116-606: The Uropeltoidea , also known as uropeltoid snakes , are a superfamily of snakes that contains uropeltids (family Uropeltidae ) and Asian pipesnakes (families Cylindrophiidae and Anomochilidae ). As of 2018, Uropeltoidea contains 97 species, including the eponymous shield-tail snakes (genus Uropeltis with 26 species) and their relatives (68 species in six other genera), 14 species of Asian pipesnakes (genus Cylindrophis ), and three species of dwarf pipesnakes (genus Anomochilus ). The taxonomy of boas, pythons, and other henophidian snakes has long been debated, and ultimately
232-465: A diverse group of large predatory marine reptiles, also became extinct. Fossil evidence indicates that squamates generally suffered very heavy losses in the K–Pg event, only recovering 10 million years after it. The extinction of Cretaceous lizards and snakes may have led to the evolution of modern groups such as iguanas, monitor lizards, and boas. The diversification of crown group snakes has been linked to
348-714: A family of giant, primitive, python-like snakes, was around until 50,000 years ago in Australia, represented by genera such as Wonambi . Recent molecular studies support the monophyly of the clades of modern snakes, scolecophidians, typhlopids + anomalepidids, alethinophidians, core alethinophidians, uropeltids ( Cylindrophis , Anomochilus , uropeltines), macrostomatans, booids, boids, pythonids and caenophidians. While snakes are limbless reptiles, evolved from (and grouped with) lizards, there are many other species of lizards that have lost their limbs independently but which superficially look similar to snakes. These include
464-413: A few species of ground and water fowl, which radiated into all modern species of birds. Among other groups, teleost fish and perhaps lizards also radiated. The K–Pg extinction event was severe, global, rapid, and selective, eliminating a vast number of species. Based on marine fossils, it is estimated that 75% or more of all species became extinct. The event appears to have affected all continents at
580-528: A lingering impact winter which halted photosynthesis in plants and plankton . The impact hypothesis, also known as the Alvarez hypothesis , was bolstered by the discovery of the 180 km (112 mi) Chicxulub crater in the Gulf of Mexico 's Yucatán Peninsula in the early 1990s, which provided conclusive evidence that the K–Pg boundary clay represented debris from an asteroid impact . The fact that
696-661: A minor component of the North American fauna, but during the Miocene, the number of species and their prevalence increased dramatically with the first appearances of vipers and elapids in North America and the significant diversification of Colubridae (including the origin of many modern genera such as Nerodia , Lampropeltis , Pituophis , and Pantherophis ). There is fossil evidence to suggest that snakes may have evolved from burrowing lizards, during
812-534: A period in the earliest part of the Cenozoic of decreased acanthomorph diversity, although acanthomorphs diversified rapidly after the extinction. Teleost fish diversified explosively after the mass extinction, filling the niches left vacant by the extinction. Groups appearing in the Paleocene and Eocene epochs include billfish, tunas, eels, and flatfish. There is limited evidence for extinction of amphibians at
928-419: A planktonic strategy of reproduction (numerous eggs and planktonic larvae), which would have been devastated by the K–Pg extinction event. Additional research has shown that subsequent to this elimination of ammonoids from the global biota, nautiloids began an evolutionary radiation into shell shapes and complexities theretofore known only from ammonoids. Approximately 35% of echinoderm genera became extinct at
1044-414: A positive cladistical correlation, although some of these features are shared with varanids. Genetic studies in recent years have indicated snakes are not as closely related to monitor lizards as was once believed—and therefore not to mosasaurs, the proposed ancestor in the aquatic scenario of their evolution. However, more evidence links mosasaurs to snakes than to varanids. Fragmented remains found from
1160-490: A range of different species provide definitive evidence for the persistence of archaic birds to within 300,000 years of the K–Pg boundary. The absence of these birds in the Paleogene is evidence that a mass extinction of archaic birds took place there. The most successful and dominant group of avialans , enantiornithes , were wiped out. Only a small fraction of ground and water-dwelling Cretaceous bird species survived
1276-527: A result of cooling temperatures in the early Paleocene . Approximately 46% of diatom species survived the transition from the Cretaceous to the Upper Paleocene, a significant turnover in species but not a catastrophic extinction. The occurrence of planktonic foraminifera across the K–Pg boundary has been studied since the 1930s. Research spurred by the possibility of an impact event at
SECTION 10
#17327944279011392-520: A short tail remains of the caudal vertebrae. However, the tail is still long enough to be of important use in many species, and is modified in some aquatic and tree-dwelling species. Many modern snake groups originated during the Paleocene , alongside the adaptive radiation of mammals following the extinction of (non-avian) dinosaurs . The expansion of grasslands in North America also led to an explosive radiation among snakes. Previously, snakes were
1508-454: A small phylum of marine invertebrates, survived the K–Pg extinction event and diversified during the early Paleocene. The numbers bivalve genera exhibited significant diminution after the K–Pg boundary. Entire groups of bivalves, including rudists (reef-building clams) and inoceramids (giant relatives of modern scallops ), became extinct at the K–Pg boundary, with the gradual extinction of most inoceramid bivalves beginning well before
1624-574: Is a stub . You can help Misplaced Pages by expanding it . Snake Snakes are elongated, limbless reptiles of the suborder Serpentes ( / s ɜːr ˈ p ɛ n t iː z / ). Like all other squamates , snakes are ectothermic , amniote vertebrates covered in overlapping scales . Many species of snakes have skulls with several more joints than their lizard ancestors, enabling them to swallow prey much larger than their heads ( cranial kinesis ). To accommodate their narrow bodies, snakes' paired organs (such as kidneys) appear one in front of
1740-420: Is a finer one, barely visible; the cavities are connected internally, separated only by a membrane with nerves that are extraordinarily attuned to detecting temperature changes between. As in the overlapping vision fields of human eyes, the forward-facing pit on either side of the face combined produces a field of vision: a pit viper can distinguish between objects and their environments, as well as accurately judge
1856-415: Is adapted for burrowing and its stomach indicates that it was preying on other animals. It is currently uncertain if Tetrapodophis is a snake or another species, in the squamate order, as a snake-like body has independently evolved at least 26 times. Tetrapodophis does not have distinctive snake features in its spine and skull. A study in 2021 places the animal in a group of extinct marine lizards from
1972-476: Is associated with DNA mutations in the Zone of Polarizing Activity Regulatory Sequence (ZRS), a regulatory region of the sonic hedgehog gene which is critically required for limb development. More advanced snakes have no remnants of limbs, but basal snakes such as pythons and boas do have traces of highly reduced, vestigial hind limbs. Python embryos even have fully developed hind limb buds, but their later development
2088-461: Is based on morphological characteristics and mitochondrial DNA sequence similarity. Alethinophidia is sometimes split into Henophidia and Caenophidia , with the latter consisting of "colubroid" snakes ( colubrids , vipers , elapids , hydrophiids , and atractaspids ) and acrochordids, while the other alethinophidian families comprise Henophidia. While not extant today, the Madtsoiidae ,
2204-476: Is clearly marked at the species level. Statistical analysis of marine losses at this time suggests that the decrease in diversity was caused more by a sharp increase in extinctions than by a decrease in speciation . Major spatial differences existed in calcareous nannoplankton diversity patterns; in the Southern Hemisphere, the extinction was less severe and recovery occurred much faster than in
2320-537: Is estimated that 75% or more of all species on Earth vanished. However, the extinction also provided evolutionary opportunities: in its wake, many groups underwent remarkable adaptive radiation —sudden and prolific divergence into new forms and species within the disrupted and emptied ecological niches. Mammals in particular diversified in the Paleogene , evolving new forms such as horses , whales , bats , and primates . The surviving group of dinosaurs were avians,
2436-475: Is influenced by a lack of fossil records, rather than extinctions. Ostracods , a class of small crustaceans that were prevalent in the upper Maastrichtian, left fossil deposits in a variety of locations. A review of these fossils shows that ostracod diversity was lower in the Paleocene than any other time in the Cenozoic . Current research cannot ascertain whether the extinctions occurred prior to, or during,
SECTION 20
#17327944279012552-526: Is more common in asteroids than in the Earth's crust . As originally proposed in 1980 by a team of scientists led by Luis Alvarez and his son Walter , it is now generally thought that the K–Pg extinction was caused by the impact of a massive asteroid 10 to 15 km (6 to 9 mi) wide, 66 million years ago causing the Chicxulub crater , which devastated the global environment, mainly through
2668-494: Is no evidence that late Maastrichtian non-avian dinosaurs could burrow, swim, or dive, which suggests they were unable to shelter themselves from the worst parts of any environmental stress that occurred at the K–Pg boundary. It is possible that small dinosaurs (other than birds) did survive, but they would have been deprived of food, as herbivorous dinosaurs would have found plant material scarce and carnivores would have quickly found prey in short supply. The growing consensus about
2784-459: Is not universal (see Amphisbaenia , Dibamidae , and Pygopodidae ). Living snakes are found on every continent except Antarctica, and on most smaller land masses; exceptions include some large islands, such as Ireland, Iceland, Greenland, and the islands of New Zealand, as well as many small islands of the Atlantic and central Pacific oceans. Additionally, sea snakes are widespread throughout
2900-451: Is postulated that some early monotremes, marsupials, and placentals were semiaquatic or burrowing, as there are multiple mammalian lineages with such habits today. Any burrowing or semiaquatic mammal would have had additional protection from K–Pg boundary environmental stresses. After the K–Pg extinction, mammals evolved to fill the niches left vacant by the dinosaurs. Some research indicates that mammals did not explosively diversify across
3016-624: Is potent enough to cause painful injury or death to humans. Nonvenomous snakes either swallow prey alive or kill by constriction . The English word snake comes from Old English snaca , itself from Proto-Germanic * snak-an- ( cf. Germanic Schnake 'ring snake', Swedish snok 'grass snake'), from Proto-Indo-European root * (s)nēg-o- 'to crawl to creep', which also gave sneak as well as Sanskrit nāgá 'snake'. The word ousted adder , as adder went on to narrow in meaning, though in Old English næddre
3132-527: Is relatively poor because snake skeletons are typically small and fragile making fossilization uncommon. Fossils readily identifiable as snakes (though often retaining hind limbs) first appear in the fossil record during the Cretaceous period. The earliest known true snake fossils (members of the crown group Serpentes) come from the marine simoliophiids , the oldest of which is the Late Cretaceous ( Cenomanian age) Haasiophis terrasanctus from
3248-816: Is stopped by the DNA mutations in the ZRS. There are about 3,900 species of snakes, ranging as far northward as the Arctic Circle in Scandinavia and southward through Australia. Snakes can be found on every continent except Antarctica, as well as in the sea, and as high as 16,000 feet (4,900 m) in the Himalayan Mountains of Asia. There are numerous islands from which snakes are absent, such as Ireland , Iceland , and New Zealand (although New Zealand's northern waters are infrequently visited by
3364-472: Is thought that ammonites were the principal food of mosasaurs , a group of giant marine reptiles that became extinct at the boundary. The K–Pg extinction had a profound effect on the evolution of life on Earth . The elimination of dominant Cretaceous groups allowed other organisms to take their place, causing a remarkable amount of species diversification during the Paleogene Period. After
3480-526: Is thought that body sizes of placental mammalian survivors evolutionarily increased first, allowing them to fill niches after the extinctions, with brain sizes increasing later in the Eocene . Plant fossils illustrate the reduction in plant species across the K–Pg boundary. There is overwhelming evidence of global disruption of plant communities at the K–Pg boundary. Extinctions are seen both in studies of fossil pollen, and fossil leaves. In North America,
3596-479: The Cretaceous Period . An early fossil snake relative, Najash rionegrina , was a two-legged burrowing animal with a sacrum , and was fully terrestrial . Najash , which lived 95 million years ago, also had a skull with several features typical for lizards, but had evolved some of the mobile skull joints that define the flexible skull in most modern snakes. The species did not show any resemblances to
Uropeltoidea - Misplaced Pages Continue
3712-558: The Jurassic and Early Cretaceous indicate deeper fossil records for these groups, which may potentially refute either hypothesis. Both fossils and phylogenetic studies demonstrate that snakes evolved from lizards , hence the question became which genetic changes led to limb loss in the snake ancestor. Limb loss is actually very common in extant reptiles and has happened dozens of times within skinks , anguids , and other lizards. In 2016, two studies reported that limb loss in snakes
3828-632: The Jurassic period, with the earliest known fossils dating to between 143 and 167 Ma ago. The diversity of modern snakes appeared during the Paleocene epoch ( c. 66 to 56 Ma ago, after the Cretaceous–Paleogene extinction event ). The oldest preserved descriptions of snakes can be found in the Brooklyn Papyrus . Most species of snake are nonvenomous and those that have venom use it primarily to kill and subdue prey rather than for self-defense. Some possess venom that
3944-448: The K–T extinction , was the mass extinction of three-quarters of the plant and animal species on Earth approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs . Most other tetrapods weighing more than 25 kg (55 lb) also became extinct, with the exception of some ectothermic species such as sea turtles and crocodilians . It marked
4060-629: The San Juan River in Colorado, indicate that the animal lived during the Cenozoic, approximately 64.5 Ma (about 1 million years after the K–Pg extinction event). If their existence past the K–Pg boundary can be confirmed, these hadrosaurids would be considered a dead clade walking . The scientific consensus is that these fossils were eroded from their original locations and then re-buried in much later sediments (also known as reworked fossils ). Most paleontologists regard birds as
4176-534: The West Bank , dated to between 112 and 94 million years old. Based on genomic analysis it is certain that snakes descend from lizards . This conclusion is also supported by comparative anatomy , and the fossil record. Pythons and boas —primitive groups among modern snakes—have vestigial hind limbs: tiny, clawed digits known as anal spurs , which are used to grasp during mating. The families Leptotyphlopidae and Typhlopidae also possess remnants of
4292-458: The molluscan class Cephalopoda became extinct at the K–Pg boundary. These included the ecologically significant belemnoids , as well as the ammonoids , a group of highly diverse, numerous, and widely distributed shelled cephalopods. The extinction of belemnites enabled surviving cephalopod clades to fill their niches. Ammonite genera became extinct at or near the K–Pg boundary; there was a smaller and slower extinction of ammonite genera prior to
4408-451: The photic zone ) areas of the ocean were less impacted by the K–Pg boundary. Colonial coral species rely upon symbiosis with photosynthetic algae , which collapsed due to the events surrounding the K–Pg boundary, but the use of data from coral fossils to support K–Pg extinction and subsequent Paleocene recovery, must be weighed against the changes that occurred in coral ecosystems through the K–Pg boundary. Most species of brachiopods ,
4524-479: The slowworm , glass snake , and amphisbaenians . Leptotyphlopidae Gerrhopilidae Typhlopidae Xenophidiidae Anomalepididae Aniliidae Tropidophiidae Xenopeltidae Loxocemidae Pythonidae Boidae Bolyeridae Xenophidiidae Uropeltidae Anomochilidae Cylindrophiidae Acrochordidae Xenodermidae Pareidae Viperidae Homalopsidae Colubridae Lamprophiidae Elapidae The fossil record of snakes
4640-434: The yellow-bellied sea snake and the banded sea krait ). The now extinct Titanoboa cerrejonensis was 12.8 m (42 ft) in length. By comparison, the largest extant snakes are the reticulated python , measuring about 6.95 m (22.8 ft) long, and the green anaconda , which measures about 5.21 m (17.1 ft) long and is considered the heaviest snake on Earth at 97.5 kg (215 lb). At
4756-508: The Cretaceous period known as dolichosaurs and not directly related to snakes. An alternative hypothesis, based on morphology , suggests the ancestors of snakes were related to mosasaurs —extinct aquatic reptiles from the Cretaceous —forming the clade Pythonomorpha . According to this hypothesis, the fused, transparent eyelids of snakes are thought to have evolved to combat marine conditions (corneal water loss through osmosis), and
Uropeltoidea - Misplaced Pages Continue
4872-547: The Cretaceous. Along with the aforementioned mosasaurs, plesiosaurs , represented by the families Elasmosauridae and Polycotylidae , became extinct during the event. The ichthyosaurs had disappeared from fossil record tens of millions of years prior to the K-Pg extinction event. Ten families of crocodilians or their close relatives are represented in the Maastrichtian fossil records, of which five died out prior to
4988-492: The Eocene ants became dominant and diverse, with larger colonies. Butterflies diversified as well, perhaps to take the place of leaf-eating insects wiped out by the extinction. The advanced mound-building termites, Termitidae , also appear to have risen in importance. There are fossil records of jawed fishes across the K–Pg boundary, which provide good evidence of extinction patterns of these classes of marine vertebrates. While
5104-606: The Hell Creek Formation shows a minimum of 75% of turtle species survived. Following the extinction event, turtle diversity exceeded pre-extinction levels in the Danian of North America, although in South America it remained diminished. European turtles likewise recovered rapidly following the mass extinction. The rhynchocephalians which were a globally distributed and diverse group of lepidosaurians during
5220-584: The Hox gene expression in the axial skeleton responsible for the development of the thorax became dominant. As a result, the vertebrae anterior to the hindlimb buds (when present) all have the same thoracic-like identity (except from the atlas , axis , and 1–3 neck vertebrae). In other words, most of a snake's skeleton is an extremely extended thorax. Ribs are found exclusively on the thoracic vertebrae. Neck, lumbar and pelvic vertebrae are very reduced in number (only 2–10 lumbar and pelvic vertebrae are present), while only
5336-527: The Indian and Pacific oceans. Around thirty families are currently recognized, comprising about 520 genera and about 3,900 species . They range in size from the tiny, 10.4 cm-long (4.1 in) Barbados threadsnake to the reticulated python of 6.95 meters (22.8 ft) in length. The fossil species Titanoboa cerrejonensis was 12.8 meters (42 ft) long. Snakes are thought to have evolved from either burrowing or aquatic lizards, perhaps during
5452-548: The Jurassic and continued to diversify throughout the Cretaceous. They are currently the most successful and diverse group of living reptiles, with more than 10,000 extant species. The only major group of terrestrial lizards to go extinct at the end of the Cretaceous were the polyglyphanodontians , a diverse group of mainly herbivorous lizards known predominantly from the Northern Hemisphere. The mosasaurs ,
5568-506: The K-Pg boundary known as the Main Fossiliferous Layer (MFL) containing a thanatocoenosis of disarticulated vertebrate fossils, which was likely also caused by a catastrophic flood from the impact. The K–Pg boundary represents one of the most dramatic turnovers in the fossil record for various calcareous nanoplankton that formed the calcium deposits for which the Cretaceous is named. The turnover in this group
5684-538: The K–Pg boundary subsequently becoming extinct in the Miocene . The gharial-like choristodere genus Champsosaurus ' palatal teeth suggest that there were dietary changes among the various species across the K–Pg event. More than 80% of Cretaceous turtle species passed through the K–Pg boundary. All six turtle families in existence at the end of the Cretaceous survived into the Paleogene and are represented by living species. Analysis of turtle survivorship in
5800-672: The K–Pg boundary resulted in numerous publications detailing planktonic foraminiferal extinction at the boundary; there is ongoing debate between groups which think the evidence indicates substantial extinction of these species at the K–Pg boundary, and those who think the evidence supports a gradual extinction through the boundary. There is strong evidence that local conditions heavily influenced diversity changes in planktonic foraminifera. Low and mid-latitude communities of planktonic foraminifera experienced high extinction rates, while high latitude faunas were relatively unaffected. Numerous species of benthic foraminifera became extinct during
5916-445: The K–Pg boundary, although taxa that thrived in low-latitude, shallow-water environments during the late Cretaceous had the highest extinction rate. Mid-latitude, deep-water echinoderms were much less affected at the K–Pg boundary. The pattern of extinction points to habitat loss, specifically the drowning of carbonate platforms , the shallow-water reefs in existence at that time, by the extinction event. Atelostomatans were affected by
SECTION 50
#17327944279016032-421: The K–Pg boundary, despite the ecological niches made available by the extinction of dinosaurs. Several mammalian orders have been interpreted as diversifying immediately after the K–Pg boundary, including Chiroptera ( bats ) and Cetartiodactyla (a diverse group that today includes whales and dolphins and even-toed ungulates ), although recent research concludes that only marsupial orders diversified soon after
6148-506: The K–Pg boundary. Deposit feeders were the most common bivalves in the catastrophe's aftermath. Abundance was not a factor that affected whether a bivalve taxon went extinct, according to evidence from North America. Veneroid bivalves developed deeper burrowing habitats as the recovery from the crisis ensued. Except for nautiloids (represented by the modern order Nautilida ) and coleoids (which had already diverged into modern octopodes , squids , and cuttlefish ) all other species of
6264-521: The K–Pg boundary. Five families have both Maastrichtian and Paleocene fossil representatives. All of the surviving families of crocodyliforms inhabited freshwater and terrestrial environments—except for the Dyrosauridae , which lived in freshwater and marine locations. Approximately 50% of crocodyliform representatives survived across the K–Pg boundary, the only apparent trend being that no large crocodiles survived. Crocodyliform survivability across
6380-412: The K–Pg boundary. However, morphological diversification rates among eutherians after the extinction event were thrice those of before it. Also significant, within the mammalian genera, new species were approximately 9.1% larger after the K–Pg boundary. After about 700,000 years, some mammals had reached 50 kilos (110 pounds), a 100-fold increase over the weight of those which survived the extinction. It
6496-493: The K–Pg boundary. A study of fossil vertebrates across the K–Pg boundary in Montana concluded that no species of amphibian became extinct. Yet there are several species of Maastrichtian amphibian, not included as part of this study, which are unknown from the Paleocene. These include the frog Theatonius lancensis and the albanerpetontid Albanerpeton galaktion ; therefore, some amphibians do seem to have become extinct at
6612-555: The K–Pg boundary. Long-term survival past the boundary was assured as a result of filling ecological niches left empty by extinction of non-avian dinosaurs. Based on molecular sequencing and fossil dating, many species of birds (the Neoaves group in particular) appeared to radiate after the K–Pg boundary. The open niche space and relative scarcity of predators following the K-Pg extinction allowed for adaptive radiation of various avian groups. Ratites , for example, rapidly diversified in
6728-418: The K–Pg event. Scientists agree that all non-avian dinosaurs became extinct at the K–Pg boundary. The dinosaur fossil record has been interpreted to show both a decline in diversity and no decline in diversity during the last few million years of the Cretaceous, and it may be that the quality of the dinosaur fossil record is simply not good enough to permit researchers to distinguish between the options. There
6844-477: The K–Pg extinction event as marine environments were. Among the terrestrial clade Notosuchia , only the family Sebecidae survived; the exact reasons for this pattern are not known. Sebecids were large terrestrial predators, are known from the Eocene of Europe, and would survive in South America into the Miocene. Tethysuchians radiated explosively after the extinction event. Two families of pterosaurs, Azhdarchidae and Nyctosauridae , were definitely present in
6960-663: The K–Pg extinction event, although they suffered losses. In particular, metatherians largely disappeared from North America, and the Asian deltatheroidans became extinct (aside from the lineage leading to Gurbanodelta ). In the Hell Creek beds of North America, at least half of the ten known multituberculate species and all eleven metatherians species are not found above the boundary. Multituberculates in Europe and North America survived relatively unscathed and quickly bounced back in
7076-496: The K–Pg extinction event, biodiversity required substantial time to recover, despite the existence of abundant vacant ecological niches . Evidence from the Salamanca Formation suggests that biotic recovery was more rapid in the Southern Hemisphere than in the Northern Hemisphere. Despite the massive loss of life inferred to have occurred during the extinction, and a number of geologic formations worldwide that span
SECTION 60
#17327944279017192-538: The Lilliput effect. Insect damage to the fossilized leaves of flowering plants from fourteen sites in North America was used as a proxy for insect diversity across the K–Pg boundary and analyzed to determine the rate of extinction. Researchers found that Cretaceous sites, prior to the extinction event, had rich plant and insect-feeding diversity. During the early Paleocene, flora were relatively diverse with little predation from insects, even 1.7 million years after
7308-541: The Maastrichtian age, 28 shark families and 13 batoid families thrived, of which 25 and 9, respectively, survived the K–T boundary event. Forty-seven of all neoselachian genera cross the K–T boundary, with 85% being sharks. Batoids display with 15%, a comparably low survival rate. Among elasmobranchs, those species that inhabited higher latitudes and lived pelagic lifestyles were more likely to survive, whereas epibenthic lifestyles and durophagy were strongly associated with
7424-417: The Maastrichtian, and they likely became extinct at the K–Pg boundary. Several other pterosaur lineages may have been present during the Maastrichtian, such as the ornithocheirids , pteranodontids , a possible tapejarid , a possible thalassodromid and a basal toothed taxon of uncertain affinities, though they are represented by fragmentary remains that are difficult to assign to any given group. While this
7540-604: The Northern Hemisphere. Following the extinction, survivor communities dominated for several hundred thousand years. The North Pacific acted as a diversity hotspot from which later nannoplankton communities radiated as they replaced survivor faunas across the globe. The K–Pg boundary record of dinoflagellates is not so well understood, mainly because only microbial cysts provide a fossil record, and not all dinoflagellate species have cyst-forming stages, which likely causes diversity to be underestimated. Recent studies indicate that there were no major shifts in dinoflagellates through
7656-447: The Paleocene, but Asian forms were devastated, never again to represent a significant component of mammalian fauna. A recent study indicates that metatherians suffered the heaviest losses at the K–Pg event, followed by multituberculates, while eutherians recovered the quickest. K–Pg boundary mammalian species were generally small, comparable in size to rats ; this small size would have helped them find shelter in protected environments. It
7772-548: The adaptations of many dinosaurs to cold environments. Whether the extinction occurred gradually or suddenly has been debated, as both views have support from the fossil record. A highly informative sequence of dinosaur-bearing rocks from the K–Pg boundary is found in western North America, particularly the late Maastrichtian-age Hell Creek Formation of Montana . Comparison with the older Judith River Formation (Montana) and Dinosaur Park Formation ( Alberta ), which both date from approximately 75 Ma, provides information on
7888-609: The atmosphere, causing longer-term effects on the climate and food chain . In October 2019, researchers asserted that the event rapidly acidified the oceans and produced long-lasting effects on the climate, detailing the mechanisms of the mass extinction. Other causal or contributing factors to the extinction may have been the Deccan Traps and other volcanic eruptions, climate change , and sea level change. However, in January 2020, scientists reported that climate-modeling of
8004-402: The biotic recovery in the aftermath of the K-Pg extinction event. Pan-Gekkotans weathered the extinction event well, with multiple lineages likely surviving. ∆ Ca values indicate that prior to the mass extinction, marine reptiles at the top of food webs were feeding on only one source of calcium, suggesting their populations exhibited heightened vulnerability to extinctions at the terminus of
8120-402: The boundary associated with a late Cretaceous marine regression, and a small, gradual reduction in ammonite diversity occurred throughout the very late Cretaceous. Researchers have pointed out that the reproductive strategy of the surviving nautiloids, which rely upon few and larger eggs, played a role in outsurviving their ammonoid counterparts through the extinction event. The ammonoids utilized
8236-495: The boundary interval. Ostracods that were heavily sexually selected were more vulnerable to extinction, and ostracod sexual dimorphism was significantly rarer following the mass extinction. Among decapods , extinction patterns were highly heterogeneous and cannot be neatly attributed to any particular factor. Decapods that inhabited the Western Interior Seaway were especially hard-hit, while other regions of
8352-498: The boundary layer. There were blooms of the taxa Thoracosphaera operculata and Braarudosphaera bigelowii at the boundary. Radiolaria have left a geological record since at least the Ordovician times, and their mineral fossil skeletons can be tracked across the K–Pg boundary. There is no evidence of mass extinction of these organisms, and there is support for high productivity of these species in southern high latitudes as
8468-450: The boundary may have resulted from their aquatic niche and ability to burrow, which reduced susceptibility to negative environmental effects at the boundary. Jouve and colleagues suggested in 2008 that juvenile marine crocodyliforms lived in freshwater environments as do modern marine crocodile juveniles, which would have helped them survive where other marine reptiles became extinct; freshwater environments were not so strongly affected by
8584-780: The boundary, only a few fossil sites contain direct evidence of the mass mortality that occurred exactly at the K-Pg boundary. These include the Tanis site of the Hell Creek Formation in North Dakota , USA, which contains a high number of well-preserved fossils that appear to have buried in a catastrophic flood event that was likely caused by the impact. Another important site is the Hornerstown Formation in New Jersey , USA, which has prominent layer at
8700-418: The boundary. The relatively low levels of extinction seen among amphibians probably reflect the low extinction rates seen in freshwater animals. Following the mass extinction, frogs radiated substantially, with 88% of modern anuran diversity being traced back to three lineages of frogs that evolved after the cataclysm. The choristoderes (a group of semi-aquatic diapsids of uncertain position) survived across
8816-487: The changes in dinosaur populations over the last 10 million years of the Cretaceous. These fossil beds are geographically limited, covering only part of one continent. The middle–late Campanian formations show a greater diversity of dinosaurs than any other single group of rocks. The late Maastrichtian rocks contain the largest members of several major clades: Tyrannosaurus , Ankylosaurus , Pachycephalosaurus , Triceratops , and Torosaurus , which suggests food
8932-438: The circumstances of food chain disruption previously mentioned, non-avian dinosaurs died out, while some crocodiles survived. In this context, the survival of other endothermic animals, such as some birds and mammals, could be due, among other reasons, to their smaller needs for food, related to their small size at the extinction epoch. Prolonged cold is unlikely to have been a reason for the extinction of non-avian dinosaurs given
9048-423: The data suggests massive devastation and mass extinction of plants at the K–Pg boundary sections, although there were substantial megafloral changes before the boundary. In North America, approximately 57% of plant species became extinct. In high southern hemisphere latitudes, such as New Zealand and Antarctica, the mass die-off of flora caused no significant turnover in species, but dramatic and short-term changes in
9164-590: The decision whether to assign a particular clade to a particular Linnaean rank (such as a superfamily , family , or subfamily ) is arbitrary. The clade name Uropeltoidea emphasizes the relatively close evolutionary relationship among these 71 species, which last shared a common ancestor about 48 [CI:36–60] million years ago, in contrast to the more distant relationship between uropeltoids and their next closest relatives, pythonoids (the most recent common ancestor between uropeltoids and pythonoids lived ~73 [CI:59–87] million years ago). This Alethinophidia article
9280-498: The deep-sea realm was able to remain seemingly unaffected, there was an equal loss between the open marine apex predators and the durophagous demersal feeders on the continental shelf. Within cartilaginous fish , approximately 7 out of the 41 families of neoselachians (modern sharks , skates, and rays) disappeared after this event and batoids (skates and rays) lost nearly all the identifiable species, while more than 90% of teleost fish (bony fish) families survived. In
9396-415: The distance between objects and itself. The heat sensing ability of a pit viper is so great that it can react to a difference as small as one third of a degree Fahrenheit. Other infrared-sensitive snakes have multiple, smaller labial pits lining the upper lip, just below the nostrils. Cretaceous%E2%80%93Paleogene extinction event The Cretaceous–Paleogene ( K–Pg ) extinction event , also known as
9512-643: The early Mesozoic , had begun to decline by the mid-Cretaceous, although they remained successful in the Late Cretaceous of southern South America . They are represented today by a single species, the tuatara ( Sphenodon punctatus ) found in New Zealand . Outside of New Zealand, one rhynchocephalian is known to have crossed the K-Pg boundary, Kawasphenodon peligrensis , known from the earliest Paleocene (Danian) of Patagonia. The order Squamata comprising lizards and snakes first diversified during
9628-422: The early Paleocene provided the food source to support large benthic foraminiferal assemblages, which are mainly detritus-feeding. Ultimate recovery of the benthic populations occurred over several stages lasting several hundred thousand years into the early Paleocene. There is significant variation in the fossil record as to the extinction rate of marine invertebrates across the K–Pg boundary. The apparent rate
9744-630: The early Paleogene and are believed to have convergently developed flightlessness at least three to six times, often fulfilling the niche space for large herbivores once occupied by non-avian dinosaurs. Mammalian species began diversifying approximately 30 million years prior to the K–Pg boundary. Diversification of mammals stalled across the boundary. All major Late Cretaceous mammalian lineages, including monotremes (egg-laying mammals), multituberculates , metatherians (which includes modern marsupials), eutherians (which includes modern placentals), meridiolestidans , and gondwanatheres survived
9860-531: The ears. Some primitive snakes are known to have possessed hindlimbs, but their pelvic bones lacked a direct connection to the vertebrae. These include fossil species like Haasiophis , Pachyrhachis and Eupodophis , which are slightly older than Najash . This hypothesis was strengthened in 2015 by the discovery of a 113-million-year-old fossil of a four-legged snake in Brazil that has been named Tetrapodophis amplectus . It has many snake-like features,
9976-642: The end of the Cretaceous and underwent sudden extinction after the Cretaceous–Paleogene extinction event. Alternatively, interpretation based on the fossil-bearing rocks along the Red Deer River in Alberta, Canada, supports the gradual extinction of non-avian dinosaurs; during the last 10 million years of the Cretaceous layers there, the number of dinosaur species seems to have decreased from about 45 to approximately 12. Other scientists have made
10092-527: The end of the Cretaceous period, and with it the Mesozoic era, while heralding the beginning of the current era, the Cenozoic . In the geologic record , the K–Pg event is marked by a thin layer of sediment called the K–Pg boundary, Fatkito boundary or K–T boundary , which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal iridium , which
10208-405: The endothermy of dinosaurs (see dinosaur physiology ) helps to understand their full extinction in contrast with their close relatives, the crocodilians. Ectothermic ("cold-blooded") crocodiles have very limited needs for food (they can survive several months without eating), while endothermic ("warm-blooded") animals of similar size need much more food to sustain their faster metabolism. Thus, under
10324-422: The event's severity, there was significant variability in the rate of extinction between and within different clades . Species that depended on photosynthesis declined or became extinct as atmospheric particles blocked sunlight and reduced the solar energy reaching the ground. This plant extinction caused a major reshuffling of the dominant plant groups. Omnivores , insectivores , and carrion -eaters survived
10440-409: The event, presumably because they depend on organic debris for nutrients, while biomass in the ocean is thought to have decreased. As the marine microbiota recovered, it is thought that increased speciation of benthic foraminifera resulted from the increase in food sources. In some areas, such as Texas, benthic foraminifera show no sign of any major extinction event, however. Phytoplankton recovery in
10556-621: The external ears were lost through disuse in an aquatic environment. This ultimately led to an animal similar to today's sea snakes . In the Late Cretaceous , snakes recolonized land, and continued to diversify into today's snakes. Fossilized snake remains are known from early Late Cretaceous marine sediments, which is consistent with this hypothesis; particularly so, as they are older than the terrestrial Najash rionegrina . Similar skull structure, reduced or absent limbs, and other anatomical features found in both mosasaurs and snakes lead to
10672-490: The extinction event favored the asteroid impact and not volcanism . A wide range of terrestrial species perished in the K–Pg extinction, the best-known being the non-avian dinosaurs, along with many mammals, birds, lizards, insects , plants, and all the pterosaurs . In the oceans, the K–Pg extinction killed off plesiosaurs and mosasaurs and devastated teleost fish, sharks , mollusks (especially ammonites , which became extinct), and many species of plankton. It
10788-449: The extinction event is best represented by the marked discrepancy between the rich and relatively abundant late-Maastrichtian pollen record and the post-boundary fern spike. Polyploidy appears to have enhanced the ability of flowering plants to survive the extinction, probably because the additional copies of the genome such plants possessed allowed them to more readily adapt to the rapidly changing environmental conditions that followed
10904-586: The extinction event, perhaps because of the increased availability of their food sources. Neither strictly herbivorous nor strictly carnivorous mammals seem to have survived. Rather, the surviving mammals and birds fed on insects , worms , and snails , which in turn fed on detritus (dead plant and animal matter). In stream communities and lake ecosystems , few animal groups became extinct, including large forms like crocodyliforms and champsosaurs , because such communities rely less directly on food from living plants, and more on detritus washed in from
11020-471: The extinction event. Studies of the size of the ichnotaxon Naktodemasis bowni , produced by either cicada nymphs or beetle larvae, over the course of the K-Pg transition show that the Lilliput effect occurred in terrestrial invertebrates thanks to the extinction event. The extinction event produced major changes in Paleogene insect communities. Many groups of ants were present in the Cretaceous, but in
11136-473: The extinctions occurred simultaneously provides strong evidence that they were caused by the asteroid. A 2016 drilling project into the Chicxulub peak ring confirmed that the peak ring comprised granite ejected within minutes from deep in the earth, but contained hardly any gypsum , the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an aerosol into
11252-437: The head, between the nostrils and the eyes. In fact the pit looks like an extra pair of nostrils. All snakes have the ability to sense warmth with touch and heat receptors like other animals ;however, the highly developed pit of the pit vipers is distinctive. Each pit is made of a pit cavity and an inner cavity, the larger one lies just behind and generally below the level of the nostril, and opens forward. Behind this larger cavity
11368-467: The impact, giving rise to today's birds. The only bird group known for certain to have survived the K–Pg boundary is the Aves. Avians may have been able to survive the extinction as a result of their abilities to dive, swim, or seek shelter in water and marshlands. Many species of avians can build burrows, or nest in tree holes, or termite nests, all of which provided shelter from the environmental effects at
11484-414: The land, protecting them from extinction. Modern crocodilians can live as scavengers and survive for months without food, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms for their first few years. These characteristics have been linked to crocodilian survival at the end of the Cretaceous. Similar, but more complex patterns have been found in the oceans. Extinction
11600-493: The landscape for centuries after the event. In the sediments below the K–Pg boundary the dominant plant remains are angiosperm pollen grains, but the boundary layer contains little pollen and is dominated by fern spores. More usual pollen levels gradually resume above the boundary layer. This is reminiscent of areas blighted by modern volcanic eruptions, where the recovery is led by ferns, which are later replaced by larger angiosperm plants. In North American terrestrial sequences,
11716-412: The likelihood of perishing during the extinction event. There is evidence of a mass extinction of bony fishes at a fossil site immediately above the K–Pg boundary layer on Seymour Island near Antarctica , apparently precipitated by the K–Pg extinction event; the marine and freshwater environments of fishes mitigated the environmental effects of the extinction event. The result was Patterson's Gap,
11832-545: The modern burrowing blind snakes, which have often been seen as the most primitive group of extant forms. One extant analog of these putative ancestors is the earless monitor Lanthanotus of Borneo (though it is also semiaquatic ). Subterranean species evolved bodies streamlined for burrowing, and eventually lost their limbs. According to this hypothesis, features such as the transparent , fused eyelids ( brille ) and loss of external ears evolved to cope with fossorial difficulties, such as scratched corneas and dirt in
11948-444: The number of flowering plants. However, phylogenetic evidence shows no mass angiosperm extinction. Due to the wholesale destruction of plants at the K–Pg boundary, there was a proliferation of saprotrophic organisms, such as fungi , that do not require photosynthesis and use nutrients from decaying vegetation. The dominance of fungal species lasted only a few years while the atmosphere cleared and plenty of organic matter to feed on
12064-426: The only surviving dinosaurs (see Origin of birds ). It is thought that all non-avian theropods became extinct, including then-flourishing groups such as enantiornithines and hesperornithiforms . Several analyses of bird fossils show divergence of species prior to the K–Pg boundary, and that duck, chicken, and ratite bird relatives coexisted with non-avian dinosaurs. Large collections of bird fossils representing
12180-575: The other end of the scale, the smallest extant snake is Leptotyphlops carlae , with a length of about 10.4 cm (4.1 in). Most snakes are fairly small animals, approximately 1 m (3.3 ft) in length. Some of the most highly developed sensory systems are found in the Crotalidae, or pit vipers—the rattlesnakes and their associates. Pit vipers have all the sense organs of other snakes, as well as additional aids. Pit refers to special infrared-sensitive receptors located on either side of
12296-515: The other instead of side by side, and most have only one functional lung . Some species retain a pelvic girdle with a pair of vestigial claws on either side of the cloaca . Lizards have independently evolved elongate bodies without limbs or with greatly reduced limbs at least twenty-five times via convergent evolution , leading to many lineages of legless lizards . These resemble snakes, but several common groups of legless lizards have eyelids and external ears, which snakes lack, although this rule
12412-451: The pelvic girdle, appearing as horny projections when visible. Front limbs are nonexistent in all known snakes. This is caused by the evolution of their Hox genes , controlling limb morphogenesis . The axial skeleton of the snakes' common ancestor, like most other tetrapods, had regional specializations consisting of cervical (neck), thoracic (chest), lumbar (lower back), sacral (pelvic), and caudal (tail) vertebrae. Early in snake evolution,
12528-489: The relative abundance of plant groups. European flora was also less affected, most likely due to its distance from the site of the Chicxulub impact. In northern Alaska and the Anadyr-Koryak region of Russia, the flora was minimally impacted. Another line of evidence of a major floral extinction is that the divergence rate of subviral pathogens of angiosperms sharply decreased, which indicates an enormous reduction in
12644-494: The same assessment following their research. Several researchers support the existence of Paleocene non-avian dinosaurs . Evidence of this existence is based on the discovery of dinosaur remains in the Hell Creek Formation up to 1.3 m (4.3 ft) above and 40,000 years later than the K–Pg boundary. Pollen samples recovered near a fossilized hadrosaur femur recovered in the Ojo Alamo Sandstone at
12760-531: The same time. Non-avian dinosaurs , for example, are known from the Maastrichtian of North America, Europe , Asia, Africa , South America, and Antarctica , but are unknown from the Cenozoic anywhere in the world. Similarly, fossil pollen shows devastation of the plant communities in areas as far apart as New Mexico , Alaska , China , and New Zealand . Nevertheless, high latitudes appear to have been less strongly affected than low latitudes. Despite
12876-597: The world's oceans were refugia that increased chances of survival into the Palaeocene. Among retroplumid crabs, the genus Costacopluma was a notable survivor. Approximately 60% of late-Cretaceous scleractinian coral genera failed to cross the K–Pg boundary into the Paleocene. Further analysis of the coral extinctions shows that approximately 98% of colonial species, ones that inhabit warm, shallow tropical waters, became extinct. The solitary corals, which generally do not form reefs and inhabit colder and deeper (below
12992-527: Was more severe among animals living in the water column than among animals living on or in the sea floor. Animals in the water column are almost entirely dependent on primary production from living phytoplankton , while animals on the ocean floor always or sometimes feed on detritus. Coccolithophorids and mollusks (including ammonites , rudists , freshwater snails , and mussels ), and those organisms whose food chain included these shell builders, became extinct or suffered heavy losses. For example, it
13108-480: Was occurring, modern birds were undergoing diversification; traditionally it was thought that they replaced archaic birds and pterosaur groups, possibly due to direct competition, or they simply filled empty niches, but there is no correlation between pterosaur and avian diversities that are conclusive to a competition hypothesis, and small pterosaurs were present in the Late Cretaceous. At least some niches previously held by birds were reclaimed by pterosaurs prior to
13224-614: Was plentiful immediately prior to the extinction. A study of 29 fossil sites in Catalan Pyrenees of Europe in 2010 supports the view that dinosaurs there had great diversity until the asteroid impact, with more than 100 living species. More recent research indicates that this figure is obscured by taphonomic biases and the sparsity of the continental fossil record. The results of this study, which were based on estimated real global biodiversity, showed that between 628 and 1,078 non-avian dinosaur species were alive at
13340-428: Was present. Once the atmosphere cleared photosynthetic organisms returned – initially ferns and other ground-level plants. In some regions, the Paleocene recovery of plants began with recolonizations by fern species, represented as a fern spike in the geologic record; this same pattern of fern recolonization was observed after the 1980 Mount St. Helens eruption . Just two species of fern appear to have dominated
13456-575: Was the general word for snake. The other term, serpent , is from French, ultimately from Indo-European * serp- 'to creep', which also gave Ancient Greek ἕρπω ( hérpō ) 'I crawl' and Sanskrit sarpá ‘snake’. All modern snakes are grouped within the suborder Serpentes in Linnean taxonomy , part of the order Squamata , though their precise placement within squamates remains controversial. The two infraorders of Serpentes are Alethinophidia and Scolecophidia . This separation
#900099