The Yakima Fold Belt of south-central Washington , also called the Yakima fold-and-thrust belt , is an area of topographical folds (or wrinkles) raised by tectonic compression. It is a 14,000 km (5,400 sq mi) structural-tectonic sub province of the western Columbia Plateau Province resulting from complex and poorly understood regional tectonics. The folds are associated with geological faults whose seismic risk is of particular concern to the nuclear facilities at the Hanford Nuclear Reservation (immediately northwest of the Tri-Cities) and major dams on the Columbia and Snake Rivers .
81-647: The topographical distinctness of the Yakima Folds (see the shaded-relief image) is due to their formation in a layer of lava flows and sedimentary deposits that have filled-in and generally smoothed the topographic surface of a large area of the Columbia Basin . The extent of these lava flows was limited to the west and north by the rising Cascade Mountains and the Wenatchee Mountains . The lava flows extend east well beyond this image, but
162-484: A common source, the Yellowstone hotspot . The ultimate cause of the volcanism is still up for debate, but the most widely accepted idea is that the mantle plume or upwelling (similar to that associated with present-day Hawaii) initiated the widespread and voluminous basaltic volcanism about 17 million years ago. As hot mantle plume materials rise and reach lower pressures, the hot materials melt and interact with
243-449: A consequence of the initial hot-spot activity in ocean basins as well as on continents. It is possible to track the hot spot back to the flood basalts of a large igneous province; the table below correlates large igneous provinces with the track of a specific hot spot. Eruptions or emplacements of LIPs appear to have, in some cases, occurred simultaneously with oceanic anoxic events and extinction events . The most important examples are
324-423: A high proportion of dykes relative to country rocks, particularly when the width of the linear field is less than 100 km. The dykes have a typical width of 20–100 m, although ultramafic dykes with widths greater than 1 km have been reported. Dykes are typically sub-vertical to vertical. When upward flowing (dyke-forming) magma encounters horizontal boundaries or weaknesses, such as between layers in
405-517: A large proportion (>75%) of the total igneous volume has been emplaced. They are dominantly mafic, but also can have significant ultramafic and silicic components, and some are dominated by silicic magmatism." This definition places emphasis on the high magma emplacement rate characteristics of the LIP event and excludes seamounts, seamount groups, submarine ridges and anomalous seafloor crust. The definition has since been expanded and refined, and remains
486-647: A maximum Pomona flow emplacement duration of several months based on the time required for rivers to be reestablished in their canyons following a basalt flow interruption. Three major tools are used to date the CRBG flows: Stratigraphy, radiometric dating, and magnetostratigraphy. These techniques have been key to correlating data from disparate basalt exposures and boring samples over five states. Major eruptive pulses of flood basalt lavas are laid down stratigraphically . The layers can be distinguished by physical characteristics and chemical composition. Each distinct layer
567-503: A number of the Columbia River Basalt Group flows, and outcrop across the region. Absolute dates, subject to a statistical uncertainty, are determined through radiometric dating using isotope ratios such as Ar/ Ar dating, which can be used to identify the date of solidifying basalt. In the CRBG deposits Ar, which is produced by K decay, only accumulates after the melt solidifies. Other flood basalts include
648-441: A sedimentary deposit, the magma can flow horizontally creating a sill. Some sill provinces have areal extents >1000 km. A series of related sills that were formed essentially contemporaneously (within several million years) from related dikes comprise a LIP if their area is sufficiently large. Examples include: Volcanic rifted margins are found on the boundary of large igneous provinces. Volcanic margins form when rifting
729-500: A solid convective mantle above a liquid core . The mantle's flow is driven by the descent of cold tectonic plates during subduction and the complementary ascent of mantle plumes of hot material from lower levels. The surface of the Earth reflects stretching, thickening and bending of the tectonic plates as they interact. Ocean-plate creation at upwellings, spreading and subduction are well accepted fundamentals of plate tectonics, with
810-465: A stratum was deposited. This is possible because, as magnetic minerals precipitate in the melt (crystallize), they align themselves with Earth's current magnetic field. The Steens Basalt captured a highly detailed record of the Earth's magnetic reversal that occurred roughly 15 million years ago. Over a 10,000-year period, more than 130 flows solidified – roughly one flow every 75 years. As each flow cooled below about 500 °C (932 °F), it captured
891-490: A thickness of more than 1.8 km (5,900 ft). As the molten rock came to the surface, the Earth's crust gradually sank into the space left by the rising lava. This subsidence of the crust produced a large, slightly depressed lava plain now known as the Columbia Basin or Columbia River Plateau . The northwesterly advancing lava forced the ancient Columbia River into its present course. The lava, as it flowed over
SECTION 10
#1732782604336972-627: A volcanic province), and volcanic rifted margins . Mafic basalt sea floors and other geological products of 'normal' plate tectonics were not included in the definition. Most of these LIPs consist of basalt, but some contain large volumes of associated rhyolite (e.g. the Columbia River Basalt Group in the western United States); the rhyolite is typically very dry compared to island arc rhyolites, with much higher eruption temperatures (850 °C to 1000 °C) than normal rhyolites. Some LIPs are geographically intact, such as
1053-554: A work in progress. Some new definitions of LIP include large granitic provinces such as those found in the Andes Mountains of South America and in western North America. Comprehensive taxonomies have been developed to focus technical discussions. Sub-categorization of LIPs into large volcanic provinces (LVP) and large plutonic provinces (LPP), and including rocks produced by normal plate tectonic processes, have been proposed, but these modifications are not generally accepted. LIP
1134-704: Is 17.67±0.32 Ma with younger lava flows ranging to 15.50±0.40 Ma. Although the Imnaha Basalt overlies Lower Steens Basalt, it has been suggested that it is interfingered with Upper Steens Basalt. The next oldest of the flows, from 17 million to 15.6 million years ago, make up the Grande Ronde Basalt. Units (flow zones) within the Grande Ronde Basalt include the Meyer Ridge and the Sentinel Bluffs units. Geologists estimate that
1215-400: Is a common geochemical proxy used to detect massive volcanism in the geologic record, although its foolproofness has been called into question. Jameson Land Thulean Plateau Brazilian Highlands These LIPs are composed dominantly of felsic materials. Examples include: These LIPs are comprised dominantly of andesitic materials. Examples include: This subcategory includes most of
1296-462: Is accompanied by significant mantle melting, with volcanism occurring before and/or during continental breakup. Volcanic rifted margins are characterized by: a transitional crust composed of basaltic igneous rocks, including lava flows, sills, dikes, and gabbros , high volume basalt flows, seaward-dipping reflector sequences of basalt flows that were rotated during the early stages of breakup, limited passive-margin subsidence during and after breakup, and
1377-411: Is an exception) with the steep limb typically faulted by imbricate thrust faults . Fold lengths range from 1 km to 100 km with wavelengths from several kilometers to 20 km. A graben underlies nearly the entire Yakima Fold Belt and has been subsiding since Eocene time, and continues to sink at a slow rate. A 2011 report found aeromagnetic , gravity , and paleoseismic evidence that
1458-561: Is associated with subduction zones or mid-oceanic ridges, there are significant regions of long-lived, extensive volcanism, known as hotspots , which are only indirectly related to plate tectonics. The Hawaiian–Emperor seamount chain , located on the Pacific Plate , is one example, tracing millions of years of relative motion as the plate moves over the Hawaii hotspot . Numerous hotspots of varying size and age have been identified across
1539-824: Is believed the Yellowstone Hotspot created features like Smith Rock in Central Oregon and perhaps another flood basalt event known as Siletzia which underlies much of the Pacific Northwest coast with exposures in the Oregon Coast Range . There is additional confirmation that Yellowstone is associated with a deep hot spot. Using tomographic images based on seismic waves, relatively narrow, deeply seated, active convective plumes have been detected under Yellowstone and several other hot spots. These plumes are much more focused than
1620-1073: Is made up of the Umatilla Member flows, the Wilbur Creek Member flows, the Asotin Member flows (13 million years ago), the Weissenfels Ridge Member flows, the Esquatzel Member flows, the Elephant Mountain Member flows (10.5 million years ago), the Bujford Member flows, the Ice Harbor Member flows (8.5 million years ago) and the Lower Monumental Member flows (6 million years ago). Camp & Ross (2004) observed that
1701-618: Is not now observable. The upper basalt layers of older LIPs may have been removed by erosion or deformed by tectonic plate collisions occurring after the layer is formed. This is especially likely for earlier periods such as the Paleozoic and Proterozoic . Giant dyke swarms having lengths over 300 km are a common record of severely eroded LIPs. Both radial and linear dyke swarm configurations exist. Radial swarms with an areal extent over 2,000 km and linear swarms extending over 1,000 km are known. The linear dyke swarms often have
SECTION 20
#17327826043361782-652: Is now frequently used to also describe voluminous areas of, not just mafic, but all types of igneous rocks. Further, the minimum threshold to be included as a LIP has been lowered to 50,000 km . The working taxonomy, focused heavily on geochemistry, is: Because large igneous provinces are created during short-lived igneous events resulting in relatively rapid and high-volume accumulations of volcanic and intrusive igneous rock, they warrant study. LIPs present possible links to mass extinctions and global environmental and climatic changes. Michael Rampino and Richard Stothers cite 11 distinct flood basalt episodes—occurring in
1863-538: Is the central portion of the Olympic–Wallowa Lineament , referred to as the Cle Elum-Wallula deformed zone (CLEW), constising of a series of generally east-trending narrow asymmetrical anticlinal ridges and broad synclinal valleys formed by folding of Miocene Columbia River basalt flows and sediments. In most parts of the belt the folds have a north vergence (Columbia Hills' south vergence
1944-429: Is typically assigned a name usually based on area (valley, mountain, or region) where that formation is exposed and available for study. Stratigraphy provides a relative ordering (ordinal ranking) of the CRBG layers. Absolute dates, subject to a statistical uncertainty, are determined through radiometric dating using isotope ratios such as Ar/ Ar dating, which can be used to identify the date of solidifying basalt. In
2025-756: The Baffin Island flood basalt about 60 million years ago. Basalts from the Ontong Java Plateau show similar isotopic and trace element signatures proposed for the early-Earth reservoir. Seven pairs of hotspots and LIPs located on opposite sides of the earth have been noted; analyses indicate this coincident antipodal location is highly unlikely to be random. The hotspot pairs include a large igneous province with continental volcanism opposite an oceanic hotspot. Oceanic impacts of large meteorites are expected to have high efficiency in converting energy into seismic waves. These waves would propagate around
2106-782: The Deccan Traps (late Cretaceous period ), that cover an area of 500,000 km (190,000 sq mi) in west-central India ; the Emeishan Traps ( Permian ), which cover more than 250,000 square kilometers in southwestern China ; and Siberian Traps (late Permian ) that cover 2 million km (800,000 sq mi) in Russia . Some time during a 10–15 million-year period, lava flow after lava flow poured out of multiple dikes which trace along an old fault line running from south-eastern Oregon through to western British Columbia. The many layers of lava eventually reached
2187-514: The Deccan Traps of India were not antipodal to (and began erupting several Myr before) the Chicxulub impact in Mexico. In addition, no clear example of impact-induced volcanism, unrelated to melt sheets, has been confirmed at any known terrestrial crater. Aerally extensive dike swarms , sill provinces, and large layered ultramafic intrusions are indicators of LIPs, even when other evidence
2268-551: The Hanford Site . Columbia River Basalt Group The Columbia River Basalt Group (CRBG) is the youngest, smallest and one of the best-preserved continental flood basalt provinces on Earth, covering over 210,000 km (81,000 sq mi) mainly eastern Oregon and Washington , western Idaho , and part of northern Nevada . The basalt group includes the Steens and Picture Gorge basalt formations. During
2349-708: The Missoula Floods has extensively exposed these lava flows, laying bare many layers of the basalt flows at Wallula Gap , the lower Palouse River , the Columbia River Gorge and throughout the Channeled Scablands . The Columbia River Basalt Group is thought to be a potential link to the Chilcotin Group in south-central British Columbia , Canada . The Latah Formation sediments of Washington and Idaho are interbedded with
2430-833: The North American craton , indicated by the dashed orange line) that has resisted the tectonic compression that formed the ridges. The southernmost ridge of the Yakima Fold Belt is the Columbia Hills on the north side of the Columbia River. The pattern of folding continues with the Dalles-Umatilla Syncline just south of the Columbia River, and further into Oregon with the Blue Mountains anticline, which approximately parallels
2511-567: The Tualatin Mountains on the west side of Portland. Individual flows included large quantities of basalt. The McCoy Canyon flow of the Sentinel Bluffs Member released 4,278 km (1,026 cu mi) of basalt in layers of 10 to 60 m (33 to 197 ft) in thickness. The Umtanum flow has been estimated at 2,750 km (660 cu mi) in layers 50 m (160 ft) deep. The Pruitt Draw flow of
Yakima Fold Belt - Misplaced Pages Continue
2592-570: The Wanapum Basalt, and the Saddle Mountains Basalt. The various lava flows have been dated by radiometric dating—particularly through measurement of the ratios of isotopes of potassium to argon . The Columbia River flood basalt province comprises more than 300 individual basalt lava flows that have an average volume of 500 to 600 cubic kilometres (120 to 140 cu mi). The transition to flood volcanism in
2673-646: The Yellowstone hotspot 's initial flood-basalt event occurred near Steens Mountain when the Imnaha and Steens eruptions began. As the North American Plate moved several centimeters per year westward, the eruptions progressed through the Snake River Plain across Idaho and into Wyoming . Consistent with the hot spot hypothesis, the lava flows are progressively younger as one proceeds east along this path. Previous to this eruptive period, it
2754-556: The crust towards the surface. The formation of LIPs is variously attributed to mantle plumes or to processes associated with divergent plate tectonics . The formation of some of the LIPs in the past 500 million years coincide in time with mass extinctions and rapid climatic changes , which has led to numerous hypotheses about causal relationships. LIPs are fundamentally different from any other currently active volcanoes or volcanic systems. In 1992, Coffin and Eldholm initially defined
2835-502: The 500 km (310 mi)-long Ginkgo flow of the Frenchman Springs Member, determining that it had been formed in roughly a week, based on the measured melting temperature along the flow from the origin to the most distant point of the flow, combined with hydraulics considerations. The Ginkgo basalt was examined over its 500 km (310 mi) flow path from a Ginkgo flow feeder dike near Kahlotus, Washington to
2916-403: The CRBG deposits Ar, which is produced by K decay, only accumulates after the melt solidifies. Magnetostratigraphy is also used to determine age. This technique uses the pattern of magnetic polarity zones of CRBG layers by comparison to the magnetic polarity timescale. The samples are analyzed to determine their characteristic remanent magnetization from the Earth's magnetic field at the time
2997-428: The Columbia River Basalt Group (CRBG), similar to other large igneous provinces , was also marked by atmospheric loading through the mass exsolution and emission of volatiles, via the process of volcanic degassing. Comparative analysis of volatile concentrations in source feeder dikes to associated extruded flow units have been quantitatively measured to determine the magnitude of degassing exhibited in CRBG eruptions. Of
3078-726: The Deccan Traps ( Cretaceous–Paleogene extinction event ), the Karoo-Ferrar ( Pliensbachian-Toarcian extinction ), the Central Atlantic magmatic province ( Triassic-Jurassic extinction event ), and the Siberian Traps ( Permian-Triassic extinction event ). Several mechanisms are proposed to explain the association of LIPs with extinction events. The eruption of basaltic LIPs onto the earth's surface releases large volumes of sulfate gas, which forms sulfuric acid in
3159-452: The Ginkgo flow occurred in less than a week. The cooling/hydraulics analyses are supported by an independent indicator; if longer periods were required, external water from temporarily dammed rivers would intrude, resulting in both more dramatic cooling rates and increased volumes of pillow lava . Ho's analysis is consistent with the analysis by Reidel, Tolan, & Beeson (1994), who proposed
3240-548: The Grande Ronde Basalt comprises about 85 percent of the total flow volume. It is characterized by a number of dikes called the Chief Joseph Dike Swarm near Joseph , Enterprise , Troy and Walla Walla through which the lava upwelling occurred (estimates range to up to 20,000 such dikes). Many of the dikes were fissures 5 to 10 m (16 to 33 ft) wide and up to 10 miles (16 km) in length, allowing for huge quantities of magma upwelling. Much of
3321-647: The Grande Ronde basalts, but can be identified by different chemical characteristics. It flowed west to the Pacific, and can be found in the Columbia Gorge, along the upper Clackamas River, the hills south of Oregon City . and as far west as Yaquina Head near Newport, Oregon – a distance of 750 km (470 mi). The Saddle Mountains Basalt, seen prominently at the Saddle Mountains ,
Yakima Fold Belt - Misplaced Pages Continue
3402-721: The Klamath-Blue Mountain Lineament that marks the southeastern edge of Siletzia (see geological map, below). The Yakima Fold Belt is also located on, and the orientation and spacing of some of the Folds influenced by, the Olympic–Wallowa Lineament (OWL), a broad zone of linear topographical features (dashed yellow line) extending from the Olympic Peninsula in northwestern Washington to the Wallowa Mountains in northeastern Oregon. It
3483-522: The LIP-triggered changes may be used as cases to understand current and future environmental changes. Plate tectonic theory explains topography using interactions between the tectonic plates, as influenced by viscous stresses created by flow within the underlying mantle . Since the mantle is extremely viscous, the mantle flow rate varies in pulses which are reflected in the lithosphere by small amplitude, long wavelength undulations. Understanding how
3564-740: The Oregon High Lava Plains is a complementary system of propagating rhyolite eruptions, with the same point of origin. The two phenomena occurred concurrently, with the High Lava Plains propagating westward since ~10 Ma, while the Snake River Plains propagated eastward. Large igneous province A large igneous province ( LIP ) is an extremely large accumulation of igneous rocks , including intrusive ( sills , dikes ) and extrusive ( lava flows, tephra deposits), arising when magma travels through
3645-495: The Oregon Plateau in sections up to 1 km (3,300 ft) thick. It contains the earliest identified eruption of the CRBG large igneous province. The type locality for the Steens basalt, which covers a large portion of the Oregon Plateau, is an approximately 1,000 m (3,300 ft) face of Steens Mountain showing multiple layers of basalt. The oldest of the flows considered part of the Columbia River Basalt Group,
3726-525: The Roza flow. Sulfuric acid , a by-product of emitted sulfur dioxide and atmospheric interactions, has been calculated to be 1.7Gt annually for the Roza flow and 17Gt in total. Analysis of glass inclusions within phenocrysts of the basaltic deposits have yielded emission volumes on the magnitude of 310 Mt of hydrochloric acid , and 1.78 Gt of hydrofluoric acid , additionally. Major hotspots have often been tracked back to flood-basalt events. In this case
3807-617: The Steens Basalt flow are considered to be atypical of other dike swarm trends associated with the CRBG. These swarms, characterized by a maintained trend of N20°E, trace the northward continuation of the Nevada shear zone and have been attributed to magmatic rise through this zone on a regional scale. Virtually coeval with the oldest of the flows, the Imnaha basalt flows welled up across northeastern Oregon. There were 26 major flows over
3888-448: The Steens basalt, includes flows geographically separated but roughly concurrent with the Imnaha flows. Older Imnaha basalt north of Steens Mountain overlies the chemically distinct lowermost flows of Steens basalt; hence some flows of the Imnaha are stratigraphically younger than the lowermost Steens basalt. One geomagnetic field reversal occurred during the Steens Basalt eruptions at approximately 16.7 Ma, as dated using Ar/ Ar ages and
3969-817: The Teepee Butte Member released about 2,350 km (560 cu mi) with layers of basalt up to 100 m (330 ft) thick. The Wanapum Basalt is made up of the Eckler Mountain Member (15.6 million years ago), the Frenchman Springs Member (15.5 million years ago), the Roza Member (14.9 million years ago) and the Priest Rapids Member (14.5 million years ago). They originated from vents between Pendleton, Oregon and Hanford, Washington . The Frenchman Springs Member flowed along similar paths as
4050-602: The Yakima Fold Belt is linked to active Puget Sound faults . Geodetic studies of the Oregon Rotation show that Oregon is rotating about a point somewhat south of Lewiston, Idaho compressing the Yakima fold an average of 3 millimeters per year, and the Washington Pacific coast about 7 millimeters per year. Studies of the motion of the Yakima Fold Belt have been undertaken to evaluate seismic hazards at
4131-600: The Yakima Folds do not. The northernmost fold seen here (Frenchman Hills) ends at the Potholes Reservoir , another (Saddle Mountains) terminates just south of there, near the town of Othello (red circle). South of the Tri-Cities the rampart of the Horse Heaven Hills extends for a short distance past the Columbia River. The ends of these ridges mark the edge of a block of continental crust (part of
SECTION 50
#17327826043364212-584: The area, first filled the stream valleys, forming dams that in turn caused impoundments or lakes. In these ancient lake beds are found fossil leaf impressions, petrified wood , fossil insects, and bones of vertebrate animals. In the middle Miocene, 17 to 15 Ma, the Columbia Plateau and the Oregon Basin and Range of the Pacific Northwest were flooded with lava flows. Both flows are similar in composition and age, and have been attributed to
4293-552: The atmosphere; this absorbs heat and causes substantial cooling (e.g., the Laki eruption in Iceland, 1783). Oceanic LIPs can reduce oxygen in seawater by either direct oxidation reactions with metals in hydrothermal fluids or by causing algal blooms that consume large amounts of oxygen. Large igneous provinces are associated with a handful of ore deposit types including: Enrichment in mercury relative to total organic carbon (Hg/TOC)
4374-794: The basaltic Deccan Traps in India, while others have been fragmented and separated by plate movements, like the Central Atlantic magmatic province —parts of which are found in Brazil, eastern North America, and northwestern Africa. In 2008, Bryan and Ernst refined the definition to narrow it somewhat: "Large Igneous Provinces are magmatic provinces with areal extents > 1 × 10 km , igneous volumes > 1 × 10 km and maximum lifespans of ~50 Myr that have intraplate tectonic settings or geochemical affinities, and are characterised by igneous pulse(s) of short duration (~1–5 Myr), during which
4455-416: The core; roughly 15–20% have characteristics such as presence of a linear chain of sea mounts with increasing ages, LIPs at the point of origin of the track, low shear wave velocity indicating high temperatures below the current location of the track, and ratios of He to He which are judged consistent with a deep origin. Others such as the Pitcairn , Samoan and Tahitian hotspots appear to originate at
4536-434: The emission of sulphur for the Roza flow is calculated to be on the order of 12Gt (12,000 million tonnes) at a rate of 1.2Gt (1,200 million tonnes) annually, in the form of sulphur dioxide (SO2). However, other research through petrologic analysis has yielded SO2 mass degassing values at 0.12% - 0.28% of the total erupted mass of the magma, translating to lower emission estimates in the range of 9.2Gt of sulfur dioxide for
4617-404: The exposed 2,000-foot (610 m) walls of Joseph Canyon along Oregon Route 3 . The Grande Ronde basalt flows flooded down the ancestral Columbia River channel to the west of the Cascade Mountains . It can be found exposed along the Clackamas River and at Silver Falls State Park where the falls plunge over multiple layers of the Grande Ronde basalt. Evidence of eight flows can be found in
4698-611: The flow terminus in the Pacific Ocean at Yaquina Head , Oregon . The basalt had an upper melting temperature of 1 095 ± 5 °C and a lower temperature to 1 085 ± 5 °C; this indicates that the maximum temperature drop along the Ginkgo flow was 20 °C. The lava must have spread quickly to achieve this uniformity. Analyses indicate that the flow must remain laminar , as turbulent flow would cool more quickly. This could be accomplished by sheet flow, which can travel at velocities of 1 to 8 metres per second (2.2 to 17.9 mph) without turbulence and minimal cooling, suggesting that
4779-410: The geomagnetic polarity timescale. Steens Mountain and related sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70 to 90 km (43 to 56 mi) to the southeast and west of Steens Mountain, provide the most detailed magnetic field reversal data (reversed-to-normal polarity transition) yet reported in volcanic rocks. The observed trend in feeder dike swarms associated with
4860-401: The interaction between mantle flow and lithosphere elevation influences formation of LIPs is important to gaining insights into past mantle dynamics. LIPs have played a major role in the cycles of continental breakup, continental formation, new crustal additions from the upper mantle , and supercontinent cycles . Earth has an outer shell made of discrete, moving tectonic plates floating on
4941-411: The large-scale plate tectonic circulation in which they are imbedded. Images reveal continuous but convoluted vertical paths with varying quantities of hotter material, even at depths where crystallographic transformations are predicted to occur. A major alternative to the plume model is a model in which ruptures are caused by plate-related stresses that fractured the lithosphere, allowing melt to reach
SECTION 60
#17327826043365022-461: The lava flowed north into Washington as well as down the Columbia River channel to the Pacific Ocean ; the tremendous flows created the Columbia River Plateau . The weight of this flow (and the emptying of the underlying magma chamber) caused central Washington to sink, creating the broad Columbia Basin in Washington. The type locality for the formation is the canyon of the Grande Ronde River . Grande Ronde basalt flows and dikes can also be seen in
5103-457: The lower efficiency of kinetic energy conversion into seismic energy is not expected to create an antipodal hotspot. A second impact-related model of hotspot and LIP formation has been suggested in which minor hotspot volcanism was generated at large-body impact sites and flood basalt volcanism was triggered antipodally by focused seismic energy. This model has been challenged because impacts are generally considered seismically too inefficient, and
5184-499: The magnetic field's orientation-normal, reversed, or in one of several intermediate positions. Most of the flows froze with a single magnetic orientation. However, several of the flows, which freeze from both the upper and lower surfaces, progressively toward the center, captured substantial variations in magnetic field direction as they froze. The observed change in direction was reported as 50⁰ over 15 days. The Steens Basalt flows covered about 50,000 km (19,000 sq mi) of
5265-490: The materials in the upper mantle , creating magma . Once that magma breaches the surface, it flows as lava and then solidifies into basalt. Prior to 17.5 million years ago, the Western Cascade stratovolcanoes erupted with periodic regularity for over 20 million years, even as they do today. An abrupt transition to shield volcanic flooding took place in the mid-Miocene. The flows can be divided into four major categories: The Steens Basalt, Grande Ronde Basalt,
5346-466: The middle to late Miocene epoch , the Columbia River flood basalts engulfed about 163,700 km (63,200 sq mi) of the Pacific Northwest , forming a large igneous province with an estimated volume of 174,300 km (41,800 cu mi). Eruptions were most vigorous 17–14 million years ago, when over 99 percent of the basalt was released. Less extensive eruptions continued 14–6 million years ago. Erosion resulting from
5427-439: The more than 300 individual flows associated with the CRBG, the Roza flow contains some of the most chemically well preserved basalts for volatile analysis. Contained within the Wanapum formation, Roza is one of the most extensive members of the CRBG with an area of 40,300 square kilometres and a volume of 1,300 cubic kilometres. With magmatic volatile values assumed at 1 - 1.5 percent by weight concentration for source feeder dikes,
5508-564: The order of 1 million cubic kilometers. In most cases, the majority of a basaltic LIP's volume is emplaced in less than 1 million years. One of the conundra of such LIPs' origins is to understand how enormous volumes of basaltic magma are formed and erupted over such short time scales, with effusion rates up to an order of magnitude greater than mid-ocean ridge basalts. The source of many or all LIPs are variously attributed to mantle plumes, to processes associated with plate tectonics or to meteorite impacts. Although most volcanic activity on Earth
5589-603: The past 250 million years—which created volcanic provinces and oceanic plateaus and coincided with mass extinctions. This theme has developed into a broad field of research, bridging geoscience disciplines such as biostratigraphy , volcanology , metamorphic petrology , and Earth System Modelling . The study of LIPs has economic implications. Some workers associate them with trapped hydrocarbons. They are associated with economic concentrations of copper–nickel and iron. They are also associated with formation of major mineral provinces including platinum group element deposits and, in
5670-405: The period, one roughly every 15,000 years. Although estimates are that this amounts to about 10% of the total flows, they have been buried under more recent flows, and are visible in few locations. They can be seen along the lower benches of the Imnaha River and Snake River in Wallowa county. The Imnaha lavas have been dated using the K–Ar technique, and show a broad range of dates. The oldest
5751-455: The plume at 650 and 400 km (400 and 250 mi), which may correspond to phase changes or may reflect still-to-be-understood viscosity effects. Additional data collection and further modeling will be required to achieve a consensus on the actual mechanism. The Columbia River Basalt Group flows exhibit essentially uniform chemical properties through the bulk of individual flows, suggesting rapid placement. Ho and Cashman (1997) characterized
5832-558: The presence of a lower crust with anomalously high seismic P-wave velocities in lower crustal bodies, indicative of lower temperature, dense media. The early volcanic activity of major hotspots, postulated to result from deep mantle plumes, is frequently accompanied by flood basalts. These flood basalt eruptions have resulted in large accumulations of basaltic lavas emplaced at a rate greatly exceeding that seen in contemporary volcanic processes. Continental rifting commonly follows flood basalt volcanism. Flood basalt provinces may also occur as
5913-407: The silicic LIPs, silver and gold deposits. Titanium and vanadium deposits are also found in association with LIPs. LIPs in the geological record have marked major changes in the hydrosphere and atmosphere , leading to major climate shifts and maybe mass extinctions of species. Some of these changes were related to rapid release of greenhouse gases from the lithosphere to the atmosphere. Thus
5994-465: The surface from shallow heterogeneous sources. The high volumes of molten material that form the LIPs is postulated to be caused by convection in the upper mantle, which is secondary to the convection driving tectonic plate motion. It has been proposed that geochemical evidence supports an early-formed reservoir that survived in the Earth's mantle for about 4.5 billion years. Molten material is postulated to have originated from this reservoir, contributing
6075-432: The surface topography. The convective circulation drives up-wellings and down-wellings in Earth's mantle that are reflected in local surface levels. Hot mantle materials rising up in a plume can spread out radially beneath the tectonic plate causing regions of uplift. These ascending plumes play an important role in LIP formation. When created, LIPs often have an areal extent of a few million square kilometers and volumes on
6156-458: The term "large igneous province" as representing a variety of mafic igneous provinces with areal extent greater than 100,000 km that represented "massive crustal emplacements of predominantly mafic (magnesium- and iron-rich) extrusive and intrusive rock, and originated via processes other than 'normal' seafloor spreading." That original definition included continental flood basalts , oceanic plateaus , large dike swarms (the eroded roots of
6237-472: The top of large, transient, hot lava domes (termed superswells) in the mantle. The remainder appear to originate in the upper mantle and have been suggested to result from the breakup of subducting lithosphere. Recent imaging of the region below known hotspots (for example, Yellowstone and Hawaii) using seismic-wave tomography has produced mounting evidence that supports relatively narrow, deep-origin, convective plumes that are limited in region compared to
6318-459: The upwelling observed with large-scale plate-tectonics circulation. The hot spot hypothesis is not universally accepted as it has not resolved several questions. The Yellowstone hot spot volcanism track shows a large apparent bow in the hot-spot track that does not correspond to changes in plate motion if the northern CRBG floods are considered. Further, the Yellowstone images show necking of
6399-399: The upwelling of hot mantle materials and the sinking of the cooler ocean plates driving the mantle convection. In this model, tectonic plates diverge at mid-ocean ridges , where hot mantle rock flows upward to fill the space. Plate-tectonic processes account for the vast majority of Earth's volcanism . Beyond the effects of convectively driven motion, deep processes have other influences on
6480-399: The world and reconverge close to the antipodal position; small variations are expected as the seismic velocity varies depending upon the route characteristics along which the waves propagate. As the waves focus on the antipodal position, they put the crust at the focal point under significant stress and are proposed to rupture it, creating antipodal pairs. When the meteorite impacts a continent,
6561-415: The world. These hotspots move slowly with respect to one another but move an order of magnitude more quickly with respect to tectonic plates, providing evidence that they are not directly linked to tectonic plates. The origin of hotspots remains controversial. Hotspots that reach the Earth's surface may have three distinct origins. The deepest probably originate from the boundary between the lower mantle and
#335664