Misplaced Pages

Standard score

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Statistics (from German : Statistik , orig. "description of a state , a country" ) is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data . In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments .

#415584

110-445: In statistics , the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured. Raw scores above the mean have positive standard scores, while those below the mean have negative standard scores. It is calculated by subtracting the population mean from an individual raw score and then dividing

220-603: A normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable . The general form of its probability density function is f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}\,.} The parameter μ {\textstyle \mu }

330-469: A population , for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics . Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population. Consider independent identically distributed (IID) random variables with

440-418: A decade earlier in 1795. The modern field of statistics emerged in the late 19th and early 20th century in three stages. The first wave, at the turn of the century, was led by the work of Francis Galton and Karl Pearson , who transformed statistics into a rigorous mathematical discipline used for analysis, not just in science, but in industry and politics as well. Galton's contributions included introducing

550-405: A fixed collection of independent normal deviates is a normal deviate. Many results and methods, such as propagation of uncertainty and least squares parameter fitting, can be derived analytically in explicit form when the relevant variables are normally distributed. A normal distribution is sometimes informally called a bell curve . However, many other distributions are bell-shaped (such as

660-486: A future observation X will lie in the interval with high probability γ {\displaystyle \gamma } , i.e. For the standard score Z of X it gives: By determining the quantile z such that it follows: In process control applications, the Z value provides an assessment of the degree to which a process is operating off-target. When scores are measured on different scales, they may be converted to z-scores to aid comparison. Dietz et al. give

770-758: A generic normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the cumulative distribution function is F ( x ) = Φ ( x − μ σ ) = 1 2 [ 1 + erf ⁡ ( x − μ σ 2 ) ] . {\displaystyle F(x)=\Phi \left({\frac {x-\mu }{\sigma }}\right)={\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {x-\mu }{\sigma {\sqrt {2}}}}\right)\right]\,.} The complement of

880-458: A given probability distribution : standard statistical inference and estimation theory defines a random sample as the random vector given by the column vector of these IID variables. The population being examined is described by a probability distribution that may have unknown parameters. A statistic is a random variable that is a function of the random sample, but not a function of unknown parameters . The probability distribution of

990-484: A given probability of containing the true value is to use a credible interval from Bayesian statistics : this approach depends on a different way of interpreting what is meant by "probability" , that is as a Bayesian probability . In principle confidence intervals can be symmetrical or asymmetrical. An interval can be asymmetrical because it works as lower or upper bound for a parameter (left-sided interval or right sided interval), but it can also be asymmetrical because

1100-471: A given situation and carry the computation, several methods have been proposed: the method of moments , the maximum likelihood method, the least squares method and the more recent method of estimating equations . Interpretation of statistical information can often involve the development of a null hypothesis which is usually (but not necessarily) that no relationship exists among variables or that no change occurred over time. The best illustration for

1210-546: A known approximate solution, x 0 {\textstyle x_{0}} , to the desired Φ ( x ) {\textstyle \Phi (x)} . x 0 {\textstyle x_{0}} may be a value from a distribution table, or an intelligent estimate followed by a computation of Φ ( x 0 ) {\textstyle \Phi (x_{0})} using any desired means to compute. Use this value of x 0 {\textstyle x_{0}} and

SECTION 10

#1732794168416

1320-555: A mathematical discipline only took shape at the very end of the 17th century, particularly in Jacob Bernoulli 's posthumous work Ars Conjectandi . This was the first book where the realm of games of chance and the realm of the probable (which concerned opinion, evidence, and argument) were combined and submitted to mathematical analysis. The method of least squares was first described by Adrien-Marie Legendre in 1805, though Carl Friedrich Gauss presumably made use of it

1430-1033: A meaningful order to those values, and permit any order-preserving transformation. Interval measurements have meaningful distances between measurements defined, but the zero value is arbitrary (as in the case with longitude and temperature measurements in Celsius or Fahrenheit ), and permit any linear transformation. Ratio measurements have both a meaningful zero value and the distances between different measurements defined, and permit any rescaling transformation. Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables , whereas ratio and interval measurements are grouped together as quantitative variables , which can be either discrete or continuous , due to their numerical nature. Such distinctions can often be loosely correlated with data type in computer science, in that dichotomous categorical variables may be represented with

1540-499: A novice is the predicament encountered by a criminal trial. The null hypothesis, H 0 , asserts that the defendant is innocent, whereas the alternative hypothesis, H 1 , asserts that the defendant is guilty. The indictment comes because of suspicion of the guilt. The H 0 (status quo) stands in opposition to H 1 and is maintained unless H 1 is supported by evidence "beyond a reasonable doubt". However, "failure to reject H 0 " in this case does not imply innocence, but merely that

1650-404: A population, so results do not fully represent the whole population. Any estimates obtained from the sample only approximate the population value. Confidence intervals allow statisticians to express how closely the sample estimate matches the true value in the whole population. Often they are expressed as 95% confidence intervals. Formally, a 95% confidence interval for a value is a range where, if

1760-412: A problem, it is common practice to start with a population or process to be studied. Populations can be diverse topics, such as "all people living in a country" or "every atom composing a crystal". Ideally, statisticians compile data about the entire population (an operation called a census ). This may be organized by governmental statistical institutes. Descriptive statistics can be used to summarize

1870-497: A sample using indexes such as the mean or standard deviation , and inferential statistics , which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location ) seeks to characterize the distribution's central or typical value, while dispersion (or variability ) characterizes

1980-412: A standard score by where: The absolute value of z represents the distance between that raw score x and the population mean in units of the standard deviation. z is negative when the raw score is below the mean, positive when above. Calculating z using this formula requires use of the population mean and the population standard deviation, not the sample mean or sample deviation. However, knowing

2090-465: A statistician would use a modified, more structured estimation method (e.g., difference in differences estimation and instrumental variables , among many others) that produce consistent estimators . The basic steps of a statistical experiment are: Experiments on human behavior have special concerns. The famous Hawthorne study examined changes to the working environment at the Hawthorne plant of

2200-637: A test and confidence intervals . Jerzy Neyman in 1934 showed that stratified random sampling was in general a better method of estimation than purposive (quota) sampling. Today, statistical methods are applied in all fields that involve decision making, for making accurate inferences from a collated body of data and for making decisions in the face of uncertainty based on statistical methodology. The use of modern computers has expedited large-scale statistical computations and has also made possible new methods that are impractical to perform manually. Statistics continues to be an area of active research, for example on

2310-399: A transformation is sensible to contemplate depends on the question one is trying to answer." A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features of a collection of information , while descriptive statistics in the mass noun sense is the process of using and analyzing those statistics. Descriptive statistics

SECTION 20

#1732794168416

2420-419: A value accurately rejecting the null hypothesis (sometimes referred to as the p-value ). The standard approach is to test a null hypothesis against an alternative hypothesis. A critical region is the set of values of the estimator that leads to refuting the null hypothesis. The probability of type I error is therefore the probability that the estimator belongs to the critical region given that null hypothesis

2530-542: A variance of ⁠ 1 2 {\displaystyle {\frac {1}{2}}} ⁠ , and Stephen Stigler once defined the standard normal as φ ( z ) = e − π z 2 , {\displaystyle \varphi (z)=e^{-\pi z^{2}},} which has a simple functional form and a variance of σ 2 = 1 2 π . {\textstyle \sigma ^{2}={\frac {1}{2\pi }}.} Every normal distribution

2640-401: A z-score requires knowledge of the mean and standard deviation of the complete population to which a data point belongs; if one only has a sample of observations from the population, then the analogous computation using the sample mean and sample standard deviation yields the t -statistic . If the population mean and population standard deviation are known, a raw score x is converted into

2750-485: Is z = x − μ σ = 24 − 21 5 = 0.6 {\displaystyle z={x-\mu \over \sigma }={24-21 \over 5}=0.6} Because student A has a higher z-score than student B, student A performed better compared to other test-takers than did student B. Continuing the example of ACT and SAT scores, if it can be further assumed that both ACT and SAT scores are normally distributed (which

2860-424: Is a normal deviate with parameters μ {\textstyle \mu } and σ 2 {\textstyle \sigma ^{2}} , then this X {\textstyle X} distribution can be re-scaled and shifted via the formula Z = ( X − μ ) / σ {\textstyle Z=(X-\mu )/\sigma } to convert it to

2970-730: Is a version of the standard normal distribution, whose domain has been stretched by a factor σ {\textstyle \sigma } (the standard deviation) and then translated by μ {\textstyle \mu } (the mean value): f ( x ∣ μ , σ 2 ) = 1 σ φ ( x − μ σ ) . {\displaystyle f(x\mid \mu ,\sigma ^{2})={\frac {1}{\sigma }}\varphi \left({\frac {x-\mu }{\sigma }}\right)\,.} The probability density must be scaled by 1 / σ {\textstyle 1/\sigma } so that

3080-778: Is advantageous because of a much simpler and easier-to-remember formula, and simple approximate formulas for the quantiles of the distribution. Normal distributions form an exponential family with natural parameters θ 1 = μ σ 2 {\textstyle \textstyle \theta _{1}={\frac {\mu }{\sigma ^{2}}}} and θ 2 = − 1 2 σ 2 {\textstyle \textstyle \theta _{2}={\frac {-1}{2\sigma ^{2}}}} , and natural statistics x and x . The dual expectation parameters for normal distribution are η 1 = μ and η 2 = μ + σ . The cumulative distribution function (CDF) of

3190-394: Is also used quite often. The normal distribution is often referred to as N ( μ , σ 2 ) {\textstyle N(\mu ,\sigma ^{2})} or N ( μ , σ 2 ) {\textstyle {\mathcal {N}}(\mu ,\sigma ^{2})} . Thus when a random variable X {\textstyle X}

3300-575: Is another type of observational study in which people with and without the outcome of interest (e.g. lung cancer) are invited to participate and their exposure histories are collected. Various attempts have been made to produce a taxonomy of levels of measurement . The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one (injective) transformation. Ordinal measurements have imprecise differences between consecutive values, but have

3410-465: Is appropriate to apply different kinds of statistical methods to data obtained from different kinds of measurement procedures is complicated by issues concerning the transformation of variables and the precise interpretation of research questions. "The relationship between the data and what they describe merely reflects the fact that certain kinds of statistical statements may have truth values which are not invariant under some transformations. Whether or not

Standard score - Misplaced Pages Continue

3520-447: Is approximately correct), then the z-scores may be used to calculate the percentage of test-takers who received lower scores than students A and B. "For some multivariate techniques such as multidimensional scaling and cluster analysis, the concept of distance between the units in the data is often of considerable interest and importance… When the variables in a multivariate data set are on different scales, it makes more sense to calculate

3630-417: Is called a normal deviate . Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem . It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance

3740-834: Is called error term, disturbance or more simply noise. Both linear regression and non-linear regression are addressed in polynomial least squares , which also describes the variance in a prediction of the dependent variable (y axis) as a function of the independent variable (x axis) and the deviations (errors, noise, disturbances) from the estimated (fitted) curve. Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic ( bias ), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems. Most studies only sample part of

3850-838: Is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z)={\frac {e^{\frac {-z^{2}}{2}}}{\sqrt {2\pi }}}\,.} The variable z {\textstyle z} has a mean of 0 and a variance and standard deviation of 1. The density φ ( z ) {\textstyle \varphi (z)} has its peak 1 2 π {\textstyle {\frac {1}{\sqrt {2\pi }}}} at z = 0 {\textstyle z=0} and inflection points at z = + 1 {\textstyle z=+1} and z = − 1 {\textstyle z=-1} . Although

3960-428: Is distinguished from inferential statistics (or inductive statistics), in that descriptive statistics aims to summarize a sample , rather than use the data to learn about the population that the sample of data is thought to represent. Statistical inference is the process of using data analysis to deduce properties of an underlying probability distribution . Inferential statistical analysis infers properties of

4070-412: Is equivalent to saying that the standard normal distribution Z {\textstyle Z} can be scaled/stretched by a factor of σ {\textstyle \sigma } and shifted by μ {\textstyle \mu } to yield a different normal distribution, called X {\textstyle X} . Conversely, if X {\textstyle X}

4180-437: Is itself a random variable—whose distribution converges to a normal distribution as the number of samples increases. Therefore, physical quantities that are expected to be the sum of many independent processes, such as measurement errors , often have distributions that are nearly normal. Moreover, Gaussian distributions have some unique properties that are valuable in analytic studies. For instance, any linear combination of

4290-457: Is normally distributed with mean μ {\textstyle \mu } and standard deviation σ {\textstyle \sigma } , one may write X ∼ N ( μ , σ 2 ) . {\displaystyle X\sim {\mathcal {N}}(\mu ,\sigma ^{2}).} Some authors advocate using the precision τ {\textstyle \tau } as

4400-418: Is one that explores the association between smoking and lung cancer. This type of study typically uses a survey to collect observations about the area of interest and then performs statistical analysis. In this case, the researchers would collect observations of both smokers and non-smokers, perhaps through a cohort study , and then look for the number of cases of lung cancer in each group. A case-control study

4510-451: Is proposed for the statistical relationship between the two data sets, an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis

Standard score - Misplaced Pages Continue

4620-408: Is rejected when it is in fact true, giving a "false positive") and Type II errors (null hypothesis fails to be rejected when it is in fact false, giving a "false negative"). Multiple problems have come to be associated with this framework, ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis. Statistical measurement processes are also prone to error in regards to

4730-402: Is the mean or expectation of the distribution (and also its median and mode ), while the parameter σ 2 {\textstyle \sigma ^{2}} is the variance . The standard deviation of the distribution is σ {\textstyle \sigma } (sigma). A random variable with a Gaussian distribution is said to be normally distributed , and

4840-402: Is true ( statistical significance ) and the probability of type II error is the probability that the estimator does not belong to the critical region given that the alternative hypothesis is true. The statistical power of a test is the probability that it correctly rejects the null hypothesis when the null hypothesis is false. Referring to statistical significance does not necessarily mean that

4950-868: Is very close to zero, and simplifies formulas in some contexts, such as in the Bayesian inference of variables with multivariate normal distribution . Alternatively, the reciprocal of the standard deviation τ ′ = 1 / σ {\textstyle \tau '=1/\sigma } might be defined as the precision , in which case the expression of the normal distribution becomes f ( x ) = τ ′ 2 π e − ( τ ′ ) 2 ( x − μ ) 2 / 2 . {\displaystyle f(x)={\frac {\tau '}{\sqrt {2\pi }}}e^{-(\tau ')^{2}(x-\mu )^{2}/2}.} According to Stigler, this formulation

5060-449: Is widely employed in government, business, and natural and social sciences. The mathematical foundations of statistics developed from discussions concerning games of chance among mathematicians such as Gerolamo Cardano , Blaise Pascal , Pierre de Fermat , and Christiaan Huygens . Although the idea of probability was already examined in ancient and medieval law and philosophy (such as the work of Juan Caramuel ), probability theory as

5170-1910: The e a x 2 {\textstyle e^{ax^{2}}} family of derivatives may be used to easily construct a rapidly converging Taylor series expansion using recursive entries about any point of known value of the distribution, Φ ( x 0 ) {\textstyle \Phi (x_{0})} : Φ ( x ) = ∑ n = 0 ∞ Φ ( n ) ( x 0 ) n ! ( x − x 0 ) n , {\displaystyle \Phi (x)=\sum _{n=0}^{\infty }{\frac {\Phi ^{(n)}(x_{0})}{n!}}(x-x_{0})^{n}\,,} where: Φ ( 0 ) ( x 0 ) = 1 2 π ∫ − ∞ x 0 e − t 2 / 2 d t Φ ( 1 ) ( x 0 ) = 1 2 π e − x 0 2 / 2 Φ ( n ) ( x 0 ) = − ( x 0 Φ ( n − 1 ) ( x 0 ) + ( n − 2 ) Φ ( n − 2 ) ( x 0 ) ) , n ≥ 2 . {\displaystyle {\begin{aligned}\Phi ^{(0)}(x_{0})&={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{x_{0}}e^{-t^{2}/2}\,dt\\\Phi ^{(1)}(x_{0})&={\frac {1}{\sqrt {2\pi }}}e^{-x_{0}^{2}/2}\\\Phi ^{(n)}(x_{0})&=-\left(x_{0}\Phi ^{(n-1)}(x_{0})+(n-2)\Phi ^{(n-2)}(x_{0})\right),&n\geq 2\,.\end{aligned}}} An application for

5280-861: The Q {\textstyle Q} -function, all of which are simple transformations of Φ {\textstyle \Phi } , are also used occasionally. The graph of the standard normal cumulative distribution function Φ {\textstyle \Phi } has 2-fold rotational symmetry around the point (0,1/2); that is, Φ ( − x ) = 1 − Φ ( x ) {\textstyle \Phi (-x)=1-\Phi (x)} . Its antiderivative (indefinite integral) can be expressed as follows: ∫ Φ ( x ) d x = x Φ ( x ) + φ ( x ) + C . {\displaystyle \int \Phi (x)\,dx=x\Phi (x)+\varphi (x)+C.} The cumulative distribution function of

5390-765: The Boolean data type , polytomous categorical variables with arbitrarily assigned integers in the integral data type , and continuous variables with the real data type involving floating-point arithmetic . But the mapping of computer science data types to statistical data types depends on which categorization of the latter is being implemented. Other categorizations have been proposed. For example, Mosteller and Tukey (1977) distinguished grades, ranks, counted fractions, counts, amounts, and balances. Nelder (1990) described continuous counts, continuous ratios, count ratios, and categorical modes of data. (See also: Chrisman (1998), van den Berg (1991). ) The issue of whether or not it

5500-632: The Cauchy , Student's t , and logistic distributions). (For other names, see Naming .) The univariate probability distribution is generalized for vectors in the multivariate normal distribution and for matrices in the matrix normal distribution . The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution . This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it

5610-487: The Western Electric Company . The researchers were interested in determining whether increased illumination would increase the productivity of the assembly line workers. The researchers first measured the productivity in the plant, then modified the illumination in an area of the plant and checked if the changes in illumination affected productivity. It turned out that productivity indeed improved (under

SECTION 50

#1732794168416

5720-850: The double factorial . An asymptotic expansion of the cumulative distribution function for large x can also be derived using integration by parts. For more, see Error function#Asymptotic expansion . A quick approximation to the standard normal distribution's cumulative distribution function can be found by using a Taylor series approximation: Φ ( x ) ≈ 1 2 + 1 2 π ∑ k = 0 n ( − 1 ) k x ( 2 k + 1 ) 2 k k ! ( 2 k + 1 ) . {\displaystyle \Phi (x)\approx {\frac {1}{2}}+{\frac {1}{\sqrt {2\pi }}}\sum _{k=0}^{n}{\frac {(-1)^{k}x^{(2k+1)}}{2^{k}k!(2k+1)}}\,.} The recursive nature of

5830-546: The forecasting , prediction , and estimation of unobserved values either in or associated with the population being studied. It can include extrapolation and interpolation of time series or spatial data , as well as data mining . Mathematical statistics is the application of mathematics to statistics. Mathematical techniques used for this include mathematical analysis , linear algebra , stochastic analysis , differential equations , and measure-theoretic probability theory . Formal discussions on inference date back to

5940-406: The integral is still 1. If Z {\textstyle Z} is a standard normal deviate , then X = σ Z + μ {\textstyle X=\sigma Z+\mu } will have a normal distribution with expected value μ {\textstyle \mu } and standard deviation σ {\textstyle \sigma } . This

6050-432: The limit to the true value of such parameter. Other desirable properties for estimators include: UMVUE estimators that have the lowest variance for all possible values of the parameter to be estimated (this is usually an easier property to verify than efficiency) and consistent estimators which converges in probability to the true value of such parameter. This still leaves the question of how to obtain estimators in

6160-719: The mathematicians and cryptographers of the Islamic Golden Age between the 8th and 13th centuries. Al-Khalil (717–786) wrote the Book of Cryptographic Messages , which contains one of the first uses of permutations and combinations , to list all possible Arabic words with and without vowels. Al-Kindi 's Manuscript on Deciphering Cryptographic Messages gave a detailed description of how to use frequency analysis to decipher encrypted messages, providing an early example of statistical inference for decoding . Ibn Adlan (1187–1268) later made an important contribution on

6270-413: The z -score is given by where: Though it should always be stated, the distinction between use of the population and sample statistics often is not made. In either case, the numerator and denominator of the equations have the same units of measure so that the units cancel out through division and z is left as a dimensionless quantity . The z-score is often used in the z-test in standardized testing –

6380-466: The Taylor series expansion above to minimize computations. Repeat the following process until the difference between the computed Φ ( x n ) {\textstyle \Phi (x_{n})} and the desired Φ {\textstyle \Phi } , which we will call Φ ( desired ) {\textstyle \Phi ({\text{desired}})} ,

6490-459: The Taylor series expansion above to minimize the number of computations. Newton's method is ideal to solve this problem because the first derivative of Φ ( x ) {\textstyle \Phi (x)} , which is an integral of the normal standard distribution, is the normal standard distribution, and is readily available to use in the Newton's method solution. To solve, select

6600-401: The above Taylor series expansion is to use Newton's method to reverse the computation. That is, if we have a value for the cumulative distribution function , Φ ( x ) {\textstyle \Phi (x)} , but do not know the x needed to obtain the Φ ( x ) {\textstyle \Phi (x)} , we can use Newton's method to find x, and use

6710-470: The analog of the Student's t-test for a population whose parameters are known, rather than estimated. As it is very unusual to know the entire population, the t-test is much more widely used. The standard score can be used in the calculation of prediction intervals . A prediction interval [ L , U ], consisting of a lower endpoint designated L and an upper endpoint designated U , is an interval such that

SECTION 60

#1732794168416

6820-439: The collection, analysis, interpretation or explanation, and presentation of data , or as a branch of mathematics . Some consider statistics to be a distinct mathematical science rather than a branch of mathematics. While many scientific investigations make use of data, statistics is generally concerned with the use of data in the context of uncertainty and decision-making in the face of uncertainty. In applying statistics to

6930-540: The concepts of standard deviation , correlation , regression analysis and the application of these methods to the study of the variety of human characteristics—height, weight and eyelash length among others. Pearson developed the Pearson product-moment correlation coefficient , defined as a product-moment, the method of moments for the fitting of distributions to samples and the Pearson distribution , among many other things. Galton and Pearson founded Biometrika as

7040-542: The concepts of sufficiency , ancillary statistics , Fisher's linear discriminator and Fisher information . He also coined the term null hypothesis during the Lady tasting tea experiment, which "is never proved or established, but is possibly disproved, in the course of experimentation". In his 1930 book The Genetical Theory of Natural Selection , he applied statistics to various biological concepts such as Fisher's principle (which A. W. F. Edwards called "probably

7150-425: The data that they generate. Many of these errors are classified as random (noise) or systematic ( bias ), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also occur. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems. Statistics is a mathematical body of science that pertains to

7260-431: The density above is most commonly known as the standard normal, a few authors have used that term to describe other versions of the normal distribution. Carl Friedrich Gauss , for example, once defined the standard normal as φ ( z ) = e − z 2 π , {\displaystyle \varphi (z)={\frac {e^{-z^{2}}}{\sqrt {\pi }}},} which has

7370-437: The difference by its standard deviation σ ( X ) = Var ⁡ ( X ) : {\displaystyle \sigma (X)={\sqrt {\operatorname {Var} (X)}}:} If the random variable under consideration is the sample mean of a random sample   X 1 , … , X n {\displaystyle \ X_{1},\dots ,X_{n}} of X : then

7480-534: The difference by the population standard deviation. This process of converting a raw score into a standard score is called standardizing or normalizing (however, "normalizing" can refer to many types of ratios; see Normalization for more). Standard scores are most commonly called z -scores ; the two terms may be used interchangeably, as they are in this article. Other equivalent terms in use include z-value , z-statistic , normal score , standardized variable and pull in high energy physics . Computing

7590-403: The distances after some form of standardization." In principal components analysis, "Variables measured on different scales or on a common scale with widely differing ranges are often standardized." Standardization of variables prior to multiple regression analysis is sometimes used as an aid to interpretation. (page 95) state the following. "The standardized regression slope is the slope in

7700-439: The distribution then becomes f ( x ) = τ 2 π e − τ ( x − μ ) 2 / 2 . {\displaystyle f(x)={\sqrt {\frac {\tau }{2\pi }}}e^{-\tau (x-\mu )^{2}/2}.} This choice is claimed to have advantages in numerical computations when σ {\textstyle \sigma }

7810-406: The effect of differences of an independent variable (or variables) on the behavior of the dependent variable are observed. The difference between the two types lies in how the study is actually conducted. Each can be very effective. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements with different levels using

7920-495: The evidence was insufficient to convict. So the jury does not necessarily accept H 0 but fails to reject H 0 . While one can not "prove" a null hypothesis, one can test how close it is to being true with a power test , which tests for type II errors . What statisticians call an alternative hypothesis is simply a hypothesis that contradicts the null hypothesis. Working from a null hypothesis , two broad categories of error are recognized: Standard deviation refers to

8030-478: The expected value assumes on a given sample (also called prediction). Mean squared error is used for obtaining efficient estimators , a widely used class of estimators. Root mean square error is simply the square root of mean squared error. Many statistical methods seek to minimize the residual sum of squares , and these are called " methods of least squares " in contrast to Least absolute deviations . The latter gives equal weight to small and big errors, while

8140-474: The experimental conditions). However, the study is heavily criticized today for errors in experimental procedures, specifically for the lack of a control group and blindness . The Hawthorne effect refers to finding that an outcome (in this case, worker productivity) changed due to observation itself. Those in the Hawthorne study became more productive not because the lighting was changed but because they were being observed. An example of an observational study

8250-402: The extent to which individual observations in a sample differ from a central value, such as the sample or population mean, while Standard error refers to an estimate of difference between sample mean and population mean. A statistical error is the amount by which an observation differs from its expected value . A residual is the amount an observation differs from the value the estimator of

8360-450: The extent to which members of the distribution depart from its center and each other. Inferences made using mathematical statistics employ the framework of probability theory , which deals with the analysis of random phenomena. A standard statistical procedure involves the collection of data leading to a test of the relationship between two statistical data sets, or a data set and synthetic data drawn from an idealized model. A hypothesis

8470-432: The first journal of mathematical statistics and biostatistics (then called biometry ), and the latter founded the world's first university statistics department at University College London . The second wave of the 1910s and 20s was initiated by William Sealy Gosset , and reached its culmination in the insights of Ronald Fisher , who wrote the textbooks that were to define the academic discipline in universities around

8580-413: The following caveat: "… one must be cautious about interpreting any regression coefficients, whether standardized or not. The reason is that when the predictor variables are correlated among themselves, … the regression coefficients are affected by the other predictor variables in the model … The magnitudes of the standardized regression coefficients are affected not only by the presence of correlations among

8690-699: The following example, comparing student scores on the (old) SAT and ACT high school tests. The table shows the mean and standard deviation for total scores on the SAT and ACT. Suppose that student A scored 1800 on the SAT, and student B scored 24 on the ACT. Which student performed better relative to other test-takers? The z-score for student A is z = x − μ σ = 1800 − 1500 300 = 1 {\displaystyle z={x-\mu \over \sigma }={1800-1500 \over 300}=1} The z-score for student B

8800-402: The former gives more weight to large errors. Residual sum of squares is also differentiable , which provides a handy property for doing regression . Least squares applied to linear regression is called ordinary least squares method and least squares applied to nonlinear regression is called non-linear least squares . Also in a linear regression model the non deterministic part of the model

8910-605: The given parameters of a total population to deduce probabilities that pertain to samples. Statistical inference, however, moves in the opposite direction— inductively inferring from samples to the parameters of a larger or total population. A common goal for a statistical research project is to investigate causality , and in particular to draw a conclusion on the effect of changes in the values of predictors or independent variables on dependent variables . There are two major types of causal statistical studies: experimental studies and observational studies . In both types of studies,

9020-424: The most celebrated argument in evolutionary biology ") and Fisherian runaway , a concept in sexual selection about a positive feedback runaway effect found in evolution . The final wave, which mainly saw the refinement and expansion of earlier developments, emerged from the collaborative work between Egon Pearson and Jerzy Neyman in the 1930s. They introduced the concepts of " Type II " error, power of

9130-412: The overall result is significant in real world terms. For example, in a large study of a drug it may be shown that the drug has a statistically significant but very small beneficial effect, such that the drug is unlikely to help the patient noticeably. Although in principle the acceptable level of statistical significance may be subject to debate, the significance level is the largest p-value that allows

9240-412: The parameter defining the width of the distribution, instead of the standard deviation σ {\textstyle \sigma } or the variance σ 2 {\textstyle \sigma ^{2}} . The precision is normally defined as the reciprocal of the variance, 1 / σ 2 {\textstyle 1/\sigma ^{2}} . The formula for

9350-415: The population data. Numerical descriptors include mean and standard deviation for continuous data (like income), while frequency and percentage are more useful in terms of describing categorical data (like education). When a census is not feasible, a chosen subset of the population called a sample is studied. Once a sample that is representative of the population is determined, data is collected for

9460-544: The population. Sampling theory is part of the mathematical discipline of probability theory . Probability is used in mathematical statistics to study the sampling distributions of sample statistics and, more generally, the properties of statistical procedures . The use of any statistical method is valid when the system or population under consideration satisfies the assumptions of the method. The difference in point of view between classic probability theory and sampling theory is, roughly, that probability theory starts from

9570-533: The predictor variables but also by the spacings of the observations on each of these variables. Sometimes these spacings may be quite arbitrary. Hence, it is ordinarily not wise to interpret the magnitudes of standardized regression coefficients as reflecting the comparative importance of the predictor variables." In mathematical statistics , a random variable X is standardized by subtracting its expected value E ⁡ [ X ] {\displaystyle \operatorname {E} [X]} and dividing

9680-1207: The probability of a random variable, with normal distribution of mean 0 and variance 1/2 falling in the range [ − x , x ] {\textstyle [-x,x]} . That is: erf ⁡ ( x ) = 1 π ∫ − x x e − t 2 d t = 2 π ∫ 0 x e − t 2 d t . {\displaystyle \operatorname {erf} (x)={\frac {1}{\sqrt {\pi }}}\int _{-x}^{x}e^{-t^{2}}\,dt={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{-t^{2}}\,dt\,.} These integrals cannot be expressed in terms of elementary functions, and are often said to be special functions . However, many numerical approximations are known; see below for more. The two functions are closely related, namely Φ ( x ) = 1 2 [ 1 + erf ⁡ ( x 2 ) ] . {\displaystyle \Phi (x)={\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\right]\,.} For

9790-494: The problem of how to analyze big data . When full census data cannot be collected, statisticians collect sample data by developing specific experiment designs and survey samples . Statistics itself also provides tools for prediction and forecasting through statistical models . To use a sample as a guide to an entire population, it is important that it truly represents the overall population. Representative sampling assures that inferences and conclusions can safely extend from

9900-470: The publication of Natural and Political Observations upon the Bills of Mortality by John Graunt . Early applications of statistical thinking revolved around the needs of states to base policy on demographic and economic data, hence its stat- etymology . The scope of the discipline of statistics broadened in the early 19th century to include the collection and analysis of data in general. Today, statistics

10010-402: The regression equation if X and Y are standardized … Standardization of X and Y is done by subtracting the respective means from each set of observations and dividing by the respective standard deviations … In multiple regression, where several X variables are used, the standardized regression coefficients quantify the relative contribution of each X variable." However, Kutner et al. (p 278) give

10120-461: The same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation . Instead, data are gathered and correlations between predictors and response are investigated. While the tools of data analysis work best on data from randomized studies , they are also applied to other kinds of data—like natural experiments and observational studies —for which

10230-439: The sample data to draw inferences about the population represented while accounting for randomness. These inferences may take the form of answering yes/no questions about the data ( hypothesis testing ), estimating numerical characteristics of the data ( estimation ), describing associations within the data ( correlation ), and modeling relationships within the data (for example, using regression analysis ). Inference can extend to

10340-399: The sample members in an observational or experimental setting. Again, descriptive statistics can be used to summarize the sample data. However, drawing the sample contains an element of randomness; hence, the numerical descriptors from the sample are also prone to uncertainty. To draw meaningful conclusions about the entire population, inferential statistics are needed. It uses patterns in

10450-405: The sample to the population as a whole. A major problem lies in determining the extent that the sample chosen is actually representative. Statistics offers methods to estimate and correct for any bias within the sample and data collection procedures. There are also methods of experimental design that can lessen these issues at the outset of a study, strengthening its capability to discern truths about

10560-482: The sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation. Two main statistical methods are used in data analysis : descriptive statistics , which summarize data from

10670-412: The sampling and analysis were repeated under the same conditions (yielding a different dataset), the interval would include the true (population) value in 95% of all possible cases. This does not imply that the probability that the true value is in the confidence interval is 95%. From the frequentist perspective, such a claim does not even make sense, as the true value is not a random variable . Either

10780-581: The standard normal cumulative distribution function, Q ( x ) = 1 − Φ ( x ) {\textstyle Q(x)=1-\Phi (x)} , is often called the Q-function , especially in engineering texts. It gives the probability that the value of a standard normal random variable X {\textstyle X} will exceed x {\textstyle x} : P ( X > x ) {\textstyle P(X>x)} . Other definitions of

10890-783: The standard normal distribution can be expanded by Integration by parts into a series: Φ ( x ) = 1 2 + 1 2 π ⋅ e − x 2 / 2 [ x + x 3 3 + x 5 3 ⋅ 5 + ⋯ + x 2 n + 1 ( 2 n + 1 ) ! ! + ⋯ ] . {\displaystyle \Phi (x)={\frac {1}{2}}+{\frac {1}{\sqrt {2\pi }}}\cdot e^{-x^{2}/2}\left[x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{3\cdot 5}}+\cdots +{\frac {x^{2n+1}}{(2n+1)!!}}+\cdots \right]\,.} where ! ! {\textstyle !!} denotes

11000-600: The standard normal distribution, usually denoted with the capital Greek letter Φ {\textstyle \Phi } , is the integral Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t . {\displaystyle \Phi (x)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{x}e^{-t^{2}/2}\,dt\,.} The related error function erf ⁡ ( x ) {\textstyle \operatorname {erf} (x)} gives

11110-520: The standard normal distribution. This variate is also called the standardized form of X {\textstyle X} . The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit variance) is often denoted with the Greek letter ϕ {\textstyle \phi } ( phi ). The alternative form of the Greek letter phi, φ {\textstyle \varphi } ,

11220-662: The standardized version is In educational assessment, T-score is a standard score Z shifted and scaled to have a mean of 50 and a standard deviation of 10. In bone density measurements, the T-score is the standard score of the measurement compared to the population of healthy 30-year-old adults, and has the usual mean of 0 and standard deviation of 1. Statistics When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples . Representative sampling assures that inferences and conclusions can reasonably extend from

11330-408: The statistic, though, may have unknown parameters. Consider now a function of the unknown parameter: an estimator is a statistic used to estimate such function. Commonly used estimators include sample mean , unbiased sample variance and sample covariance . A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution does not depend on

11440-738: The test to reject the null hypothesis. This test is logically equivalent to saying that the p-value is the probability, assuming the null hypothesis is true, of observing a result at least as extreme as the test statistic . Therefore, the smaller the significance level, the lower the probability of committing type I error. Normal distribution I ( μ , σ ) = ( 1 / σ 2 0 0 2 / σ 2 ) {\displaystyle {\mathcal {I}}(\mu ,\sigma )={\begin{pmatrix}1/\sigma ^{2}&0\\0&2/\sigma ^{2}\end{pmatrix}}} In probability theory and statistics ,

11550-404: The true mean and standard deviation of a population is often an unrealistic expectation, except in cases such as standardized testing , where the entire population is measured. When the population mean and the population standard deviation are unknown, the standard score may be estimated by using the sample mean and sample standard deviation as estimates of the population values. In these cases,

11660-420: The true value is or is not within the given interval. However, it is true that, before any data are sampled and given a plan for how to construct the confidence interval, the probability is 95% that the yet-to-be-calculated interval will cover the true value: at this point, the limits of the interval are yet-to-be-observed random variables . One approach that does yield an interval that can be interpreted as having

11770-416: The two sided interval is built violating symmetry around the estimate. Sometimes the bounds for a confidence interval are reached asymptotically and these are used to approximate the true bounds. Statistics rarely give a simple Yes/No type answer to the question under analysis. Interpretation often comes down to the level of statistical significance applied to the numbers and often refers to the probability of

11880-485: The unknown parameter is called a pivotal quantity or pivot. Widely used pivots include the z-score , the chi square statistic and Student's t-value . Between two estimators of a given parameter, the one with lower mean squared error is said to be more efficient . Furthermore, an estimator is said to be unbiased if its expected value is equal to the true value of the unknown parameter being estimated, and asymptotically unbiased if its expected value converges at

11990-640: The use of sample size in frequency analysis. Although the term statistic was introduced by the Italian scholar Girolamo Ghilini in 1589 with reference to a collection of facts and information about a state, it was the German Gottfried Achenwall in 1749 who started using the term as a collection of quantitative information, in the modern use for this science. The earliest writing containing statistics in Europe dates back to 1663, with

12100-468: The world. Fisher's most important publications were his 1918 seminal paper The Correlation between Relatives on the Supposition of Mendelian Inheritance (which was the first to use the statistical term, variance ), his classic 1925 work Statistical Methods for Research Workers and his 1935 The Design of Experiments , where he developed rigorous design of experiments models. He originated

#415584