Yoyogi Park ( 代々木公園 , Yoyogi kōen ) is a park in Shibuya , Tokyo , Japan. It is located adjacent to Harajuku Station and Meiji Shrine in Yoyogikamizonochō . The park is a popular Tokyo destination, especially on Sundays when it is used as a gathering place for Japanese rock music fans, jugglers, comedians, martial arts clubs, cosplayers and other subculture and hobby groups. In spring, thousands of people visit the park to enjoy the cherry blossom during hanami . The landscaped park has picnic areas, bike paths, cycle rentals, public sport courts, and a dog run.
84-577: Yoyogi Park stands on the site from where the first successful powered aircraft flight in Japan took place by Captain Yoshitoshi Tokugawa on 19 December 1910. The area later became an army parade ground. From September 1945, the site became a U.S. officers housing area known as Washington Heights during the Allied occupation of Japan . The area was used for the 1964 Summer Olympics housing
168-443: A gas turbine engine offered. Thus was born the idea to mate a turbine engine to a traditional propeller. Because gas turbines optimally spin at high speed, a turboprop features a gearbox to lower the speed of the shaft so that the propeller tips don't reach supersonic speeds. Often the turbines that drive the propeller are separate from the rest of the rotating components so that they can rotate at their own best speed (referred to as
252-618: A better efficiency. A hybrid system as emergency back-up and for added power in take-off is offered for sale by Axter Aerospace, Madrid, Spain. Small multicopter UAVs are almost always powered by electric motors. Reaction engines generate the thrust to propel an aircraft by ejecting the exhaust gases at high velocity from the engine, the resultant reaction of forces driving the aircraft forwards. The most common reaction propulsion engines flown are turbojets, turbofans and rockets. Other types such as pulsejets , ramjets , scramjets and pulse detonation engines have also flown. In jet engines
336-419: A combustion section where fuel is added and ignited, one or more turbines that extract power from the expanding exhaust gases to drive the compressor, and an exhaust nozzle that accelerates the exhaust gases out the back of the engine to create thrust. When turbojets were introduced, the top speed of fighter aircraft equipped with them was at least 100 miles per hour faster than competing piston-driven aircraft. In
420-564: A common crankshaft. The vast majority of V engines are water-cooled. The V design provides a higher power-to-weight ratio than an inline engine, while still providing a small frontal area. Perhaps the most famous example of this design is the legendary Rolls-Royce Merlin engine, a 27-litre (1649 in ) 60° V12 engine used in, among others, the Spitfires that played a major role in the Battle of Britain . A horizontally opposed engine, also called
504-403: A continuous flow of electrolyte. Flow cells typically have the fuel dissolved in the electrolyte. Power-to-weight ratios for vehicles are usually calculated using curb weight (for cars) or wet weight (for motorcycles), that is, excluding weight of the driver and any cargo. This could be slightly misleading, especially with regard to motorcycles, where the driver might weigh 1/3 to 1/2 as much as
588-490: A cooling system into the air duct of a hydrogen jet engine permits greater fuel injection at high speed and obviates the need for the duct to be made of refractory or actively cooled materials. This greatly improves the thrust/weight ratio of the engine at high speed. It is thought that this design of engine could permit sufficient performance for antipodal flight at Mach 5, or even permit a single stage to orbit vehicle to be practical. The hybrid air-breathing SABRE rocket engine
672-406: A cutoff voltage are typically specified for a battery by its manufacturer. The output voltage falls to the cutoff voltage when the battery becomes "discharged". The nominal output voltage is always less than the open-circuit voltage produced when the battery is "charged". The temperature of a battery can affect the power it can deliver, where lower temperatures reduce power. Total energy delivered from
756-440: A cylinder on the other side. Opposed, air-cooled four- and six-cylinder piston engines are by far the most common engines used in small general aviation aircraft requiring up to 400 horsepower (300 kW) per engine. Aircraft that require more than 400 horsepower (300 kW) per engine tend to be powered by turbine engines . An H configuration engine is essentially a pair of horizontally opposed engines placed together, with
840-408: A flat or boxer engine, has two banks of cylinders on opposite sides of a centrally located crankcase. The engine is either air-cooled or liquid-cooled, but air-cooled versions predominate. Opposed engines are mounted with the crankshaft horizontal in airplanes , but may be mounted with the crankshaft vertical in helicopters . Due to the cylinder layout, reciprocating forces tend to cancel, resulting in
924-467: A fluid, or storage in a pressure vessel . A variety of effects can be harnessed to produce thermoelectricity , thermionic emission , pyroelectricity and piezoelectricity . Electrical resistance and ferromagnetism of materials can be harnessed to generate thermoacoustic energy from an electric current. All electrochemical cell batteries deliver a changing voltage as their chemistry changes from "charged" to "discharged". A nominal output voltage and
SECTION 10
#17327756590881008-572: A fraction of the cost of traditional engines. Such conversions first took place in the early 1970s; and as of 10 December 2006 the National Transportation Safety Board has only seven reports of incidents involving aircraft with Mazda engines, and none of these is of a failure due to design or manufacturing flaws. The most common combustion cycle for aero engines is the four-stroke with spark ignition. Two-stroke spark ignition has also been used for small engines, while
1092-407: A free-turbine engine). A turboprop is very efficient when operated within the realm of cruise speeds it was designed for, which is typically 200 to 400 mph (320 to 640 km/h). Turboshaft engines are used primarily for helicopters and auxiliary power units . A turboshaft engine is similar to a turboprop in principle, but in a turboprop the propeller is supported by the engine and the engine
1176-456: A handful of types are still in production. The last airliner that used turbojets was the Concorde , whose Mach 2 airspeed permitted the engine to be highly efficient. A turbofan engine is much the same as a turbojet, but with an enlarged fan at the front that provides thrust in much the same way as a ducted propeller , resulting in improved fuel efficiency . Though the fan creates thrust like
1260-563: A higher discharge current – and therefore higher power-to-weight ratio – but only with a lower energy capacity. Power-to-weight ratio for batteries is therefore less meaningful without reference to corresponding energy-to-weight ratio and cell temperature. This relationship is known as Peukert's law . Capacitors store electric charge onto two electrodes separated by an electric field semi-insulating ( dielectric ) medium. Electrostatic capacitors feature planar electrodes onto which electric charge accumulates. Electrolytic capacitors use
1344-406: A liquid electrolyte as one of the electrodes and the electric double layer effect upon the surface of the dielectric-electrolyte boundary to increase the amount of charge stored per unit volume. Electric double-layer capacitors extend both electrodes with a nanoporous material such as activated carbon to significantly increase the surface area upon which electric charge can accumulate, reducing
1428-507: A mass of 380 kg (840 lb), giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb). Examples of high power-to-weight ratios can often be found in turbines. This is because of their ability to operate at very high speeds. For example, the Space Shuttle 's main engines used turbopumps (machines consisting of a pump driven by a turbine engine) to feed the propellants (liquid oxygen and liquid hydrogen ) into
1512-569: A peak pressure of 30 MPa (300 bar). Although engine weight increases by 30%, aircraft fuel consumption is reduced by 15%. Sponsored by the European Commission under Framework 7 project LEMCOTEC , Bauhaus Luftfahrt, MTU Aero Engines and GKN Aerospace presented the concept in 2015, raising the overall engine pressure ratio to over 100 for a 15.2% fuel burn reduction compared to 2025 engines. On multi-engine aircraft, engine positions are numbered from left to right from
1596-647: A period of time is equal to the difference in its total energy over that period of time, so the rate at which work is done is equal to the rate of change of the kinetic energy (in the absence of potential energy changes). The work done from time t to time t + Δ t along the path C is defined as the line integral ∫ C F ⋅ d x = ∫ t t + Δ t F ⋅ v ( t ) d t {\displaystyle \int _{C}\mathbf {F} \cdot d\mathbf {x} =\int _{t}^{t+\Delta t}\mathbf {F} \cdot \mathbf {v} (t)dt} , so
1680-478: A piston-engine with two 10 piston banks without a high-pressure turbine, increasing efficiency with non-stationary isochoric - isobaric combustion for higher peak pressures and temperatures. The 11,200 lb (49.7 kN) engine could power a 50-seat regional jet . Its cruise TSFC would be 11.5 g/kN/s (0.406 lb/lbf/hr) for an overall engine efficiency of 48.2%, for a burner temperature of 1,700 K (1,430 °C), an overall pressure ratio of 38 and
1764-424: A propeller, the surrounding duct frees it from many of the restrictions that limit propeller performance. This operation is a more efficient way to provide thrust than simply using the jet nozzle alone, and turbofans are more efficient than propellers in the transsonic range of aircraft speeds and can operate in the supersonic realm. A turbofan typically has extra turbine stages to turn the fan. Turbofans were among
SECTION 20
#17327756590881848-425: A search for replacement fuels for general aviation aircraft a priority for pilots’ organizations. Turbine engines and aircraft diesel engines burn various grades of jet fuel . Jet fuel is a relatively less volatile petroleum derivative based on kerosene , but certified to strict aviation standards, with additional additives. Model aircraft typically use nitro engines (also known as "glow engines" due to
1932-463: A single charge cycle is affected by both the battery temperature and the power it delivers. If the temperature lowers or the power demand increases, the total energy delivered at the point of "discharge" is also reduced. Battery discharge profiles are often described in terms of a factor of battery capacity . For example, a battery with a nominal capacity quoted in ampere-hours (Ah) at a C/10 rated discharge current (derived in amperes) may safely provide
2016-463: A single row of cylinders, as used in automotive language, but in aviation terms, the phrase "inline engine" also covers V-type and opposed engines (as described below), and is not limited to engines with a single row of cylinders. This is typically to differentiate them from radial engines . A straight engine typically has an even number of cylinders, but there are instances of three- and five-cylinder engines. The greatest advantage of an inline engine
2100-404: A smooth running engine. Opposed-type engines have high power-to-weight ratios because they have a comparatively small, lightweight crankcase. In addition, the compact cylinder arrangement reduces the engine's frontal area and allows a streamlined installation that minimizes aerodynamic drag. These engines always have an even number of cylinders, since a cylinder on one side of the crankcase "opposes"
2184-401: A speed | v ( t ) | {\displaystyle |\mathbf {v} (t)|\;} and angle ϕ {\displaystyle \phi \;} with respect to the centre and radial of a gravitational field by an onboard powerplant , then the associated kinetic energy is where: The work–energy principle states that the work done to the object over
2268-667: A train. As the coefficient of friction between steel wheels and rails seldom exceeds 0.25 in most cases, improving a locomotive's power-to-weight ratio is often counterproductive. However, the choice of power transmission system, such as variable-frequency drive versus direct-current drive , may support a higher power-to-weight ratio by better managing propulsion power. Most vehicles are designed to meet passenger comfort and cargo carrying requirements. Vehicle designs trade off power-to-weight ratio to increase comfort, cargo space, fuel economy , emissions control , energy security and endurance. Reduced drag and lower rolling resistance in
2352-522: A vehicle design can facilitate increased cargo space without increase in the (zero cargo) power-to-weight ratio. This increases the role flexibility of the vehicle. Energy security considerations can trade off power (typically decreased) and weight (typically increased), and therefore power-to-weight ratio, for fuel flexibility or drive-train hybridisation . Some utility and practical vehicle variants such as hot hatches and sports-utility vehicles reconfigure power (typically increased) and weight to provide
2436-408: Is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source. It is also used as a measurement of performance of a vehicle as a whole, with the engine's power output being divided by the weight (or mass ) of the vehicle, to give a metric that
2520-533: Is a pre-cooled engine under development. At the April 2018 ILA Berlin Air Show , Munich -based research institute de:Bauhaus Luftfahrt presented a high-efficiency composite cycle engine for 2050, combining a geared turbofan with a piston engine core. The 2.87 m diameter, 16-blade fan gives a 33.7 ultra-high bypass ratio , driven by a geared low-pressure turbine but the high-pressure compressor drive comes from
2604-449: Is a twin-spool engine, allowing only two different speeds for the turbines. Pulsejets are mechanically simple devices that—in a repeating cycle—draw air through a no-return valve at the front of the engine into a combustion chamber and ignite it. The combustion forces the exhaust gases out the back of the engine. It produces power as a series of pulses rather than as a steady output, hence the name. The only application of this type of engine
Yoyogi Park - Misplaced Pages Continue
2688-490: Is above and behind. In the Cessna 337 Skymaster , a push-pull twin-engine airplane, engine No. 1 is the one at the front of the fuselage, while engine No. 2 is aft of the cabin. Aircraft reciprocating (piston) engines are typically designed to run on aviation gasoline . Avgas has a higher octane rating than automotive gasoline to allow higher compression ratios , power output, and efficiency at higher altitudes. Currently
2772-402: Is an important vehicle characteristic that affects the acceleration of sports vehicles. Propeller aircraft depend on high power-to-weight ratios to generate sufficient thrust to achieve sustained flight, and then for speed. Jet aircraft produce thrust directly . Power-to-weight ratio is important in cycling, since it determines acceleration and the speed during hill climbs . Since
2856-453: Is bolted to the airframe : in a turboshaft, the engine does not provide any direct physical support to the helicopter's rotors. The rotor is connected to a transmission which is bolted to the airframe, and the turboshaft engine drives the transmission. The distinction is seen by some as slim, as in some cases aircraft companies make both turboprop and turboshaft engines based on the same design. A number of electrically powered aircraft, such as
2940-417: Is conversely usually lower. Fuel cells and flow cells , although perhaps using similar chemistry to batteries, do not contain the energy storage medium or fuel . With a continuous flow of fuel and oxidant, available fuel cells and flow cells continue to convert the energy storage medium into electric energy and waste products. Fuel cells distinctly contain a fixed electrolyte whereas flow cells also require
3024-500: Is equal to thrust per unit mass multiplied by the velocity of any vehicle. The power-to-weight ratio (specific power) is defined as the power generated by the engine(s) divided by the mass. In this context, the term "weight" can be considered a misnomer, as it colloquially refers to mass. In a zero-gravity (weightless) environment, the power-to-weight ratio would not be considered infinite. A typical turbocharged V8 diesel engine might have an engine power of 250 kW (340 hp) and
3108-420: Is independent of the vehicle's size. Power-to-weight is often quoted by manufacturers at the peak value, but the actual value may vary in use and variations will affect performance. The inverse of power-to-weight, weight-to-power ratio (power loading) is a calculation commonly applied to aircraft, cars, and vehicles in general, to enable the comparison of one vehicle's performance to another. Power-to-weight ratio
3192-720: Is more common because it is difficult to get enough air-flow to cool the rear cylinders directly. Inline engines were common in early aircraft; one was used in the Wright Flyer , the aircraft that made the first controlled powered flight. However, the inherent disadvantages of the design soon became apparent, and the inline design was abandoned, becoming a rarity in modern aviation. For other configurations of aviation inline engine, such as X-engines , U-engines , H-engines , etc., see Inline engine (aeronautics) . Cylinders in this engine are arranged in two in-line banks, typically tilted 60–90 degrees apart from each other and driving
3276-430: Is of lesser concern, rocket engines can be useful because they produce very large amounts of thrust and weigh very little. A rocket turbine engine is a combination of two types of propulsion engines: a liquid-propellant rocket and a turbine jet engine. Its power-to-weight ratio is a little higher than a regular jet engine, and works at higher altitudes. For very high supersonic/low hypersonic flight speeds, inserting
3360-499: Is only delivered if the powerplant is in motion, and is transmitted to cause the body to be in motion. It is typically assumed here that mechanical transmission allows the powerplant to operate at peak output power. This assumption allows engine tuning to trade power band width and engine mass for transmission complexity and mass. Electric motors do not suffer from this tradeoff, instead trading their high torque for traction at low speed. The power advantage or power-to-weight ratio
3444-513: Is that it allows the aircraft to be designed with a low frontal area to minimize drag. If the engine crankshaft is located above the cylinders, it is called an inverted inline engine: this allows the propeller to be mounted high up to increase ground clearance, enabling shorter landing gear. The disadvantages of an inline engine include a poor power-to-weight ratio , because the crankcase and crankshaft are long and thus heavy. An in-line engine may be either air-cooled or liquid-cooled, but liquid-cooling
Yoyogi Park - Misplaced Pages Continue
3528-614: Is the power component of an aircraft propulsion system . Aircraft using power components are referred to as powered flight . Most aircraft engines are either piston engines or gas turbines , although a few have been rocket powered and in recent years many small UAVs have used electric motors . In commercial aviation the major Western manufacturers of turbofan engines are Pratt & Whitney (a subsidiary of Raytheon Technologies ), General Electric , Rolls-Royce , and CFM International (a joint venture of Safran Aircraft Engines and General Electric). Russian manufacturers include
3612-405: Is then where: The useful power of an engine with shaft power output can be calculated using a dynamometer to measure torque and rotational speed , with maximum power reached when torque multiplied by rotational speed is a maximum. For jet engines the useful power is equal to the flight speed of the aircraft multiplied by the force, known as net thrust, required to make it go at that speed. It
3696-455: Is used when calculating propulsive efficiency . Thermal energy is made up from molecular kinetic energy and latent phase energy. Heat engines are able to convert thermal energy in the form of a temperature gradient between a hot source and a cold sink into other desirable mechanical work . Heat pumps take mechanical work to regenerate thermal energy in a temperature gradient. Standard definitions should be used when interpreting how
3780-527: The QinetiQ Zephyr , have been designed since the 1960s. Some are used as military drones . In France in late 2007, a conventional light aircraft powered by an 18 kW electric motor using lithium polymer batteries was flown, covering more than 50 kilometers (31 mi), the first electric airplane to receive a certificate of airworthiness . On 18 May 2020, the Pipistrel E-811 was
3864-684: The Rutan Quickie . The single-rotor engine was put into a Chevvron motor glider and into the Schleicher ASH motor-gliders. After the demise of MidWest, all rights were sold to Diamond of Austria, who have since developed a MkII version of the engine. As a cost-effective alternative to certified aircraft engines some Wankel engines, removed from automobiles and converted to aviation use, have been fitted in homebuilt experimental aircraft . Mazda units with outputs ranging from 100 horsepower (75 kW) to 300 horsepower (220 kW) can be
3948-484: The United Engine Corporation , Aviadvigatel and Klimov . Aeroengine Corporation of China was formed in 2016 with the merger of several smaller companies. The largest manufacturer of turboprop engines for general aviation is Pratt & Whitney. General Electric announced in 2015 entrance into the market. In this section, for clarity, the term "inline engine" refers only to engines with
4032-405: The derivative with respect to time of the work done). The typically used metric unit of the power-to-weight ratio is W kg {\displaystyle {\tfrac {\text{W}}{\text{kg}}}\;} which equals m 2 s 3 {\displaystyle {\tfrac {{\text{m}}^{2}}{{\text{s}}^{3}}}\;} . This fact allows one to express
4116-474: The fundamental theorem of calculus has that power is given by F ( t ) ⋅ v ( t ) = m a ( t ) ⋅ v ( t ) = τ ( t ) ⋅ ω ( t ) {\displaystyle \mathbf {F} (t)\cdot \mathbf {v} (t)=m\mathbf {a} (t)\cdot \mathbf {v} (t)=\mathbf {\tau } (t)\cdot \mathbf {\omega } (t)} . where: In propulsion , power
4200-424: The gyroscopic effects of the heavy rotating engine produced handling problems in aircraft and the engines also consumed large amounts of oil since they used total loss lubrication, the oil being mixed with the fuel and ejected with the exhaust gases. Castor oil was used for lubrication, since it is not soluble in petrol, and the resultant fumes were nauseating to the pilots. Engine designers had always been aware of
4284-424: The oxygen necessary for fuel combustion comes from the air, while rockets carry an oxidizer (usually oxygen in some form) as part of the fuel load, permitting their use in space. A turbojet is a type of gas turbine engine that was originally developed for military fighters during World War II . A turbojet is the simplest of all aircraft gas turbines. It consists of a compressor to draw air in and compress it,
SECTION 50
#17327756590884368-817: The Clerget 14F Diesel radial engine (1939) has the same power to weight ratio as a gasoline radial. Improvements in Diesel technology in automobiles (leading to much better power-weight ratios), the Diesel's much better fuel efficiency and the high relative taxation of AVGAS compared to Jet A1 in Europe have all seen a revival of interest in the use of diesels for aircraft. Thielert Aircraft Engines converted Mercedes Diesel automotive engines, certified them for aircraft use, and became an OEM provider to Diamond Aviation for their light twin. Financial problems have plagued Thielert, so Diamond's affiliate — Austro Engine — developed
4452-574: The Wankel engine has been used in motor gliders where the compactness, light weight, and smoothness are crucially important. The now-defunct Staverton-based firm MidWest designed and produced single- and twin-rotor aero engines, the MidWest AE series . These engines were developed from the motor in the Norton Classic motorcycle . The twin-rotor version was fitted into ARV Super2s and
4536-500: The compression-ignition diesel engine is seldom used. Starting in the 1930s attempts were made to produce a practical aircraft diesel engine . In general, Diesel engines are more reliable and much better suited to running for long periods of time at medium power settings. The lightweight alloys of the 1930s were not up to the task of handling the much higher compression ratios of diesel engines, so they generally had poor power-to-weight ratios and were uncommon for that reason, although
4620-593: The cylinders arranged evenly around the crankshaft, although some early engines, sometimes called semi-radials or fan configuration engines, had an uneven arrangement. The best known engine of this type is the Anzani engine, which was fitted to the Bleriot XI used for the first flight across the English Channel in 1909. This arrangement had the drawback of needing a heavy counterbalance for the crankshaft, but
4704-486: The cylinders in a circle around the crankcase, as in a radial engine, (see above), but the crankshaft is fixed to the airframe and the propeller is fixed to the engine case, so that the crankcase and cylinders rotate. The advantage of this arrangement is that a satisfactory flow of cooling air is maintained even at low airspeeds, retaining the weight advantage and simplicity of a conventional air-cooled engine without one of their major drawbacks. The first practical rotary engine
4788-458: The dielectric medium to nanopores and a very thin high permittivity separator. While capacitors tend not to be as temperature sensitive as batteries, they are significantly capacity constrained and without the strength of chemical bonds suffer from self-discharge. Power-to-weight ratio of capacitors is usually higher than batteries because charge transport units within the cell are smaller (electrons rather than ions), however energy-to-weight ratio
4872-581: The engine core is the bypass ratio. Low-bypass engines are preferred for military applications such as fighters due to high thrust-to-weight ratio, while high-bypass engines are preferred for civil use for good fuel efficiency and low noise. High-bypass turbofans are usually most efficient when the aircraft is traveling at 500 to 550 miles per hour (800 to 890 kilometres per hour), the cruise speed of most large airliners. Low-bypass turbofans can reach supersonic speeds, though normally only when fitted with afterburners . The term advanced technology engine refers to
4956-438: The engine works by having a coiled pipe in the combustion chamber that superheats the fuel (propane) before being injected into the air-fuel inlet. In the combustion chamber, the fuel/air mixture ignites and burns, creating thrust as it leaves through the exhaust pipe. Induction and compression of the fuel/air mixture is done both by the pressure of propane as it is injected, along with the sound waves created by combustion acting on
5040-436: The engine's combustion chamber. The original liquid hydrogen turbopump is similar in size to an automobile engine (weighing approximately 352 kilograms (775 lb)) and produces 72,000 hp (54 MW) for a power-to-weight ratio of 153 kW/kg (93 hp/lb). In classical mechanics , instantaneous power is the limiting value of the average work done per unit time as the time interval Δ t approaches zero (i.e.
5124-415: The engine's heat-radiating surfaces to the air and tends to cancel reciprocating forces, radials tend to cool evenly and run smoothly. The lower cylinders, which are under the crankcase, may collect oil when the engine has been stopped for an extended period. If this oil is not cleared from the cylinders prior to starting the engine, serious damage due to hydrostatic lock may occur. Most radial engines have
SECTION 60
#17327756590885208-606: The first electric aircraft engine to be awarded a type certificate by EASA for use in general aviation . The E-811 powers the Pipistrel Velis Electro . Limited experiments with solar electric propulsion have been performed, notably the manned Solar Challenger and Solar Impulse and the unmanned NASA Pathfinder aircraft. Many big companies, such as Siemens, are developing high performance electric engines for aircraft use, also, SAE shows new developments in elements as pure Copper core electric motors with
5292-399: The first engines to use multiple spools —concentric shafts that are free to rotate at their own speed—to let the engine react more quickly to changing power requirements. Turbofans are coarsely split into low-bypass and high-bypass categories. Bypass air flows through the fan, but around the jet core, not mixing with fuel and burning. The ratio of this air to the amount of air flowing through
5376-497: The intake stacks. It was intended as a power plant for personal helicopters and compact aircraft such as Microlights. A few aircraft have used rocket engines for main thrust or attitude control, notably the Bell X-1 and North American X-15 . Rocket engines are not used for most aircraft as the energy and propellant efficiency is very poor, but have been employed for short bursts of speed and takeoff. Where fuel/propellant efficiency
5460-562: The main Olympic village and the Yoyogi National Gymnasium . The distinctive building, which was designed by Kenzo Tange , hosted swimming and diving , with an annex for basketball . In 1967 most of the area north of the gymnasium complex and south of Meiji Shrine was absorbed by Yoyogi Park. Tokyo's failed bid to host the 2016 Summer Olympics included a proposal to redevelop Yoyogi Park. A new volleyball arena
5544-430: The many limitations of the rotary engine so when the static style engines became more reliable and gave better specific weights and fuel consumption, the days of the rotary engine were numbered. The Wankel is a type of rotary engine. The Wankel engine is about one half the weight and size of a traditional four-stroke cycle piston engine of equal power output, and much lower in complexity. In an aircraft application,
5628-433: The modern generation of jet engines. The principle is that a turbine engine will function more efficiently if the various sets of turbines can revolve at their individual optimum speeds, instead of at the same speed. The true advanced technology engine has a triple spool, meaning that instead of having a single drive shaft, there are three, in order that the three sets of blades may revolve at different speeds. An interim state
5712-463: The most common Avgas is 100LL. This refers to the octane rating (100 octane) and the lead content (LL = low lead, relative to the historic levels of lead in pre-regulation Avgas). Refineries blend Avgas with tetraethyllead (TEL) to achieve these high octane ratings, a practice that governments no longer permit for gasoline intended for road vehicles. The shrinking supply of TEL and the possibility of environmental legislation banning its use have made
5796-404: The new AE300 turbodiesel , also based on a Mercedes engine. Competing new Diesel engines may bring fuel efficiency and lead-free emissions to small aircraft, representing the biggest change in light aircraft engines in decades. While military fighters require very high speeds, many civil airplanes do not. Yet, civil aircraft designers wanted to benefit from the high power and low maintenance that
5880-442: The perception of sports car like performance or for other psychological benefit . Increased engine performance is a consideration, but also other features associated with luxury vehicles . Longitudinal engines are common. Bodies vary from hot hatches , sedans (saloons) , coupés , convertibles and roadsters . Mid-range dual-sport and cruiser motorcycles tend to have similar power-to-weight ratios. Power-to-weight ratio
5964-483: The point of view of the pilot looking forward, so for example on a four-engine aircraft such as the Boeing 747 , engine No. 1 is on the left side, farthest from the fuselage, while engine No. 3 is on the right side nearest to the fuselage. In the case of the twin-engine English Electric Lightning , which has two fuselage-mounted jet engines one above the other, engine No. 1 is below and to the front of engine No. 2, which
6048-432: The power-to-weight ratio is very important, making the Wankel engine a good choice. Because the engine is typically constructed with an aluminium housing and a steel rotor, and aluminium expands more than steel when heated, a Wankel engine does not seize when overheated, unlike a piston engine. This is an important safety factor for aeronautical use. Considerable development of these designs started after World War II , but at
6132-431: The power-to-weight ratio purely by SI base units . A vehicle's power-to-weight ratio equals its acceleration times its velocity; so at twice the velocity, it experiences half the acceleration, all else being equal. If the work to be done is rectilinear motion of a body with constant mass m {\displaystyle m\;} , whose center of mass is to be accelerated along a (possibly non-straight) line to
6216-701: The propulsive power of a jet or rocket engine is transferred to its vehicle. An electric motor uses electrical energy to provide mechanical work , usually through the interaction of a magnetic field and current-carrying conductors . By the interaction of mechanical work on an electrical conductor in a magnetic field, electrical energy can be generated . Fluids (liquid and gas) can be used to transmit and/or store energy using pressure and other fluid properties. Hydraulic (liquid) and pneumatic (gas) engines convert fluid pressure into other desirable mechanical or electrical work . Fluid pumps convert mechanical or electrical work into movement or pressure changes of
6300-439: The time the aircraft industry favored the use of turbine engines. It was believed that turbojet or turboprop engines could power all aircraft, from the largest to smallest designs. The Wankel engine did not find many applications in aircraft, but was used by Mazda in a popular line of sports cars . The French company Citroën had developed Wankel powered RE-2 [ fr ] helicopter in 1970's. In modern times
6384-414: The two crankshafts geared together. This type of engine has one or more rows of cylinders arranged around a centrally located crankcase . Each row generally has an odd number of cylinders to produce smooth operation. A radial engine has only one crank throw per row and a relatively small crankcase, resulting in a favorable power-to-weight ratio . Because the cylinder arrangement exposes a large amount of
6468-445: The use of a glow plug ) powered by glow fuel , a mixture of methanol , nitromethane , and lubricant. Electrically powered model airplanes and helicopters are also commercially available. Small multicopter UAVs are almost always powered by electricity, but larger gasoline-powered designs are under development. Power-to-weight ratio Power-to-weight ratio ( PWR , also called specific power , or power-to-mass ratio )
6552-516: The vehicle itself. In the sport of competitive cycling athlete's performance is increasingly being expressed in VAMs and thus as a power-to-weight ratio in W/kg. This can be measured through the use of a bicycle powermeter or calculated from measuring incline of a road climb and the rider's time to ascend it. A locomotive generally must be heavy in order to develop enough adhesion on the rails to start
6636-399: The years after the war, the drawbacks of the turbojet gradually became apparent. Below about Mach 2, turbojets are very fuel inefficient and create tremendous amounts of noise. Early designs also respond very slowly to power changes, a fact that killed many experienced pilots when they attempted the transition to jets. These drawbacks eventually led to the downfall of the pure turbojet, and only
6720-487: Was reported on August 27, 2014. Using gene sequencing techniques, scientists determined that the outbreak originated in Yoyogi Park. Dozens of visitors to the area contracted the disease, leading to the park's closure on September 4. No further cases were discovered after September 18, and the park re-opened to the public on October 31. Powered flight An aircraft engine , often referred to as an aero engine ,
6804-572: Was the Gnome Omega designed by the Seguin brothers and first flown in 1909. Its relative reliability and good power to weight ratio changed aviation dramatically. Before the first World War most speed records were gained using Gnome-engined aircraft, and in the early years of the war rotary engines were dominant in aircraft types for which speed and agility were paramount. To increase power, engines with two rows of cylinders were built. However,
6888-479: Was the German unmanned V1 flying bomb of World War II . Though the same engines were also used experimentally for ersatz fighter aircraft, the extremely loud noise generated by the engines caused mechanical damage to the airframe that was sufficient to make the idea unworkable. The Gluhareff Pressure Jet (or tip jet) is a type of jet engine that, like a valveless pulsejet, has no moving parts. Having no moving parts,
6972-415: Was to be built west of the Yoyogi National Gymnasium . It would have replaced a small stadium with a football and athletics arena. Yoyogi National Gymnasium later served as the venue for handball events during the 2020 Summer Olympics . In 2014, Tokyo experienced one of its worst dengue fever outbreaks in 100 years and the first recorded cases in 70 years, with nearly 200 confirmed cases. The first case
7056-487: Was used to avoid the spark plugs oiling up. In military aircraft designs, the large frontal area of the engine acted as an extra layer of armor for the pilot. Also air-cooled engines, without vulnerable radiators, are slightly less prone to battle damage, and on occasion would continue running even with one or more cylinders shot away. However, the large frontal area also resulted in an aircraft with an aerodynamically inefficient increased frontal area. Rotary engines have
#87912