaxy and frost .) Crystallization is a complex and extensively-studied field, because depending on

1349-518: Is Wise's (2022) pegmatite classification, which focuses mostly on the source of the magma from which the pegmatite crystalizes. Pegmatites form under conditions in which the rate of new crystal nucleation is much slower than the rate of crystal growth . Large crystals are favored. In normal igneous rocks, coarse texture is a result of slow cooling deep underground. It is not clear if pegmatite forms by slow or rapid cooling. In some studies, crystals in pegmatitic conditions have been recorded to grow at

1420-424: Is a solid material whose constituents (such as atoms , molecules , or ions ) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape , consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation

1491-850: Is a chilled margin whose composition is representative of the original melt. Pegmatites derived from batholiths can be divided into a family of NYF pegmatites, characterized by progressive enrichment in niobium , yttrium , and fluorine as well as enrichment in beryllium, rare earth elements, scandium , titanium, zirconium, thorium, and uranium; and a family of LCT pegmatites, characterized by progressive accumulation of lithium, caesium , and tantalum, as well as enrichment in rubidium , beryllium, tin, barium, phosphorus, and fluorine. The NYF pegmatites likely fractionated from A- to I-type granites that were relatively low in aluminium (subaluminous to metaluminous granites). These granites originated from depleted crust or mantle rock. LCT pegmatites most likely formed from S-type granites or possibly I-type granites, with

SECTION 20

#1732772765736

1562-445: Is a noncrystalline form. Polymorphs, despite having the same atoms, may have very different properties. For example, diamond is the hardest substance known, while graphite is so soft that it is used as a lubricant. Chocolate can form six different types of crystals, but only one has the suitable hardness and melting point for candy bars and confections. Polymorphism in steel is responsible for its ability to be heat treated , giving it

1633-427: Is broad agreement on the basic mechanisms by which they form, the details of pegmatite formation remain enigmatic. Pegmatites have characteristics inconsistent with other igneous intrusions. They are not porphyritic , and show no chilled margin . On the contrary, the largest crystals are often found on the margins of the pegmatite body. While aplites are sometimes found on the margins, they are as likely to occur within

1704-475: Is followed by deposition of albite , lepidolite , gem tourmaline , beryl, spodumene, amblygonite , topaz , apatite , and fluorite , which may partially replace some of the minerals in the earlier zone. The center of the pegmatite may have cavities lined with spectacular gemstone crystals. Some pegmatites have more complex zoning. Five distinct zones are recognized in the Harding Pegmatite in

1775-489: Is found. Pegmatites are found as irregular dikes , sills , or veins , and are most common at the margins of batholiths (great masses of intrusive igneous rock). Most are closely related spatially and genetically to large intrusions. They may take the form of veins or dikes in the intrusion itself, but more commonly, they extend into the surrounding country rock, especially above the intrusion. Some pegmatites surrounded by metamorphic rock have no obvious connection to

1846-580: Is impossible for an ordinary periodic crystal (see crystallographic restriction theorem ). The International Union of Crystallography has redefined the term "crystal" to include both ordinary periodic crystals and quasicrystals ("any solid having an essentially discrete diffraction diagram" ). Quasicrystals, first discovered in 1982, are quite rare in practice. Only about 100 solids are known to form quasicrystals, compared to about 400,000 periodic crystals known in 2004. The 2011 Nobel Prize in Chemistry

1917-483: Is its visible external shape. This is determined by the crystal structure (which restricts the possible facet orientations), the specific crystal chemistry and bonding (which may favor some facet types over others), and the conditions under which the crystal formed. By volume and weight, the largest concentrations of crystals in the Earth are part of its solid bedrock . Crystals found in rocks typically range in size from

1988-589: Is known as crystallography . The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification . The word crystal derives from the Ancient Greek word κρύσταλλος ( krustallos ), meaning both " ice " and " rock crystal ", from κρύος ( kruos ), "icy cold, frost". Examples of large crystals include snowflakes , diamonds , and table salt . Most inorganic solids are not crystals but polycrystals , i.e. many microscopic crystals fused together into

2059-468: Is located at the boundary of Rosynsko- Tikychki , Dnistersko - Buzki . This article about a location in Ukraine is a stub . You can help Misplaced Pages by expanding it . This geology article is a stub . You can help Misplaced Pages by expanding it . This geomorphology article is a stub . You can help Misplaced Pages by expanding it . Pegmatite A pegmatite is an igneous rock showing

2130-473: Is mechanically very strong, the sheets are rather loosely bound to each other. Therefore, the mechanical strength of the material is quite different depending on the direction of stress. Not all crystals have all of these properties. Conversely, these properties are not quite exclusive to crystals. They can appear in glasses or polycrystals that have been made anisotropic by working or stress —for example, stress-induced birefringence . Crystallography

2201-460: Is on the order of magnitude of one to a few hundred meters. Compared to typical igneous rocks they are rather inhomogeneous and may show zones with different mineral assemblages. Crystal size and mineral assemblages are usually oriented parallel to the wall rock or even concentric for pegmatite lenses. Modern pegmatite classification schemes are strongly influenced by the depth-zone classification of granitic rocks published by Buddington (1959), and

Ukrainian Shield - Misplaced Pages Continue

2272-424: Is the type of impurities present in a corundum crystal. In semiconductors , a special type of impurity, called a dopant , drastically changes the crystal's electrical properties. Semiconductor devices , such as transistors , are made possible largely by putting different semiconductor dopants into different places, in specific patterns. Twinning is a phenomenon somewhere between a crystallographic defect and

2343-518: The Black Hills of South Dakota , and beryl crystals 8.2 meters (27 ft) long and 1.8 meters (6 ft) in diameter have been found at Albany, Maine . The largest beryl crystal ever found was from Malakialina on Madagascar, weighing about 380 tons, with a length of 18 m (59 ft) and a crosscut of 3.5 m (11 ft). Pegmatite bodies are usually of minor size compared to typical intrusive rock bodies. Pegmatite body size

2414-511: The Picuris Mountains of northern New Mexico , US. These are: Large crystals nucleate on the margins of pegmatites, becoming larger as they grow inward. These include very large conical alkali feldspar crystals. Aplites are commonly present. These may cut across the pegmatite, but also form zones or irregular patches around coarser material. The aplites are often layered, showing evidence of deformation. Xenoliths may be found in

2485-447: The mechanical strength of materials . Another common type of crystallographic defect is an impurity , meaning that the "wrong" type of atom is present in a crystal. For example, a perfect crystal of diamond would only contain carbon atoms, but a real crystal might perhaps contain a few boron atoms as well. These boron impurities change the diamond's color to slightly blue. Likewise, the only difference between ruby and sapphire

2556-459: The texture known as graphic granite . The term was first used by René Just Haüy in 1822 as a synonym for graphic granite . Wilhelm Karl Ritter von Haidinger first used the term in its present meaning in 1845. Pegmatites are exceptionally coarse-grained igneous rocks composed of interlocking crystals , with individual crystals usually over 1 centimeter (0.4 in) in size and sometimes exceeding 1 meter (3 ft). Most pegmatites have

2627-495: The Ginsburg & Rodionov (1960) and Ginsburg et al. (1979) classification which categorized pegmatites according to their depth of emplacement and relationship to metamorphism and granitic plutons. Cerny’s (1991) revision of that classification scheme is widely used, Cerny’s (1991) pegmatite classification, which is a combination of emplacement depth, metamorphic grade and minor element content, has provided significant insight into

2698-704: The Kibara Belt of Rwanda and Democratic Republic of the Congo , the Kenticha mine of Ethiopia the Alto Ligonha Province of Mozambique , and the Mibra (Volta) mine of Minas Gerais , Brazil. Notable pegmatite occurrences are found worldwide within the major cratons , and within greenschist -facies metamorphic belts. However, pegmatite localities are only well recorded when economic mineralisation

2769-429: The air ( ice fog ) more often grow from a supersaturated gaseous-solution of water vapor and air, when the temperature of the air drops below its dew point , without passing through a liquid state. Another unusual property of water is that it expands rather than contracts when it crystallizes. Many living organisms are able to produce crystals grown from an aqueous solution , for example calcite and aragonite in

2840-455: The body of the pegmatite, but their original mineral content is replaced by quartz and alkali feldspar, so that they are difficult to distinguish from the surrounding pegmatite. Pegmatite also commonly replaces part of the surrounding country rock. Because pegmatites likely crystallize from a fluid-dominated phase, rather than a melt phase, they straddle the boundary between hydrothermal mineral deposits and igneous intrusions . Although there

2911-488: The body of the pegmatite. The crystals are never aligned in a way that would indicate flow, but are perpendicular to the walls. This implies formation in a static environment. Some pegmatities take the form of isolated pods, with no obvious feeder conduit. As a result, metamorphic or metasomatic origins have sometimes been suggested for pegmatites. A metamorphic pegmatite would be formed by removal of volatiles from metamorphic rocks, particularly felsic gneiss , to liberate

Ukrainian Shield - Misplaced Pages Continue

2982-510: The case of most molluscs or hydroxylapatite in the case of bones and teeth in vertebrates . The same group of atoms can often solidify in many different ways. Polymorphism is the ability of a solid to exist in more than one crystal form. For example, water ice is ordinarily found in the hexagonal form Ice I h , but can also exist as the cubic Ice I c , the rhombohedral ice II , and many other forms. The different polymorphs are usually called different phases . In addition,

3053-426: The classification is the petrogenetic component of the classification, which shows the association of LCT pegmatites with mainly orogenic plutons, and NYF pegmatites with mainly anorogenic plutons. Lately, there have been a few attempts to create a new classification for pegmatites less dependent on mineralogy and more reflective of their geological setting. On this issue, one of the most notable efforts on this matter

3124-492: The composition of granite while nepheline syenite pegmatite is a pegmatite with the composition of nepheline syenite. However, the British Geological Survey (BGS) discourages this usage, preferring terms like biotite-quartz-feldspar pegmatite for a pegmatite with a typical granitic composition, dominated by feldspar with lesser quartz and biotite. Under BGS terminology, a pegmatitic rock (for example,

3195-404: The conditions, a single fluid can solidify into many different possible forms. It can form a single crystal , perhaps with various possible phases , stoichiometries , impurities, defects , and habits . Or, it can form a polycrystal , with various possibilities for the size, arrangement, orientation, and phase of its grains. The final form of the solid is determined by the conditions under which

3266-409: The crystal can shrink or stretch it. Another is birefringence , where a double image appears when looking through a crystal. Moreover, various properties of a crystal, including electrical conductivity , electrical permittivity , and Young's modulus , may be different in different directions in a crystal. For example, graphite crystals consist of a stack of sheets, and although each individual sheet

3337-411: The crystal is one grain in a polycrystalline solid. The flat faces (also called facets ) of a euhedral crystal are oriented in a specific way relative to the underlying atomic arrangement of the crystal : they are planes of relatively low Miller index . This occurs because some surface orientations are more stable than others (lower surface energy ). As a crystal grows, new atoms attach easily to

3408-532: The crystals may form hexagons, such as ordinary water ice ). Crystals are commonly recognized, macroscopically, by their shape, consisting of flat faces with sharp angles. These shape characteristics are not necessary for a crystal—a crystal is scientifically defined by its microscopic atomic arrangement, not its macroscopic shape—but the characteristic macroscopic shape is often present and easy to see. Euhedral crystals are those that have obvious, well-formed flat faces. Anhedral crystals do not, usually because

3479-606: The degree of crystallization depends primarily on the conditions under which they solidified. Such rocks as granite , which have cooled very slowly and under great pressures, have completely crystallized; but many kinds of lava were poured out at the surface and cooled very rapidly, and in this latter group a small amount of amorphous or glassy matter is common. Other crystalline rocks, the metamorphic rocks such as marbles , mica-schists and quartzites , are recrystallized. This means that they were at first fragmental rocks like limestone , shale and sandstone and have never been in

3550-453: The eight faces of the octahedron belong to another crystallographic form reflecting a different symmetry of the isometric system. A crystallographic form is described by placing the Miller indices of one of its faces within brackets. For example, the octahedral form is written as {111}, and the other faces in the form are implied by the symmetry of the crystal. Forms may be closed, meaning that

3621-710: The final block of ice, each of the small crystals (called " crystallites " or "grains") is a true crystal with a periodic arrangement of atoms, but the whole polycrystal does not have a periodic arrangement of atoms, because the periodic pattern is broken at the grain boundaries . Most macroscopic inorganic solids are polycrystalline, including almost all metals , ceramics , ice , rocks , etc. Solids that are neither crystalline nor polycrystalline, such as glass , are called amorphous solids , also called glassy , vitreous, or noncrystalline. These have no periodic order, even microscopically. There are distinct differences between crystalline solids and amorphous solids: most notably,

SECTION 50

#1732772765736

3692-402: The final melt fraction of a crystallizing body of magma. However, it is difficult to get a representative composition of a pegmatite, due to the large size of the constituent mineral crystals. Hence, pegmatite is often characterised by sampling the individual minerals that compose the pegmatite, and comparisons are made according to mineral chemistry. A common error is to assume that the wall zone

3763-531: The fluid is being solidified, such as the chemistry of the fluid, the ambient pressure , the temperature , and the speed with which all these parameters are changing. Specific industrial techniques to produce large single crystals (called boules ) include the Czochralski process and the Bridgman technique . Other less exotic methods of crystallization may be used, depending on the physical properties of

3834-415: The form can completely enclose a volume of space, or open, meaning that it cannot. The cubic and octahedral forms are examples of closed forms. All the forms of the isometric system are closed, while all the forms of the monoclinic and triclinic crystal systems are open. A crystal's faces may all belong to the same closed form, or they may be a combination of multiple open or closed forms. A crystal's habit

3905-402: The form of snow , sea ice , and glaciers are common crystalline/polycrystalline structures on Earth and other planets. A single snowflake is a single crystal or a collection of crystals, while an ice cube is a polycrystal . Ice crystals may form from cooling liquid water below its freezing point, such as ice cubes or a frozen lake. Frost , snowflakes, or small ice crystals suspended in

3976-556: The hydrous phase is completely depolymerized, existing almost entirely as orthosilicate , with all oxygen bridges between silicon ions broken. The low viscosity promotes rapid diffusion through the fluid, allowing growth of large crystals. When this hydrous fluid is injected into the surrounding country rock , minerals crystallize from the outside in to form a zoned pegmatite, with different minerals predominating in concentric zones. A typical sequence of deposition begins with microcline and quartz, with minor schorl and garnet . This

4047-458: The interlayer bonding in graphite . Substances such as fats , lipids and wax form molecular bonds because the large molecules do not pack as tightly as atomic bonds. This leads to crystals that are much softer and more easily pulled apart or broken. Common examples include chocolates, candles, or viruses. Water ice and dry ice are examples of other materials with molecular bonding. Polymer materials generally will form crystalline regions, but

4118-418: The last fluid fraction of a large crystallizing magma body. This residual fluid is highly enriched in volatiles and trace elements, and its very low viscosity allows components to migrate rapidly to join an existing crystal rather than coming together to form new crystals. This allows a few very large crystals to form. While most pegmatites have a simple composition of minerals common in ordinary igneous rock,

4189-471: The lengths of the molecules usually prevent complete crystallization—and sometimes polymers are completely amorphous. A quasicrystal consists of arrays of atoms that are ordered but not strictly periodic. They have many attributes in common with ordinary crystals, such as displaying a discrete pattern in x-ray diffraction , and the ability to form shapes with smooth, flat faces. Quasicrystals are most famous for their ability to show five-fold symmetry, which

4260-456: The magma is crystallized. Otherwise, the separation of the fluid phase is difficult to explain. Granite requires a water content of 4 wt% at a pressure of 0.5  GPa (72,500  psi ), but only 1.5 wt% at 0.1 GPa (14,500 psi) for phase separation to take place. The volatiles (primarily water, borates , fluorides , chlorides , and phosphates ) are concentrated in the hydrous phase, greatly lowering its viscosity. The silica in

4331-653: The origin of pegmatitic melts and their relative degrees of fractionation. Granitic pegmatites are commonly ranked into three hierarchies (class – family – type – subtype) depending upon their mineralogical-geochemical characteristics and depth of emplacement according to Cerny (1991). Classes are Abyssal, Muscovite, Rare-Element and Miarolitic. The Rare-Element Class is subdivided based on composition into LCT and NYF families: LCT for Lithium, Cesium, and Tantalum enrichment and NYF for Niobium, Yttrium, and Fluorine enrichment. Most authors classify pegmatites according to LCT- and NYF-types and subtypes. Another important contribution of

SECTION 60

#1732772765736

4402-474: The primary source of lithium either as spodumene, lithiophyllite or usually from lepidolite. The primary source for caesium is pollucite , a mineral from a zoned pegmatite. The majority of the world's beryllium is sourced from non-gem quality beryl within pegmatite. Tantalum, niobium, and rare-earth elements are sourced from a few pegmatites worldwide, such as the Greenbushes Pegmatite ,

4473-413: The process of forming a glass does not release the latent heat of fusion , but forming a crystal does. A crystal structure (an arrangement of atoms in a crystal) is characterized by its unit cell , a small imaginary box containing one or more atoms in a specific spatial arrangement. The unit cells are stacked in three-dimensional space to form the crystal. The symmetry of a crystal is constrained by

4544-432: The requirement that the unit cells stack perfectly with no gaps. There are 219 possible crystal symmetries (230 is commonly cited, but this treats chiral equivalents as separate entities), called crystallographic space groups . These are grouped into 7 crystal systems , such as cubic crystal system (where the crystals may form cubes or rectangular boxes, such as halite shown at right) or hexagonal crystal system (where

4615-439: The right constituents and water, at the right temperature. A metasomatic pegmatite would be formed by hydrothermal circulation of hot alteration fluids upon a rock mass, with bulk chemical and textural change. Metasomatism is currently not favored as a mechanism for pegmatite formation and it is likely that metamorphism and magmatism are both contributors toward the conditions necessary for pegmatite genesis. Most pegmatites have

4686-423: The rougher and less stable parts of the surface, but less easily to the flat, stable surfaces. Therefore, the flat surfaces tend to grow larger and smoother, until the whole crystal surface consists of these plane surfaces. (See diagram on right.) One of the oldest techniques in the science of crystallography consists of measuring the three-dimensional orientations of the faces of a crystal, and using them to infer

4757-444: The same atoms may be able to form noncrystalline phases . For example, water can also form amorphous ice , while SiO 2 can form both fused silica (an amorphous glass) and quartz (a crystal). Likewise, if a substance can form crystals, it can also form polycrystals. For pure chemical elements, polymorphism is known as allotropy . For example, diamond and graphite are two crystalline forms of carbon , while amorphous carbon

4828-744: The substance, including hydrothermal synthesis , sublimation , or simply solvent-based crystallization . Large single crystals can be created by geological processes. For example, selenite crystals in excess of 10  m are found in the Cave of the Crystals in Naica, Mexico. For more details on geological crystal formation, see above . Crystals can also be formed by biological processes, see above . Conversely, some organisms have special techniques to prevent crystallization from occurring, such as antifreeze proteins . An ideal crystal has every atom in

4899-429: The underlying crystal symmetry . A crystal's crystallographic forms are sets of possible faces of the crystal that are related by one of the symmetries of the crystal. For example, crystals of galena often take the shape of cubes, and the six faces of the cube belong to a crystallographic form that displays one of the symmetries of the isometric crystal system . Galena also sometimes crystallizes as octahedrons, and

4970-620: The vacuum of space. The slow cooling may allow the precipitation of a separate phase within the crystal lattice, which form at specific angles determined by the lattice, called Widmanstatten patterns . Ionic compounds typically form when a metal reacts with a non-metal, such as sodium with chlorine. These often form substances called salts, such as sodium chloride (table salt) or potassium nitrate ( saltpeter ), with crystals that are often brittle and cleave relatively easily. Ionic materials are usually crystalline or polycrystalline. In practice, large salt crystals can be created by solidification of

5041-400: Was awarded to Dan Shechtman for the discovery of quasicrystals. Crystals can have certain special electrical, optical, and mechanical properties that glass and polycrystals normally cannot. These properties are related to the anisotropy of the crystal, i.e. the lack of rotational symmetry in its atomic arrangement. One such property is the piezoelectric effect , where a voltage across

#735264