Misplaced Pages

Virus

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an accepted version of this page

#802197

111-442: A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism . Viruses infect all life forms , from animals and plants to microorganisms , including bacteria and archaea . Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. Since Dmitri Ivanovsky 's 1892 article describing a non-bacterial pathogen infecting tobacco plants and

222-496: A germ . The term pathogen came into use in the 1880s. Typically, the term pathogen is used to describe an infectious microorganism or agent, such as a virus, bacterium, protozoan , prion , viroid , or fungus . Small animals, such as helminths and insects, can also cause or transmit disease. However, these animals are usually referred to as parasites rather than pathogens. The scientific study of microscopic organisms, including microscopic pathogenic organisms,

333-421: A virion , consists of nucleic acid surrounded by a protective coat of protein called a capsid . These are formed from protein subunits called capsomeres . Viruses can have a lipid "envelope" derived from the host cell membrane . The capsid is made from proteins encoded by the viral genome and its shape serves as the basis for morphological distinction. Virally-coded protein subunits will self-assemble to form

444-619: A basic optical microscope. In 2013, the Pandoravirus genus was discovered in Chile and Australia, and has genomes about twice as large as Megavirus and Mimivirus. All giant viruses have dsDNA genomes and they are classified into several families: Mimiviridae , Pithoviridae, Pandoraviridae , Phycodnaviridae , and the Mollivirus genus. Some viruses that infect Archaea have complex structures unrelated to any other form of virus, with

555-400: A better understanding of the evolutionary relationships between different viruses and may help identify the ancestors of modern viruses. To date, such analyses have not proved which of these hypotheses is correct. It seems unlikely that all currently known viruses have a common ancestor, and viruses have probably arisen numerous times in the past by one or more mechanisms. The first evidence of

666-417: A capsid diameter of 400 nm. Protein filaments measuring 100 nm project from the surface. The capsid appears hexagonal under an electron microscope, therefore the capsid is probably icosahedral. In 2011, researchers discovered the largest then known virus in samples of water collected from the ocean floor off the coast of Las Cruces, Chile. Provisionally named Megavirus chilensis , it can be seen with

777-579: A capsid, in general requiring the presence of the virus genome. Complex viruses code for proteins that assist in the construction of their capsid. Proteins associated with nucleic acid are known as nucleoproteins , and the association of viral capsid proteins with viral nucleic acid is called a nucleocapsid. The capsid and entire virus structure can be mechanically (physically) probed through atomic force microscopy . In general, there are five main morphological virus types: The poxviruses are large, complex viruses that have an unusual morphology. The viral genome

888-596: A cell, viruses exist in the form of independent viral particles, or virions , consisting of (i) genetic material , i.e., long molecules of DNA or RNA that encode the structure of the proteins by which the virus acts; (ii) a protein coat, the capsid , which surrounds and protects the genetic material; and in some cases (iii) an outside envelope of lipids . The shapes of these virus particles range from simple helical and icosahedral forms to more complex structures. Most virus species have virions too small to be seen with an optical microscope and are one-hundredth

999-490: A different DNA (or RNA) molecule. This can occur when viruses infect cells simultaneously and studies of viral evolution have shown that recombination has been rampant in the species studied. Recombination is common to both RNA and DNA viruses. Coronaviruses have a single-strand positive-sense RNA genome. Replication of the genome is catalyzed by an RNA-dependent RNA polymerase . The mechanism of recombination used by coronaviruses likely involves template switching by

1110-468: A faulty B or T cell can begin exterminating the host's own healthy cells. Activation of naïve helper T cells occurs when antigen-presenting cells (APCs) present foreign antigen via MHC class II molecules on their cell surface. These APCs include dendritic cells , B cells , and macrophages which are specially equipped not only with MHC class II but also with co-stimulatory ligands which are recognized by co-stimulatory receptors on helper T cells. Without

1221-411: A feature of many bacterial and some animal viruses. Some viruses undergo a lysogenic cycle where the viral genome is incorporated by genetic recombination into a specific place in the host's chromosome. The viral genome is then known as a " provirus " or, in the case of bacteriophages a " prophage ". Whenever the host divides, the viral genome is also replicated. The viral genome is mostly silent within

SECTION 10

#1732757627803

1332-557: A few species, or broad for viruses capable of infecting many. Viral infections in animals provoke an immune response that usually eliminates the infecting virus. Immune responses can also be produced by vaccines , which confer an artificially acquired immunity to the specific viral infection. Some viruses, including those that cause HIV/AIDS , HPV infection , and viral hepatitis , evade these immune responses and result in chronic infections. Several classes of antiviral drugs have been developed. The English word "virus" comes from

1443-441: A genome size of only two kilobases; the largest—the pandoraviruses —have genome sizes of around two megabases which code for about 2500 proteins. Virus genes rarely have introns and often are arranged in the genome so that they overlap . In general, RNA viruses have smaller genome sizes than DNA viruses because of a higher error-rate when replicating, and have a maximum upper size limit. Beyond this, errors when replicating render

1554-428: A host cell—although some bacteria such as rickettsia and chlamydia are considered living organisms despite the same limitation. Accepted forms of life use cell division to reproduce, whereas viruses spontaneously assemble within cells. They differ from autonomous growth of crystals as they inherit genetic mutations while being subject to natural selection. Virus self-assembly within host cells has implications for

1665-511: A ladder. The virus particles of some virus families, such as those belonging to the Hepadnaviridae , contain a genome that is partially double-stranded and partially single-stranded. For most viruses with RNA genomes and some with single-stranded DNA (ssDNA) genomes, the single strands are said to be either positive-sense (called the 'plus-strand') or negative-sense (called the 'minus-strand'), depending on if they are complementary to

1776-434: A life form, because they carry genetic material, reproduce, and evolve through natural selection , although they lack some key characteristics, such as cell structure, that are generally considered necessary criteria for defining life. Because they possess some but not all such qualities, viruses have been described as "organisms at the edge of life" and as replicators . Viruses spread in many ways. One transmission pathway

1887-466: A limited range of hosts and many are species-specific. Some, such as smallpox virus for example, can infect only one species—in this case humans, and are said to have a narrow host range . Other viruses, such as rabies virus, can infect different species of mammals and are said to have a broad range. The viruses that infect plants are harmless to animals, and most viruses that infect other animals are harmless to humans. The host range of some bacteriophages

1998-406: A prime target for natural selection. Segmented genomes confer evolutionary advantages; different strains of a virus with a segmented genome can shuffle and combine genes and produce progeny viruses (or offspring) that have unique characteristics. This is called reassortment or 'viral sex'. Genetic recombination is a process by which a strand of DNA (or RNA) is broken and then joined to the end of

2109-509: A process involving meiosis and fertilization . Meiosis involves the intimate pairing of homologous chromosomes and recombination between them. Examples of eukaryotic pathogens capable of sex include the protozoan parasites Plasmodium falciparum , Toxoplasma gondii , Trypanosoma brucei , Giardia intestinalis , and the fungi Aspergillus fumigatus , Candida albicans and Cryptococcus neoformans . Viruses may also undergo sexual interaction when two or more viral genomes enter

2220-458: A small part of the total diversity of viruses has been studied. As of 2022, 6 realms, 10 kingdoms, 17 phyla, 2 subphyla, 40 classes, 72 orders, 8 suborders, 264 families, 182 subfamilies , 2,818 genera, 84 subgenera , and 11,273 species of viruses have been defined by the ICTV. The general taxonomic structure of taxon ranges and the suffixes used in taxonomic names are shown hereafter. As of 2022,

2331-437: A theorized equilibrium between a pathogen spreading to additional hosts to parasitize resources, while lowering their virulence to keep hosts living for vertical transmission to their offspring. Algae are single-celled eukaryotes that are generally non-pathogenic. Green algae from the genus Prototheca lack chlorophyll and are known to cause the disease protothecosis in humans, dogs, cats, and cattle, typically involving

SECTION 20

#1732757627803

2442-423: A variety of bacterial, viral, fungal, and parasitic pathogens, cholera is only caused by some strains of Vibrio cholerae . Additionally, some pathogens may only cause disease in hosts with an immunodeficiency . These opportunistic infections often involve hospital-acquired infections among patients already combating another condition. Infectivity involves pathogen transmission through direct contact with

2553-413: A variety of immunodeficiency disorders caused by viruses related to human immunodeficiency virus (HIV), such as BIV and FIV . Humans can be infected with many types of pathogens, including prions, viruses, bacteria, and fungi, causing symptoms like sneezing, coughing, fever, vomiting, and potentially lethal organ failure . While some symptoms are caused by the pathogenic infection, others are caused by

2664-422: A very important component for a strong response against an invader. The first contact that an organism has with a particular antigen will result in the production of effector T and B cells which are activated cells that defend against the pathogen. The production of these effector cells as a result of the first-time exposure is called a primary immune response. Memory T and memory B cells are also produced in

2775-758: A wide array of pathogens and it has been estimated that only 3% of the disease caused by plant pathogens can be managed. Animals often get infected with many of the same or similar pathogens as humans including prions, viruses, bacteria, and fungi. While wild animals often get illnesses, the larger danger is for livestock animals. It is estimated that in rural settings, 90% or more of livestock deaths can be attributed to pathogens. Animal transmissible spongiform encephalopathy (TSEs) involving prions include bovine spongiform encephalopathy (mad cow disease), chronic wasting disease , scrapie , transmissible mink encephalopathy , feline spongiform encephalopathy , and ungulate spongiform encephalopathy. Other animal diseases include

2886-599: A wide diversity of sizes and shapes, called ' morphologies '. In general, viruses are much smaller than bacteria and more than a thousand bacteriophage viruses would fit inside an Escherichia coli bacterium's cell. Many viruses that have been studied are spherical and have a diameter between 20 and 300 nanometres . Some filoviruses , which are filaments, have a total length of up to 1400 nm; their diameters are only about 80 nm. Most viruses cannot be seen with an optical microscope , so scanning and transmission electron microscopes are used to visualise them. To increase

2997-414: A wide variety of issues such as shorter plant height, growths or pits on tree trunks, root or seed rot, and leaf spots. Common and serious plant fungi include the rice blast fungus , Dutch elm disease , chestnut blight and the black knot and brown rot diseases of cherries, plums, and peaches. It is estimated that pathogenic fungi alone cause up to a 65% reduction in crop yield. Overall, plants have

3108-549: A wide variety of unusual shapes, ranging from spindle-shaped structures to viruses that resemble hooked rods, teardrops or even bottles. Other archaeal viruses resemble the tailed bacteriophages, and can have multiple tail structures. An enormous variety of genomic structures can be seen among viral species ; as a group, they contain more structural genomic diversity than plants, animals, archaea, or bacteria. There are millions of different types of viruses, although fewer than 7,000 types have been described in detail.As of January 2021,

3219-441: Is antitumor immunity . In general, there are two branches of the immune response, the innate and the adaptive , which work together to protect against pathogens. Both branches engage humoral and cellular components. The innate branch—the body's first reaction to an invader—is known to be a non-specific and quick response to any sort of pathogen . Components of the innate immune response include physical barriers like

3330-404: Is a major change in the genome of the virus. This can be a result of recombination or reassortment . The Influenza A virus is highly prone to reassortment; occasionally this has resulted in novel strains which have caused pandemics . RNA viruses often exist as quasispecies or swarms of viruses of the same species but with slightly different genome nucleoside sequences. Such quasispecies are

3441-879: Is a physiological reaction which occurs within an organism in the context of inflammation for the purpose of defending against exogenous factors. These include a wide variety of different toxins , viruses , intra- and extracellular bacteria , protozoa , helminths , and fungi which could cause serious problems to the health of the host organism if not cleared from the body. In addition, there are other forms of immune response. For example, harmless exogenous factors (such as pollen and food components) can trigger allergy ; latex and metals are also known allergens. A transplanted tissue (for example, blood) or organ can cause graft-versus-host disease . A type of immune reactivity known as Rh disease can be observed in pregnant women. These special forms of immune response are classified as hypersensitivity . Another special form of immune response

Virus - Misplaced Pages Continue

3552-772: Is a process in which the viral capsid is removed: This may be by degradation by viral enzymes or host enzymes or by simple dissociation; the end-result is the releasing of the viral genomic nucleic acid. Replication of viruses involves primarily multiplication of the genome. Replication involves the synthesis of viral messenger RNA (mRNA) from "early" genes (with exceptions for positive-sense RNA viruses), viral protein synthesis , possible assembly of viral proteins, then viral genome replication mediated by early or regulatory protein expression. This may be followed, for complex viruses with larger genomes, by one or more further rounds of mRNA synthesis: "late" gene expression is, in general, of structural or virion proteins. Assembly – Following

3663-416: Is activated by foreign surfaces such as viruses, fungi, bacteria, parasites, etc., and is capable of autoactivation due to “tickover” of C3. The lectin pathway is triggered when mannose-binding lectin (MBL) or ficolin aka specific pattern recognition receptors bind to pathogen-associated molecular patterns on the surface of invading microorganisms such as yeast , bacteria, parasites, and viruses. Each of

3774-399: Is associated with proteins within a central disc structure known as a nucleoid . The nucleoid is surrounded by a membrane and two lateral bodies of unknown function. The virus has an outer envelope with a thick layer of protein studded over its surface. The whole virion is slightly pleomorphic , ranging from ovoid to brick-shaped. Mimivirus is one of the largest characterised viruses, with

3885-510: Is called microbiology , while parasitology refers to the scientific study of parasites and the organisms that host them. There are several pathways through which pathogens can invade a host. The principal pathways have different episodic time frames, but soil has the longest or most persistent potential for harboring a pathogen. Diseases in humans that are caused by infectious agents are known as pathogenic diseases. Not all diseases are caused by pathogens, such as black lung from exposure to

3996-436: Is caused by cessation of its normal activities because of suppression by virus-specific proteins, not all of which are components of the virus particle. The distinction between cytopathic and harmless is gradual. Some viruses, such as Epstein–Barr virus , can cause cells to proliferate without causing malignancy, while others, such as papillomaviruses , are established causes of cancer. Some viruses cause no apparent changes to

4107-479: Is controversy over whether the bornavirus , previously thought to cause neurological diseases in horses, could be responsible for psychiatric illnesses in humans. Infectious agent In biology , a pathogen ( Greek : πάθος , pathos "suffering", "passion" and -γενής , -genēs "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent , or simply

4218-531: Is first recorded in 1728, long before the discovery of viruses by Dmitri Ivanovsky in 1892. The English plural is viruses (sometimes also vira ), whereas the Latin word is a mass noun , which has no classically attested plural ( vīra is used in Neo-Latin ). The adjective viral dates to 1948. The term virion (plural virions ), which dates from 1959, is also used to refer to a single viral particle that

4329-604: Is identical in sequence to the viral mRNA and is thus a coding strand, while negative-sense viral ssDNA is complementary to the viral mRNA and is thus a template strand. Several types of ssDNA and ssRNA viruses have genomes that are ambisense in that transcription can occur off both strands in a double-stranded replicative intermediate. Examples include geminiviruses , which are ssDNA plant viruses and arenaviruses , which are ssRNA viruses of animals. Genome size varies greatly between species. The smallest—the ssDNA circoviruses, family Circoviridae —code for only two proteins and have

4440-429: Is limited to a single strain of bacteria and they can be used to trace the source of outbreaks of infections by a method called phage typing . The complete set of viruses in an organism or habitat is called the virome ; for example, all human viruses constitute the human virome . A novel virus is one that has not previously been recorded. It can be a virus that is isolated from its natural reservoir or isolated as

4551-465: Is released from the cell and is capable of infecting other cells of the same type. Viruses are found wherever there is life and have probably existed since living cells first evolved . The origin of viruses is unclear because they do not form fossils, so molecular techniques are used to infer how they arose. In addition, viral genetic material occasionally integrates into the germline of the host organisms, by which they can be passed on vertically to

Virus - Misplaced Pages Continue

4662-663: Is resistant to the commonly prescribed beta-lactam antibiotics . A 2013 report from the Centers for Disease Control and Prevention (CDC) estimated that in the United States, at least 2 million people get an antibiotic-resistant bacterial infection annually, with at least 23,000 of those patients dying from the infection. Due to their indispensability in combating bacteria, new antibiotics are required for medical care. One target for new antimicrobial medications involves inhibiting DNA methyltransferases , as these proteins control

4773-641: Is so that in the case that an exposure to the real pathogen occurs, the body can rely on the secondary immune response to quickly defend against it. The innate immune response is an organism's first response to foreign invaders. This immune response is evolutionarily conserved across many different species, with all multi-cellular organisms having some sort of variation of an innate response. The innate immune system consists of physical barriers such as skin and mucous membranes , various cell types like neutrophils , macrophages , and monocytes , and soluble factors including cytokines and complement. In contrast to

4884-423: Is that the adaptive immune response is much slower than the body's innate response because its cells are extremely specific and activation is required before it is able to actually act. In addition to specificity, the adaptive immune response is also known for immunological memory . After encountering an antigen, the immune system produces memory T and B cells which allow for a speedier, more robust immune response in

4995-420: Is the body's second line of defense . The cells of the adaptive immune system are extremely specific because during early developmental stages the B and T cells develop antigen receptors that are specific to only certain antigens . This is extremely important for B and T cell activation. B and T cells are extremely dangerous cells, and if they are able to attack without undergoing a rigorous process of activation,

5106-574: Is the most common cause of thrush , and Cryptococcus neoformans , which can cause a severe form of meningitis . Typical fungal spores are 4.7 μm long or smaller. Prions are misfolded proteins that transmit their abnormal folding pattern to other copies of the protein without using nucleic acids . Besides obtaining prions from others, these misfolded proteins arise from genetic differences, either due to family history or sporadic mutations. Plants uptake prions from contaminated soil and transport them into their stem and leaves, potentially transmitting

5217-475: Is through disease-bearing organisms known as vectors : for example, viruses are often transmitted from plant to plant by insects that feed on plant sap , such as aphids ; and viruses in animals can be carried by blood-sucking insects. Many viruses spread in the air by coughing and sneezing, including influenza viruses , SARS-CoV-2 , chickenpox , smallpox , and measles . Norovirus and rotavirus , common causes of viral gastroenteritis , are transmitted by

5328-637: The Baltimore classification separates viruses by seven classes of mRNA production: Protozoans are single-celled eukaryotes that feed on microorganisms and organic tissues. Many protozoans act as pathogenic parasites to cause diseases like malaria , amoebiasis , giardiasis , toxoplasmosis , cryptosporidiosis , trichomoniasis , Chagas disease , leishmaniasis , African trypanosomiasis (sleeping sickness), Acanthamoeba keratitis , and primary amoebic meningoencephalitis (naegleriasis). Parasitic worms (helminths) are macroparasites that can be seen by

5439-477: The CD4 molecule—a chemokine receptor —which is most commonly found on the surface of CD4+ T-Cells . This mechanism has evolved to favour those viruses that infect only cells in which they are capable of replication. Attachment to the receptor can induce the viral envelope protein to undergo changes that result in the fusion of viral and cellular membranes, or changes of non-enveloped virus surface proteins that allow

5550-498: The International Committee on Taxonomy of Viruses (ICTV) was formed. The system proposed by Lwoff, Horne and Tournier was initially not accepted by the ICTV because the small genome size of viruses and their high rate of mutation made it difficult to determine their ancestry beyond order. As such, the Baltimore classification system has come to be used to supplement the more traditional hierarchy. Starting in 2018,

5661-686: The Latin vīrus , which refers to poison and other noxious liquids. Vīrus comes from the same Indo-European root as Sanskrit viṣa , Avestan vīša , and Ancient Greek ἰός ( iós ), which all mean "poison". The first attested use of "virus" in English appeared in 1398 in John Trevisa 's translation of Bartholomeus Anglicus 's De Proprietatibus Rerum . Virulent , from Latin virulentus ('poisonous'), dates to c.  1400 . A meaning of 'agent that causes infectious disease'

SECTION 50

#1732757627803

5772-485: The NCBI Virus genome database has more than 193,000 complete genome sequences, but there are doubtlessly many more to be discovered. A virus has either a DNA or an RNA genome and is called a DNA virus or an RNA virus , respectively. Most viruses have RNA genomes. Plant viruses tend to have single-stranded RNA genomes and bacteriophages tend to have double-stranded DNA genomes. Viral genomes are circular, as in

5883-421: The adaptive immune response , the innate response is not specific to any one foreign invader and as a result, works quickly to rid the body of pathogens. Pathogens are recognized and detected via pattern recognition receptors (PRR). These receptors are structures on the surface of macrophages which are capable of binding foreign invaders and thus initiating cell signaling within the immune cell. Specifically,

5994-439: The anthrax vaccine and pneumococcal vaccine . Many other bacterial pathogens lack vaccines as a preventive measure, but infection by these bacteria can often be treated or prevented with antibiotics . Common antibiotics include amoxicillin , ciprofloxacin , and doxycycline . Each antibiotic has different bacteria that it is effective against and has different mechanisms to kill that bacteria. For example, doxycycline inhibits

6105-464: The blood vessels to the infected tissue. Once neutrophils enter the tissue, like macrophages, they are able to phagocytize and kill any pathogens or microbes. Complement , another component of the innate immune system, consists of three pathways that are activated in distinct ways. The classical pathway is triggered when IgG or IgM is bound to its target antigen on either the pathogen cell membrane or an antigen-bound antibody. The alternative pathway

6216-538: The common cold , influenza , chickenpox , and cold sores . Many serious diseases such as rabies , Ebola virus disease , AIDS (HIV) , avian influenza , and SARS are caused by viruses. The relative ability of viruses to cause disease is described in terms of virulence . Other diseases are under investigation to discover if they have a virus as the causative agent, such as the possible connection between human herpesvirus 6 (HHV6) and neurological diseases such as multiple sclerosis and chronic fatigue syndrome . There

6327-405: The echinocandin family of drugs and fluconazole . While algae are commonly not thought of as pathogens, the genus Prototheca causes disease in humans . Treatment for protothecosis is currently under investigation, and there is no consistency in clinical treatment. Many pathogens are capable of sexual interaction. Among pathogenic bacteria , sexual interaction occurs between cells of

6438-421: The faecal–oral route , passed by hand-to-mouth contact or in food or water. The infectious dose of norovirus required to produce infection in humans is fewer than 100 particles. HIV is one of several viruses transmitted through sexual contact and by exposure to infected blood. The variety of host cells that a virus can infect is called its host range : this is narrow for viruses specialized to infect only

6549-454: The lymph node . However, B cell activation is a two-step process. Firstly, B cell receptors, which are just Immunoglobulin M (IgM) and Immunoglobulin D (IgD) antibodies specific to the particular B cell, must bind to the antigen which then results in internal processing so that it is presented on the MHC class II molecules of the B cell. Once this happens a T helper cell which is able to identify

6660-457: The polyomaviruses , or linear, as in the adenoviruses . The type of nucleic acid is irrelevant to the shape of the genome. Among RNA viruses and certain DNA viruses, the genome is often divided into separate parts, in which case it is called segmented. For RNA viruses, each segment often codes for only one protein and they are usually found together in one capsid. All segments are not required to be in

6771-449: The tobacco mosaic virus which caused scientist Martinus Beijerinck to coin the term "virus" in 1898. Bacterial plant pathogens cause leaf spots, blight, and rot in many plant species. The most common bacterial pathogens for plants are Pseudomonas syringae and Ralstonia solanacearum , which cause leaf browning and other issues in potatoes, tomatoes, and bananas. Fungi are another major pathogen type for plants. They can cause

SECTION 60

#1732757627803

6882-676: The Clustered Regularly Interspaced Short Palindromic Repeats ( CRISPR ) associated with bacteriophages, removing the viral genes to avoid infection. This mechanism has been modified for artificial CRISPR gene editing . Plants can play host to a wide range of pathogen types, including viruses, bacteria, fungi, nematodes, and even other plants. Notable plant viruses include the papaya ringspot virus , which has caused millions of dollars of damage to farmers in Hawaii and Southeast Asia, and

6993-523: The ICTV began to acknowledge deeper evolutionary relationships between viruses that have been discovered over time and adopted a 15-rank classification system ranging from realm to species. Additionally, some species within the same genus are grouped into a genogroup . The ICTV developed the current classification system and wrote guidelines that put a greater weight on certain virus properties to maintain family uniformity. A unified taxonomy (a universal system for classifying viruses) has been established. Only

7104-477: The PRRs identify pathogen-associated molecular patterns (PAMPs) which are integral structural components of pathogens. Examples of PAMPs include the peptidoglycan cell wall or lipopolysaccharides (LPS), both of which are essential components of bacteria and are therefore evolutionarily conserved across many different bacterial species. When a foreign pathogen bypasses the physical barriers and enters an organism,

7215-411: The PRRs on macrophages will recognize and bind to specific PAMPs. This binding results in the activation of a signaling pathway which allows for the transcription factor NF-κB to enter the nucleus of the macrophage and initiate the transcription and eventual secretion of various cytokines such as IL-8 , IL-1 , and TNFα . Release of these cytokines is necessary for the entry of neutrophils from

7326-433: The antigen bound to the MHC interacts with its co-stimulatory molecule and activates the B cell. As a result, the B cell becomes a plasma cell which secretes antibodies that act as an opsonin against invaders. Specificity in the adaptive branch is due to the fact that every B and T cell is different. Thus there is a diverse community of cells ready to recognize and attack a full range of invaders. The trade-off, however,

7437-487: The basis of similarities. In 1962, André Lwoff , Robert Horne , and Paul Tournier were the first to develop a means of virus classification, based on the Linnaean hierarchical system. This system based classification on phylum , class , order , family , genus , and species . Viruses were grouped according to their shared properties (not those of their hosts) and the type of nucleic acid forming their genomes. In 1966,

7548-508: The bodily fluids or airborne droplets of infected hosts, indirect contact involving contaminated areas/items, or transfer by living vectors like mosquitos and ticks . The basic reproduction number of an infection is the expected number of subsequent cases it is likely to cause through transmission. Virulence involves pathogens extracting host nutrients for their survival, evading host immune systems by producing microbial toxins and causing immunosuppression . Optimal virulence describes

7659-408: The case that the organism ever encounters the same antigen again. Depending on exogenous demands, several types of immune response (IR) are distinguished. In this paradigm, immune system (both innate and adaptive) and non-immune system cellular and molecular components are organized to optimally respond to distinct exposome challenges. Currently, several types of IR are classified. Type 1 IR

7770-424: The case that the same pathogen enters the organism again. If the organism does happen to become re-exposed to the same pathogen, a secondary immune response will kick in and the immune system will be able to respond in both a fast and strong manner because of the memory cells from the first exposure. Vaccines introduce a weakened, killed, or fragmented microorganism in order to evoke a primary immune response. This

7881-531: The co-stimulatory molecules, the adaptive immune response would be inefficient and T cells would become anergic . Several T cell subgroups can be activated by specific APCs, and each T cell is specially equipped to deal with each unique microbial pathogen. The type of T cell activated and the type of response generated depends, in part, on the context in which the APC first encountered the antigen. Once helper T cells are activated, they are able to activate naïve B cells in

7992-499: The complex capsids and other structures on virus particles. The virus-first hypothesis contravened the definition of viruses in that they require host cells. Viruses are now recognised as ancient and as having origins that pre-date the divergence of life into the three domains . This discovery has led modern virologists to reconsider and re-evaluate these three classical hypotheses. The evidence for an ancestral world of RNA cells and computer analysis of viral and host DNA sequences give

8103-409: The contrast between viruses and the background, electron-dense "stains" are used. These are solutions of salts of heavy metals, such as tungsten , that scatter the electrons from regions covered with the stain. When virions are coated with stain (positive staining), fine detail is obscured. Negative staining overcomes this problem by staining the background only. A complete virus particle, known as

8214-414: The discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail. The study of viruses is known as virology , a subspeciality of microbiology . When infected, a host cell is often forced to rapidly produce thousands of copies of the original virus. When not inside an infected cell or in the process of infecting

8325-439: The edge of life", since they resemble organisms in that they possess genes , evolve by natural selection , and reproduce by creating multiple copies of themselves through self-assembly. Although they have genes, they do not have a cellular structure, which is often seen as the basic unit of life. Viruses do not have their own metabolism and require a host cell to make new products. They therefore cannot naturally reproduce outside

8436-557: The existence of viruses came from experiments with filters that had pores small enough to retain bacteria. In 1892, Dmitri Ivanovsky used one of these filters to show that sap from a diseased tobacco plant remained infectious to healthy tobacco plants despite having been filtered. Martinus Beijerinck called the filtered, infectious substance a "virus" and this discovery is considered to be the beginning of virology. The subsequent discovery and partial characterization of bacteriophages by Frederick Twort and Félix d'Herelle further catalyzed

8547-428: The extreme of the ssRNA virus case. Viruses undergo genetic change by several mechanisms. These include a process called antigenic drift where individual bases in the DNA or RNA mutate to other bases. Most of these point mutations are "silent"—they do not change the protein that the gene encodes—but others can confer evolutionary advantages such as resistance to antiviral drugs . Antigenic shift occurs when there

8658-514: The field, and by the early 20th century many viruses had been discovered. In 1926, Thomas Milton Rivers defined viruses as obligate parasites. Viruses were demonstrated to be particles, rather than a fluid, by Wendell Meredith Stanley , and the invention of the electron microscope in 1931 allowed their complex structures to be visualised. Scientific opinions differ on whether viruses are a form of life or organic structures that interact with living organisms. They have been described as "organisms at

8769-445: The form of single-stranded nucleoprotein complexes, through pores called plasmodesmata . Bacteria, like plants, have strong cell walls that a virus must breach to infect the cell. Given that bacterial cell walls are much thinner than plant cell walls due to their much smaller size, some viruses have evolved mechanisms that inject their genome into the bacterial cell across the cell wall, while the viral capsid remains outside. Uncoating

8880-772: The highest disease burdens , killing 1.6 million people in 2021, mostly in Africa and Southeast Asia. Bacterial pneumonia is primarily caused by Streptococcus pneumoniae , Staphylococcus aureus , Klebsiella pneumoniae , and Haemophilus influenzae . Foodborne illnesses typically involve Campylobacter , Clostridium perfringens , Escherichia coli , Listeria monocytogenes , and Salmonella . Other infectious diseases caused by pathogenic bacteria include tetanus , typhoid fever , diphtheria , and leprosy . Fungi are eukaryotic organisms that can function as pathogens. There are approximately 300 known fungi that are pathogenic to humans, including Candida albicans , which

8991-440: The host genome, and hijack the host's machinery to produce hundreds of new viruses until the cell bursts open to release them for additional infections. The lytic cycle describes this active state of rapidly killing hosts, while the lysogenic cycle describes potentially hundreds of years of dormancy while integrated in the host genome. Alongside the taxonomy organized by the International Committee on Taxonomy of Viruses (ICTV),

9102-402: The host. At some point, the provirus or prophage may give rise to the active virus, which may lyse the host cells. Enveloped viruses (e.g., HIV) typically are released from the host cell by budding . During this process, the virus acquires its envelope, which is a modified piece of the host's plasma or other, internal membrane. The genetic material within virus particles, and the method by which

9213-458: The immune system of the host, so that when the potential host encounters the virus in the wild, the immune system can defend against infection quickly. Vaccines designed against viruses include annual influenza vaccines and the two-dose MMR vaccine against measles , mumps , and rubella . Vaccines are not available against the viruses responsible for HIV/AIDS , dengue , and chikungunya . Treatment of viral infections often involves treating

9324-420: The immune system's efforts to kill the pathogen, such as feverishly high body temperatures meant to denature pathogenic cells. Despite many attempts, no therapy has been shown to halt the progression of prion diseases . A variety of prevention and treatment options exist for some viral pathogens. Vaccines are one common and effective preventive measure against a variety of viral pathogens. Vaccines prime

9435-511: The infected cell. Cells in which the virus is latent and inactive show few signs of infection and often function normally. This causes persistent infections and the virus is often dormant for many months or years. This is often the case with herpes viruses . Viruses are by far the most abundant biological entities on Earth and they outnumber all the others put together. They infect all types of cellular life including animals, plants, bacteria and fungi . Different types of viruses can infect only

9546-572: The levels of expression for other genes, such as those encoding virulence factors. Infection by fungal pathogens is treated with anti-fungal medication. Athlete's foot , jock itch , and ringworm are fungal skin infections that are treated with topical anti-fungal medications like clotrimazole . Infections involving the yeast species Candida albicans cause oral thrush and vaginal yeast infections . These internal infections can either be treated with anti-fungal creams or with oral medication. Common anti-fungal drugs for internal infections include

9657-411: The material is replicated, varies considerably between different types of viruses. The range of structural and biochemical effects that viruses have on the host cell is extensive. These are called ' cytopathic effects '. Most virus infections eventually result in the death of the host cell. The causes of death include cell lysis, alterations to the cell's surface membrane and apoptosis . Often cell death

9768-583: The naked eye. Worms live and feed in their living host, acquiring nutrients and shelter in the digestive tract or bloodstream of their host. They also manipulate the host's immune system by secreting immunomodulatory products which allows them to live in their host for years. Helminthiasis is the generalized term for parasitic worm infections, which typically involve roundworms , tapeworms , and flatworms . While bacteria are typically viewed as pathogens, they serve as hosts to bacteriophage viruses (commonly known as phages). The bacteriophage life cycle involves

9879-504: The offspring of the host for many generations. This provides an invaluable source of information for paleovirologists to trace back ancient viruses that existed as far back as millions of years ago. There are three main hypotheses that aim to explain the origins of viruses: In the past, there were problems with all of these hypotheses: the regressive hypothesis did not explain why even the smallest of cellular parasites do not resemble viruses in any way. The escape hypothesis did not explain

9990-458: The original virus. Their life cycle differs greatly between species, but there are six basic stages in their life cycle: Attachment is a specific binding between viral capsid proteins and specific receptors on the host cellular surface. This specificity determines the host range and type of host cell of a virus. For example, HIV infects a limited range of human leucocytes . This is because its surface protein, gp120 , specifically interacts with

10101-453: The pollutant coal dust , genetic disorders like sickle cell disease , and autoimmune diseases like lupus . Pathogenicity is the potential disease-causing capacity of pathogens, involving a combination of infectivity (pathogen's ability to infect hosts) and virulence (severity of host disease). Koch's postulates are used to establish causal relationships between microbial pathogens and diseases. Whereas meningitis can be caused by

10212-413: The polymerase during genome replication. This process appears to be an adaptation for coping with genome damage. Viral populations do not grow through cell division, because they are acellular. Instead, they use the machinery and metabolism of a host cell to produce multiple copies of themselves, and they assemble in the cell. When infected, the host cell is forced to rapidly produce thousands of copies of

10323-822: The prions to herbivorous animals . Additionally, wood, rocks, plastic, glass, cement, stainless steel, and aluminum have been shown binding, retaining, and releasing prions, showcasing that the proteins resist environmental degradation. Prions are best known for causing transmissible spongiform encephalopathy (TSE) diseases like Creutzfeldt–Jakob disease (CJD), variant Creutzfeldt–Jakob disease (vCJD), Gerstmann–Sträussler–Scheinker syndrome (GSS), fatal familial insomnia (FFI), and kuru in humans. While prions are typically viewed as pathogens that cause protein amyloid fibers to accumulate into neurodegenerative plaques, Susan Lindquist led research showing that yeast use prions to pass on evolutionarily beneficial traits. Not to be confused with virusoids or viruses, viroids are

10434-959: The ranks of subrealm, subkingdom, and subclass are unused, whereas all other ranks are in use. The Nobel Prize-winning biologist David Baltimore devised the Baltimore classification system. The ICTV classification system is used in conjunction with the Baltimore classification system in modern virus classification. The Baltimore classification of viruses is based on the mechanism of mRNA production. Viruses must generate mRNAs from their genomes to produce proteins and replicate themselves, but different mechanisms are used to achieve this in each virus family. Viral genomes may be single-stranded (ss) or double-stranded (ds), RNA or DNA, and may or may not use reverse transcriptase (RT). In addition, ssRNA viruses may be either sense (+) or antisense (−). This classification places viruses into seven groups: Examples of common human diseases caused by viruses include

10545-482: The result of spread to an animal or human host where the virus had not been identified before. It can be an emergent virus , one that represents a new virus, but it can also be an extant virus that has not been previously identified . The SARS-CoV-2 coronavirus that caused the COVID-19 pandemic is an example of a novel virus. Classification seeks to describe the diversity of viruses by naming and grouping them on

10656-493: The same host cell. This process involves pairing of homologous genomes and recombination between them by a process referred to as multiplicity reactivation. The herpes simplex virus , human immunodeficiency virus , and vaccinia virus undergo this form of sexual interaction. These processes of sexual recombination between homologous genomes supports repairs to genetic damage caused by environmental stressors and host immune systems. Immune response An immune response

10767-589: The same species by the process of genetic transformation . Transformation involves the transfer of DNA from a donor cell to a recipient cell and the integration of the donor DNA into the recipient genome through genetic recombination . The bacterial pathogens Helicobacter pylori , Haemophilus influenzae , Legionella pneumophila , Neisseria gonorrhoeae , and Streptococcus pneumoniae frequently undergo transformation to modify their genome for additional traits and evasion of host immune cells. Eukaryotic pathogens are often capable of sexual interaction by

10878-449: The same virion for the virus to be infectious, as demonstrated by brome mosaic virus and several other plant viruses. A viral genome, irrespective of nucleic acid type, is almost always either single-stranded (ss) or double-stranded (ds). Single-stranded genomes consist of an unpaired nucleic acid, analogous to one-half of a ladder split down the middle. Double-stranded genomes consist of two complementary paired nucleic acids, analogous to

10989-461: The size of most bacteria. The origins of viruses in the evolutionary history of life are still unclear. Some viruses may have evolved from plasmids , which are pieces of DNA that can move between cells. Other viruses may have evolved from bacteria. In evolution, viruses are an important means of horizontal gene transfer , which increases genetic diversity in a way analogous to sexual reproduction . Viruses are considered by some biologists to be

11100-520: The skin and mucous membranes, immune cells such as neutrophils , macrophages , and monocytes , and soluble factors including cytokines and complement . On the other hand, the adaptive branch is the body's immune response which is catered against specific antigens and thus, it takes longer to activate the components involved. The adaptive branch include cells such as dendritic cells , T cell , and B cells as well as antibodies —also known as immunoglobulins—which directly interact with antigen and are

11211-530: The smallest known infectious pathogens. Viroids are small single-stranded, circular RNA that are only known to cause plant diseases, such as the potato spindle tuber viroid that affects various agricultural crops. Viroid RNA is not protected by a protein coat, and it does not encode any proteins, only acting as a ribozyme to catalyze other biochemical reactions. Viruses are generally between 20–200 nm in diameter. For survival and replication, viruses inject their genome into host cells, insert those genes into

11322-688: The soil-associated species Prototheca wickerhami . Bacteria are single-celled prokaryotes that range in size from 0.15 and 700 μM. While the vast majority are either harmless or beneficial to their hosts, such as members of the human gut microbiome that support digestion, a small percentage are pathogenic and cause infectious diseases. Bacterial virulence factors include adherence factors to attach to host cells, invasion factors supporting entry into host cells, capsules to prevent opsonization and phagocytosis , toxins, and siderophores to acquire iron. The bacterial disease tuberculosis , primarily caused by Mycobacterium tuberculosis , has one of

11433-401: The structure-mediated self-assembly of the virus particles, some modification of the proteins often occurs. In viruses such as HIV, this modification (sometimes called maturation) occurs after the virus has been released from the host cell. Release – Viruses can be released from the host cell by lysis , a process that kills the cell by bursting its membrane and cell wall if present: this is

11544-454: The study of the origin of life , as it lends further credence to the hypothesis that life could have started as self-assembling organic molecules . The virocell model first proposed by Patrick Forterre considers the infected cell to be the "living form" of viruses and that virus particles (virions) are analogous to spores . Although the living versus non-living debate continues, the virocell model has gained some acceptance. Viruses display

11655-537: The symptoms of the infection, rather than providing medication to combat the viral pathogen itself. Treating the symptoms of a viral infection gives the host immune system time to develop antibodies against the viral pathogen. However, for HIV, highly active antiretroviral therapy (HAART) is conducted to prevent the viral disease from progressing into AIDS as immune cells are lost. Much like viral pathogens, infection by certain bacterial pathogens can be prevented via vaccines. Vaccines against bacterial pathogens include

11766-461: The synthesis of new proteins in both gram-negative and gram-positive bacteria , which makes it a broad-spectrum antibiotic capable of killing most bacterial species. Due to misuse of antibiotics, such as prematurely ended prescriptions exposing bacteria to evolutionary pressure under sublethal doses, some bacterial pathogens have developed antibiotic resistance . For example, a genetically distinct strain of Staphylococcus aureus called MRSA

11877-420: The three pathways ensures that complement will still be functional if one pathway ceases to work or a foreign invader is able to evade one of these pathways ( defense in depth principle). Though the pathways are activated differently, the overall role of the complement system is to opsonize pathogens and induce a series of inflammatory responses that help to combat infection . The adaptive immune response

11988-446: The viral messenger RNA (mRNA). Positive-sense viral RNA is in the same sense as viral mRNA and thus at least a part of it can be immediately translated by the host cell. Negative-sense viral RNA is complementary to mRNA and thus must be converted to positive-sense RNA by an RNA-dependent RNA polymerase before translation. DNA nomenclature for viruses with genomic ssDNA is similar to RNA nomenclature, in that positive-strand viral ssDNA

12099-500: The virus to enter. Penetration or viral entry follows attachment: Virions enter the host cell through receptor-mediated endocytosis or membrane fusion . The infection of plant and fungal cells is different from that of animal cells. Plants have a rigid cell wall made of cellulose , and fungi one of chitin, so most viruses can get inside these cells only after trauma to the cell wall. Nearly all plant viruses (such as tobacco mosaic virus) can also move directly from cell to cell, in

12210-459: The virus useless or uncompetitive. To compensate, RNA viruses often have segmented genomes—the genome is split into smaller molecules—thus reducing the chance that an error in a single-component genome will incapacitate the entire genome. In contrast, DNA viruses generally have larger genomes because of the high fidelity of their replication enzymes. Single-strand DNA viruses are an exception to this rule, as mutation rates for these genomes can approach

12321-420: The viruses injecting their genome into bacterial cells, inserting those genes into the bacterial genome, and hijacking the bacteria's machinery to produce hundreds of new phages until the cell bursts open to release them for additional infections. Typically, bacteriophages are only capable of infecting a specific species or strain. Streptococcus pyogenes uses a Cas9 nuclease to cleave foreign DNA matching

#802197