Misplaced Pages

Rugby–Birmingham–Stafford line

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#589410

112-668: The Rugby–Birmingham–Stafford line (also known as the Birmingham loop ) is a railway line in the West Midlands of England . It is a loop off the West Coast Main Line (WCML) between Rugby and Stafford , via the West Midlands cities of Coventry , Birmingham and Wolverhampton . The direct route between Rugby and Stafford is the Trent Valley line . These cities, towns and villages are served by

224-408: A crank on a driving axle. Steam locomotives have been phased out in most parts of the world for economical and safety reasons, although many are preserved in working order by heritage railways . Electric locomotives draw power from a stationary source via an overhead wire or third rail . Some also or instead use a battery . In locomotives that are powered by high-voltage alternating current ,

336-586: A dining car . Some lines also provide over-night services with sleeping cars . Some long-haul trains have been given a specific name . Regional trains are medium distance trains that connect cities with outlying, surrounding areas, or provide a regional service, making more stops and having lower speeds. Commuter trains serve suburbs of urban areas, providing a daily commuting service. Airport rail links provide quick access from city centres to airports . High-speed rail are special inter-city trains that operate at much higher speeds than conventional railways,

448-731: A fourth rail system in 1890 on the City and South London Railway , now part of the London Underground Northern line . This was the first major railway to use electric traction . The world's first deep-level electric railway, it runs from the City of London , under the River Thames , to Stockwell in south London. The first practical AC electric locomotive was designed by Charles Brown , then working for Oerlikon , Zürich. In 1891, Brown had demonstrated long-distance power transmission, using three-phase AC , between

560-542: A funicular railway at the Hohensalzburg Fortress in Austria. The line originally used wooden rails and a hemp haulage rope and was operated by human or animal power, through a treadwheel . The line is still operational, although in updated form and is possibly the oldest operational railway. Wagonways (or tramways ) using wooden rails, hauled by horses, started appearing in the 1550s to facilitate

672-492: A hydro-electric plant at Lauffen am Neckar and Frankfurt am Main West, a distance of 280 km (170 mi). Using experience he had gained while working for Jean Heilmann on steam–electric locomotive designs, Brown observed that three-phase motors had a higher power-to-weight ratio than DC motors and, because of the absence of a commutator , were simpler to manufacture and maintain. However, they were much larger than

784-508: A slipformed (or pre-cast) concrete base (development 2000s). The 'embedded rail structure', used in the Netherlands since 1976, initially used a conventional UIC 54 rail embedded in concrete, and later developed (late 1990s) to use a 'mushroom' shaped SA42 rail profile; a version for light rail using a rail supported in an asphalt concrete –filled steel trough has also been developed (2002). Modern ladder track can be considered

896-431: A steam engine that provides adhesion. Coal , petroleum , or wood is burned in a firebox , boiling water in the boiler to create pressurized steam. The steam travels through the smokebox before leaving via the chimney or smoke stack. In the process, it powers a piston that transmits power directly through a connecting rod (US: main rod) and a crankpin (US: wristpin) on the driving wheel (US main driver) or to

1008-469: A transformer in the locomotive converts the high-voltage low-current power to low-voltage high current used in the traction motors that power the wheels. Modern locomotives may use three-phase AC induction motors or direct current motors. Under certain conditions, electric locomotives are the most powerful traction. They are also the cheapest to run and provide less noise and no local air pollution. However, they require high capital investments both for

1120-440: A "clickety-clack" sound. Unless it is well-maintained, jointed track does not have the ride quality of welded rail and is less desirable for high speed trains . However, jointed track is still used in many countries on lower speed lines and sidings , and is used extensively in poorer countries due to the lower construction cost and the simpler equipment required for its installation and maintenance. A major problem of jointed track

1232-415: A continuous reinforced concrete slab and the use of pre-cast pre-stressed concrete units laid on a base layer. Many permutations of design have been put forward. However, ballastless track has a high initial cost, and in the case of existing railroads the upgrade to such requires closure of the route for a long period. Its whole-life cost can be lower because of the reduction in maintenance. Ballastless track

SECTION 10

#1732800811590

1344-481: A development of baulk road. Ladder track utilizes sleepers aligned along the same direction as the rails with rung-like gauge restraining cross members. Both ballasted and ballastless types exist. Modern track typically uses hot-rolled steel with a profile of an asymmetrical rounded I-beam . Unlike some other uses of iron and steel , railway rails are subject to very high stresses and have to be made of very high-quality steel alloy. It took many decades to improve

1456-550: A diesel locomotive from the company in 1909. The world's first diesel-powered locomotive was operated in the summer of 1912 on the Winterthur–Romanshorn railway in Switzerland, but was not a commercial success. The locomotive weight was 95 tonnes and the power was 883 kW with a maximum speed of 100 km/h (62 mph). Small numbers of prototype diesel locomotives were produced in a number of countries through

1568-478: A double track plateway, erroneously sometimes cited as world's first public railway, in south London. William Jessop had earlier used a form of all-iron edge rail and flanged wheels successfully for an extension to the Charnwood Forest Canal at Nanpantan , Loughborough, Leicestershire in 1789. In 1790, Jessop and his partner Outram began to manufacture edge rails. Jessop became a partner in

1680-437: A large turning radius in its design. While high-speed rail is most often designed for passenger travel, some high-speed systems also offer freight service. Since 1980, rail transport has changed dramatically, but a number of heritage railways continue to operate as part of living history to preserve and maintain old railway lines for services of tourist trains. A train is a connected series of rail vehicles that move along

1792-498: A larger locomotive named Galvani , exhibited at the Royal Scottish Society of Arts Exhibition in 1841. The seven-ton vehicle had two direct-drive reluctance motors , with fixed electromagnets acting on iron bars attached to a wooden cylinder on each axle, and simple commutators . It hauled a load of six tons at four miles per hour (6 kilometers per hour) for a distance of one and a half miles (2.4 kilometres). It

1904-423: A locomotive. This involves one or more powered vehicles being located at the front of the train, providing sufficient tractive force to haul the weight of the full train. This arrangement remains dominant for freight trains and is often used for passenger trains. A push–pull train has the end passenger car equipped with a driver's cab so that the engine driver can remotely control the locomotive. This allows one of

2016-477: A number of trains per hour (tph). Passenger trains can usually be into two types of operation, intercity railway and intracity transit. Whereas intercity railway involve higher speeds, longer routes, and lower frequency (usually scheduled), intracity transit involves lower speeds, shorter routes, and higher frequency (especially during peak hours). Intercity trains are long-haul trains that operate with few stops between cities. Trains typically have amenities such as

2128-676: A piece of circular rail track in Bloomsbury , London, the Catch Me Who Can , but never got beyond the experimental stage with railway locomotives, not least because his engines were too heavy for the cast-iron plateway track then in use. The first commercially successful steam locomotive was Matthew Murray 's rack locomotive Salamanca built for the Middleton Railway in Leeds in 1812. This twin-cylinder locomotive

2240-465: A pivotal role in the development and widespread adoption of the steam locomotive. His designs considerably improved on the work of the earlier pioneers. He built the locomotive Blücher , also a successful flanged -wheel adhesion locomotive. In 1825 he built the locomotive Locomotion for the Stockton and Darlington Railway in the northeast of England, which became the first public steam railway in

2352-439: A revival in recent decades due to road congestion and rising fuel prices, as well as governments investing in rail as a means of reducing CO 2 emissions . Smooth, durable road surfaces have been made for wheeled vehicles since prehistoric times. In some cases, they were narrow and in pairs to support only the wheels. That is, they were wagonways or tracks. Some had grooves or flanges or other mechanical means to keep

SECTION 20

#1732800811590

2464-739: A single lever to control both engine and generator in a coordinated fashion, and was the prototype for all diesel–electric locomotive control systems. In 1914, world's first functional diesel–electric railcars were produced for the Königlich-Sächsische Staatseisenbahnen ( Royal Saxon State Railways ) by Waggonfabrik Rastatt with electric equipment from Brown, Boveri & Cie and diesel engines from Swiss Sulzer AG . They were classified as DET 1 and DET 2 ( de.wiki ). The first regular used diesel–electric locomotives were switcher (shunter) locomotives . General Electric produced several small switching locomotives in

2576-407: A standard. Following SNCF's successful trials, 50 Hz, now also called industrial frequency was adopted as standard for main-lines across the world. Earliest recorded examples of an internal combustion engine for railway use included a prototype designed by William Dent Priestman . Sir William Thomson examined it in 1888 and described it as a "Priestman oil engine mounted upon a truck which

2688-465: A temperature roughly midway between the extremes experienced at that location. (This is known as the "rail neutral temperature".) This installation procedure is intended to prevent tracks from buckling in summer heat or pulling apart in the winter cold. In North America, because broken rails are typically detected by interruption of the current in the signaling system, they are seen as less of a potential hazard than undetected heat kinks. Joints are used in

2800-632: A terminus about one-half mile (800 m) away. A funicular railway was also made at Broseley in Shropshire some time before 1604. This carried coal for James Clifford from his mines down to the River Severn to be loaded onto barges and carried to riverside towns. The Wollaton Wagonway , completed in 1604 by Huntingdon Beaumont , has sometimes erroneously been cited as the earliest British railway. It ran from Strelley to Wollaton near Nottingham . The Middleton Railway in Leeds , which

2912-625: A walkway for the people or horses that moved wagons along the track. The rails were usually about 3 feet (0.91 m) long and were not joined - instead, adjacent rails were laid on a common sleeper. The straight rails could be angled at these joints to form primitive curved track. The first iron rails laid in Britain were at the Darby Ironworks in Coalbrookdale in 1767. When steam locomotives were introduced, starting in 1804,

3024-408: A wheel. This was a large stationary engine , powering cotton mills and a variety of machinery; the state of boiler technology necessitated the use of low-pressure steam acting upon a vacuum in the cylinder, which required a separate condenser and an air pump . Nevertheless, as the construction of boilers improved, Watt investigated the use of high-pressure steam acting directly upon a piston, raising

3136-472: Is capital-intensive and less flexible than road transport, it can carry heavy loads of passengers and cargo with greater energy efficiency and safety. Precursors of railways driven by human or animal power have existed since antiquity, but modern rail transport began with the invention of the steam locomotive in the United Kingdom at the beginning of the 19th century. The first passenger railway,

3248-471: Is 115 to 141 lb/yd (57 to 70 kg/m). In Europe, rail is graded in kilograms per metre and the usual range is 40 to 60 kg/m (81 to 121 lb/yd). The heaviest mass-produced rail was 155 pounds per yard (77 kg/m), rolled for the Pennsylvania Railroad . The rails used in rail transport are produced in sections of fixed length. Rail lengths are made as long as possible, as

3360-408: Is a manual process requiring a reaction crucible and form to contain the molten iron. North American practice is to weld 1 ⁄ 4 -mile-long (400 m) segments of rail at a rail facility and load it on a special train to carry it to the job site. This train is designed to carry many segments of rail which are placed so they can slide off their racks to the rear of the train and be attached to

3472-410: Is a single, self-powered car, and may be electrically propelled or powered by a diesel engine . Multiple units have a driver's cab at each end of the unit, and were developed following the ability to build electric motors and other engines small enough to fit under the coach. There are only a few freight multiple units, most of which are high-speed post trains. Steam locomotives are locomotives with

Rugby–Birmingham–Stafford line - Misplaced Pages Continue

3584-494: Is cracking around the bolt holes, which can lead to breaking of the rail head (the running surface). This was the cause of the Hither Green rail crash which caused British Railways to begin converting much of its track to continuous welded rail. Where track circuits exist for signalling purposes, insulated block joints are required. These compound the weaknesses of ordinary joints. Specially-made glued joints, where all

3696-399: Is dominant. Electro-diesel locomotives are built to run as diesel–electric on unelectrified sections and as electric locomotives on electrified sections. Alternative methods of motive power include magnetic levitation , horse-drawn, cable , gravity, pneumatics and gas turbine . A passenger train stops at stations where passengers may embark and disembark. The oversight of the train is

3808-466: Is graded by its linear density , that is, its mass over a standard length. Heavier rail can support greater axle loads and higher train speeds without sustaining damage than lighter rail, but at a greater cost. In North America and the United Kingdom, rail is graded in pounds per yard (usually shown as pound or lb ), so 130-pound rail would weigh 130 lb/yd (64 kg/m). The usual range

3920-477: Is one of the two primary means of land transport , next to road transport . It is used for about 8% of passenger and freight transport globally, thanks to its energy efficiency and potentially high speed . Rolling stock on rails generally encounters lower frictional resistance than rubber-tyred road vehicles, allowing rail cars to be coupled into longer trains . Power is usually provided by diesel or electrical locomotives . While railway transport

4032-402: Is scarce and where tonnage or speeds are high. Steel is used in some applications. The track ballast is customarily crushed stone, and the purpose of this is to support the sleepers and allow some adjustment of their position, while allowing free drainage. A disadvantage of traditional track structures is the heavy demand for maintenance, particularly surfacing (tamping) and lining to restore

4144-456: Is starting to paint rails white to lower the peak temperatures reached in summer days. After new segments of rail are laid, or defective rails replaced (welded-in), the rails can be artificially stressed if the temperature of the rail during laying is cooler than what is desired. The stressing process involves either heating the rails, causing them to expand, or stretching the rails with hydraulic equipment. They are then fastened (clipped) to

4256-477: Is the structure on a railway or railroad consisting of the rails , fasteners , railroad ties (sleepers, British English) and ballast (or slab track ), plus the underlying subgrade . It enables trains to move by providing a dependable surface for their wheels to roll upon. Early tracks were constructed with wooden or cast iron rails, and wooden or stone sleepers; since the 1870s, rails have almost universally been made from steel. The first railway in Britain

4368-767: Is to bolt them together using metal fishplates (jointbars in the US), producing jointed track . For more modern usage, particularly where higher speeds are required, the lengths of rail may be welded together to form continuous welded rail (CWR). Jointed track is made using lengths of rail, usually around 20 m (66 ft) long (in the UK) and 39 or 78 ft (12 or 24 m) long (in North America), bolted together using perforated steel plates known as fishplates (UK) or joint bars (North America). Fishplates are usually 600 mm (2 ft) long, used in pairs either side of

4480-435: Is usually considered for new very high speed or very high loading routes, in short extensions that require additional strength (e.g. railway stations), or for localised replacement where there are exceptional maintenance difficulties, for example in tunnels. Most rapid transit lines and rubber-tyred metro systems use ballastless track. Early railways (c. 1840s) experimented with continuous bearing railtrack, in which

4592-556: Is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes." In 1894, a 20 hp (15 kW) two axle machine built by Priestman Brothers was used on the Hull Docks . In 1906, Rudolf Diesel , Adolf Klose and the steam and diesel engine manufacturer Gebrüder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered

Rugby–Birmingham–Stafford line - Misplaced Pages Continue

4704-541: The Stockton and Darlington Railway , opened in 1825. The quick spread of railways throughout Europe and North America, following the 1830 opening of the first intercity connection in England, was a key component of the Industrial Revolution . The adoption of rail transport lowered shipping costs compared to water transport, leading to "national markets" in which prices varied less from city to city. In

4816-555: The United Kingdom , South Korea , Scandinavia, Belgium and the Netherlands. The construction of many of these lines has resulted in the dramatic decline of short-haul flights and automotive traffic between connected cities, such as the London–Paris–Brussels corridor, Madrid–Barcelona, Milan–Rome–Naples, as well as many other major lines. High-speed trains normally operate on standard gauge tracks of continuously welded rail on grade-separated right-of-way that incorporates

4928-496: The West Midlands Rail Executive (WMRE) put forward plans to open a new station at Binley on the line between Coventry and Rugby named Coventry East (Binley) , serving the eastern part of Coventry. Railway Rail transport (also known as train transport ) is a means of transport using wheeled vehicles running in tracks , which usually consist of two parallel steel rails . Rail transport

5040-414: The overhead lines and the supporting infrastructure, as well as the generating station that is needed to produce electricity. Accordingly, electric traction is used on urban systems, lines with high traffic and for high-speed rail. Diesel locomotives use a diesel engine as the prime mover . The energy transmission may be either diesel–electric , diesel-mechanical or diesel–hydraulic but diesel–electric

5152-458: The puddling process in 1784. In 1783 Cort also patented the rolling process , which was 15 times faster at consolidating and shaping iron than hammering. These processes greatly lowered the cost of producing iron and rails. The next important development in iron production was hot blast developed by James Beaumont Neilson (patented 1828), which considerably reduced the amount of coke (fuel) or charcoal needed to produce pig iron. Wrought iron

5264-418: The rotary phase converter , enabling electric locomotives to use three-phase motors whilst supplied via a single overhead wire, carrying the simple industrial frequency (50 Hz) single phase AC of the high-voltage national networks. An important contribution to the wider adoption of AC traction came from SNCF of France after World War II. The company conducted trials at AC 50 Hz, and established it as

5376-540: The 1880s, railway electrification began with tramways and rapid transit systems. Starting in the 1940s, steam locomotives were replaced by diesel locomotives . The first high-speed railway system was introduced in Japan in 1964, and high-speed rail lines now connect many cities in Europe , East Asia , and the eastern United States . Following some decline due to competition from cars and airplanes, rail transport has had

5488-521: The 1930s (the famous " 44-tonner " switcher was introduced in 1940) Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929. In 1929, the Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse. Although steam and diesel services reaching speeds up to 200 km/h (120 mph) were started before

5600-527: The 1930s, the London, Midland and Scottish Railway (LMS) started work on quadrupling the line between Coventry and Birmingham, however only preparatory work was carried out before the scheme was cancelled due to the outbreak of World War II . Periodic calls have been made since to quadruple the line between Coventry and Birmingham to ease congestion. The line is electrified with overhead wires at 25 kV AC . In 2023, Transport for West Midlands (TfWM) and

5712-508: The 1960s in Europe, they were not very successful. The first electrified high-speed rail Tōkaidō Shinkansen was introduced in 1964 between Tokyo and Osaka in Japan. Since then high-speed rail transport, functioning at speeds up to and above 300 km/h (190 mph), has been built in Japan, Spain, France , Germany, Italy, the People's Republic of China, Taiwan (Republic of China),

SECTION 50

#1732800811590

5824-464: The 40 km Burgdorf–Thun line , Switzerland. Italian railways were the first in the world to introduce electric traction for the entire length of a main line rather than a short section. The 106 km Valtellina line was opened on 4 September 1902, designed by Kandó and a team from the Ganz works. The electrical system was three-phase at 3 kV 15 Hz. In 1918, Kandó invented and developed

5936-530: The Butterley Company in 1790. The first public edgeway (thus also first public railway) built was Lake Lock Rail Road in 1796. Although the primary purpose of the line was to carry coal, it also carried passengers. These two systems of constructing iron railways, the "L" plate-rail and the smooth edge-rail, continued to exist side by side until well into the early 19th century. The flanged wheel and edge-rail eventually proved its superiority and became

6048-514: The DC motors of the time and could not be mounted in underfloor bogies : they could only be carried within locomotive bodies. In 1894, Hungarian engineer Kálmán Kandó developed a new type 3-phase asynchronous electric drive motors and generators for electric locomotives. Kandó's early 1894 designs were first applied in a short three-phase AC tramway in Évian-les-Bains (France), which was constructed between 1896 and 1898. In 1896, Oerlikon installed

6160-400: The bolt heads on the same side of the rail. Small gaps which function as expansion joints are deliberately left between the rail ends to allow for expansion of the rails in hot weather. European practice was to have the rail joints on both rails adjacent to each other, while North American practice is to stagger them. Because of these small gaps, when trains pass over jointed tracks they make

6272-465: The continuous welded rail when necessary, usually for signal circuit gaps. Instead of a joint that passes straight across the rail, the two rail ends are sometimes cut at an angle to give a smoother transition. In extreme cases, such as at the end of long bridges, a breather switch (referred to in North America and Britain as an expansion joint ) gives a smooth path for the wheels while allowing

6384-440: The desired track geometry and smoothness of vehicle running. Weakness of the subgrade and drainage deficiencies also lead to heavy maintenance costs. This can be overcome by using ballastless track. In its simplest form this consists of a continuous slab of concrete (like a highway structure) with the rails supported directly on its upper surface (using a resilient pad). There are a number of proprietary systems; variations include

6496-430: The duty of a guard/train manager/conductor . Passenger trains are part of public transport and often make up the stem of the service, with buses feeding to stations. Passenger trains provide long-distance intercity travel, daily commuter trips, or local urban transit services, operating with a diversity of vehicles, operating speeds, right-of-way requirements, and service frequency. Service frequencies are often expressed as

6608-440: The end of one rail to expand relative to the next rail. A sleeper (tie or crosstie) is a rectangular object on which the rails are supported and fixed. The sleeper has two main roles: to transfer the loads from the rails to the track ballast and the ground underneath, and to hold the rails to the correct width apart (to maintain the rail gauge ). They are generally laid transversely to the rails. Various methods exist for fixing

6720-402: The end of the 19th century, because they were cleaner compared to steam-driven trams which caused smoke in city streets. In 1784 James Watt , a Scottish inventor and mechanical engineer, patented a design for a steam locomotive . Watt had improved the steam engine of Thomas Newcomen , hitherto used to pump water out of mines, and developed a reciprocating engine in 1769 capable of powering

6832-471: The end of the 19th century, improving the quality of steel and further reducing costs. Thus steel completely replaced the use of iron in rails, becoming standard for all railways. The first passenger horsecar or tram , Swansea and Mumbles Railway , was opened between Swansea and Mumbles in Wales in 1807. Horses remained the preferable mode for tram transport even after the arrival of steam engines until

SECTION 60

#1732800811590

6944-527: The engine by one power stroke. The transmission system employed a large flywheel to even out the action of the piston rod. On 21 February 1804, the world's first steam-powered railway journey took place when Trevithick's unnamed steam locomotive hauled a train along the tramway of the Penydarren ironworks, near Merthyr Tydfil in South Wales . Trevithick later demonstrated a locomotive operating upon

7056-475: The era of great expansion of railways that began in the late 1860s. Steel rails lasted several times longer than iron. Steel rails made heavier locomotives possible, allowing for longer trains and improving the productivity of railroads. The Bessemer process introduced nitrogen into the steel, which caused the steel to become brittle with age. The open hearth furnace began to replace the Bessemer process near

7168-522: The first commercial example of the system on the Lugano Tramway . Each 30-tonne locomotive had two 110 kW (150 hp) motors run by three-phase 750 V 40 Hz fed from double overhead lines. Three-phase motors run at a constant speed and provide regenerative braking , and are well suited to steeply graded routes, and the first main-line three-phase locomotives were supplied by Brown (by then in partnership with Walter Boveri ) in 1899 on

7280-428: The gaps are filled with epoxy resin , increase the strength again. As an alternative to the insulated joint, audio frequency track circuits can be employed using a tuned loop formed in approximately 20 m (66 ft) of the rail as part of the blocking circuit. Some insulated joints are unavoidable within turnouts. Another alternative is an axle counter , which can reduce the number of track circuits and thus

7392-482: The highest possible radius. All these features are dramatically different from freight operations, thus justifying exclusive high-speed rail lines if it is economically feasible. Railway track A railway track ( British English and UIC terminology ) or railroad track ( American English ), also known as a train track or permanent way (often " perway " in Australia or " P Way " in Britain and India),

7504-626: The intrinsic weakness in resisting vertical loading results in the ballast becoming depressed and a heavy maintenance workload is imposed to prevent unacceptable geometrical defects at the joints. The joints also needed to be lubricated, and wear at the fishplate (joint bar) mating surfaces needed to be rectified by shimming. For this reason jointed track is not financially appropriate for heavily operated railroads. Timber sleepers are of many available timbers, and are often treated with creosote , chromated copper arsenate , or other wood preservatives. Pre-stressed concrete sleepers are often used where timber

7616-480: The iron came loose, began to curl, and intruded into the floors of the coaches. The iron strap rail coming through the floors of the coaches came to be referred to as "snake heads" by early railroaders. The Deeside Tramway in North Wales used this form of rail. It opened around 1870 and closed in 1947, with long sections still using these rails. It was one of the last uses of iron-topped wooden rails. Rail

7728-402: The joints between rails are a source of weakness. Throughout the history of rail production, lengths have increased as manufacturing processes have improved. The following are lengths of single sections produced by steel mills , without any thermite welding . Shorter rails may be welded with flashbutt welding , but the following rail lengths are unwelded. Welding of rails into longer lengths

7840-1230: The limit being regarded at 200 to 350 kilometres per hour (120 to 220 mph). High-speed trains are used mostly for long-haul service and most systems are in Western Europe and East Asia. Magnetic levitation trains such as the Shanghai maglev train use under-riding magnets which attract themselves upward towards the underside of a guideway and this line has achieved somewhat higher peak speeds in day-to-day operation than conventional high-speed railways, although only over short distances. Due to their heightened speeds, route alignments for high-speed rail tend to have broader curves than conventional railways, but may have steeper grades that are more easily climbed by trains with large kinetic energy. High kinetic energy translates to higher horsepower-to-ton ratios (e.g. 20 horsepower per short ton or 16 kilowatts per tonne); this allows trains to accelerate and maintain higher speeds and negotiate steep grades as momentum builds up and recovered in downgrades (reducing cut and fill and tunnelling requirements). Since lateral forces act on curves, curvatures are designed with

7952-453: The line: A mixture of intercity, regional, cross-country and local services operate over all or parts of the route. Avanti West Coast , CrossCountry , Transport for Wales and West Midlands Trains all operate services. The line was built in three parts, between 1837 and 1854: The LNWR itself became part of the London, Midland and Scottish Railway (LMS) in 1923, and part of British Railways during Nationalisation in 1948. The line

8064-429: The locomotive-hauled train's drawbacks to be removed, since the locomotive need not be moved to the front of the train each time the train changes direction. A railroad car is a vehicle used for the haulage of either passengers or freight. A multiple unit has powered wheels throughout the whole train. These are used for rapid transit and tram systems, as well as many both short- and long-haul passenger trains. A railcar

8176-569: The main portion of the B&;O to the new line to New York through a series of tunnels around the edges of Baltimore's downtown. Electricity quickly became the power supply of choice for subways, abetted by the Sprague's invention of multiple-unit train control in 1897. By the early 1900s most street railways were electrified. The London Underground , the world's oldest underground railway, opened in 1863, and it began operating electric services using

8288-888: The mid- to late-20th century used rails 39 feet (11.9 m) long so they could be carried in gondola cars ( open wagons ), often 40 feet (12.2 m) long; as gondola sizes increased, so did rail lengths. According to the Railway Gazette International the planned-but-cancelled 150-kilometre rail line for the Baffinland Iron Mine , on Baffin Island , would have used older carbon steel alloys for its rails, instead of more modern, higher performance alloys, because modern alloy rails can become brittle at very low temperatures. Early North American railroads used iron on top of wooden rails as an economy measure but gave up this method of construction after

8400-433: The mid-1920s. The Soviet Union operated three experimental units of different designs since late 1925, though only one of them (the E el-2 ) proved technically viable. A significant breakthrough occurred in 1914, when Hermann Lemp , a General Electric electrical engineer, developed and patented a reliable direct current electrical control system (subsequent improvements were also patented by Lemp). Lemp's design used

8512-412: The noise they made on the tracks. There are many references to their use in central Europe in the 16th century. Such a transport system was later used by German miners at Caldbeck , Cumbria , England, perhaps from the 1560s. A wagonway was built at Prescot , near Liverpool , sometime around 1600, possibly as early as 1594. Owned by Philip Layton, the line carried coal from a pit near Prescot Hall to

8624-620: The number of insulated rail joints required. Most modern railways use continuous welded rail (CWR), sometimes referred to as ribbon rails or seamless rails . In this form of track, the rails are welded together by utilising flash butt welding to form one continuous rail that may be several kilometres long. Because there are few joints, this form of track is very strong, gives a smooth ride, and needs less maintenance; trains can travel on it at higher speeds and with less friction. Welded rails are more expensive to lay than jointed tracks, but have much lower maintenance costs. The first welded track

8736-404: The outside of sharp curves compared to the rails on the inside. Rails can be supplied pre-drilled with boltholes for fishplates or without where they will be welded into place. There are usually two or three boltholes at each end. Rails are produced in fixed lengths and need to be joined end-to-end to make a continuous surface on which trains may run. The traditional method of joining the rails

8848-461: The possibility of a smaller engine that might be used to power a vehicle. Following his patent, Watt's employee William Murdoch produced a working model of a self-propelled steam carriage in that year. The first full-scale working railway steam locomotive was built in the United Kingdom in 1804 by Richard Trevithick , a British engineer born in Cornwall . This used high-pressure steam to drive

8960-423: The quality of the materials, including the change from iron to steel. The stronger the rails and the rest of the trackwork, the heavier and faster the trains the track can carry. Other profiles of rail include: bullhead rail ; grooved rail ; flat-bottomed rail (Vignoles rail or flanged T-rail); bridge rail (inverted U–shaped used in baulk road ); and Barlow rail (inverted V). North American railroads until

9072-682: The rail by special clips that resist longitudinal movement of the rail. There is no theoretical limit to how long a welded rail can be. However, if longitudinal and lateral restraint are insufficient, the track could become distorted in hot weather and cause a derailment. Distortion due to heat expansion is known in North America as sun kink , and elsewhere as buckling. In extreme hot weather special inspections are required to monitor sections of track known to be problematic. In North American practice, extreme temperature conditions will trigger slow orders to allow for crews to react to buckling or "sun kinks" if encountered. The German railway company Deutsche Bahn

9184-425: The rail ends and bolted together (usually four, but sometimes six bolts per joint). The bolts have alternating orientations so that in the event of a derailment and a wheel flange striking the joint, only some of the bolts will be sheared, reducing the likelihood of the rails misaligning with each other and exacerbating the derailment. This technique is not applied universally; European practice being to have all

9296-500: The rail to the sleeper. Historically, spikes gave way to cast iron chairs fixed to the sleeper. More recently, springs (such as Pandrol clips ) are used to fix the rail to the sleeper chair. Sometimes rail tracks are designed to be portable and moved from one place to another as required. During construction of the Panama Canal , tracks were moved around excavation works. These track gauge were 5 ft ( 1,524 mm ) and

9408-655: The rail was supported along its length, with examples including Brunel's baulk road on the Great Western Railway , as well as use on the Newcastle and North Shields Railway , on the Lancashire and Yorkshire Railway to a design by John Hawkshaw , and elsewhere. Continuous-bearing designs were also promoted by other engineers. The system was tested on the Baltimore and Ohio railway in the 1840s, but

9520-562: The rolling stock full size. Portable tracks have often been used in open pit mines. In 1880 in New York City , sections of heavy portable track (along with much other improvised technology) helped in the move of the ancient obelisk in Central Park to its final location from the dock where it was unloaded from the cargo ship SS Dessoug . Cane railways often had permanent tracks for the main lines, with portable tracks serving

9632-426: The sleepers in their expanded form. This process ensures that the rail will not expand much further in subsequent hot weather. In cold weather the rails try to contract, but because they are firmly fastened, cannot do so. In effect, stressed rails are a bit like a piece of stretched elastic firmly fastened down. In extremely cold weather, rails are heated to prevent "pull aparts". CWR is laid (including fastening) at

9744-540: The sleepers with base plates that spread the load. When concrete sleepers are used, a plastic or rubber pad is usually placed between the rail and the tie plate. Rail is usually attached to the sleeper with resilient fastenings, although cut spikes are widely used in North America. For much of the 20th century, rail track used softwood timber sleepers and jointed rails, and a considerable amount of this track remains on secondary and tertiary routes. In North America and Australia, flat-bottomed rails were typically fastened to

9856-428: The sleepers with dog spikes through a flat tie plate. In Britain and Ireland, bullhead rails were carried in cast-iron chairs which were spiked to the sleepers. In 1936, the London, Midland and Scottish Railway pioneered the conversion to flat-bottomed rail in Britain, though earlier lines had made some use of it. Jointed rails were used at first because contemporary technology did not offer any alternative. However,

9968-441: The standard for railways. Cast iron used in rails proved unsatisfactory because it was brittle and broke under heavy loads. The wrought iron invented by John Birkinshaw in 1820 replaced cast iron. Wrought iron, usually simply referred to as "iron", was a ductile material that could undergo considerable deformation before breaking, making it more suitable for iron rails. But iron was expensive to produce until Henry Cort patented

10080-511: The ties (sleepers) in a continuous operation. If not restrained, rails would lengthen in hot weather and shrink in cold weather. To provide this restraint, the rail is prevented from moving in relation to the sleeper by use of clips or anchors. Attention needs to be paid to compacting the ballast effectively, including under, between, and at the ends of the sleepers, to prevent the sleepers from moving. Anchors are more common for wooden sleepers, whereas most concrete or steel sleepers are fastened to

10192-475: The time, was Liverpool and Manchester Railway , built in 1830. Steam power continued to be the dominant power system in railways around the world for more than a century. The first known electric locomotive was built in 1837 by chemist Robert Davidson of Aberdeen in Scotland, and it was powered by galvanic cells (batteries). Thus it was also the earliest battery-electric locomotive. Davidson later built

10304-406: The track then in use proved too weak to carry the additional weight. Richard Trevithick 's pioneering locomotive at Pen-y-darren broke the plateway track and had to be withdrawn. As locomotives became more widespread in the 1810s and 1820s, engineers built rigid track formations, with iron rails mounted on stone sleepers, and cast-iron chairs holding them in place. This proved to be a mistake, and

10416-480: The track. Propulsion for the train is provided by a separate locomotive or from individual motors in self-propelled multiple units. Most trains carry a revenue load, although non-revenue cars exist for the railway's own use, such as for maintenance-of-way purposes. The engine driver (engineer in North America) controls the locomotive or other power cars, although people movers and some rapid transits are under automatic control. Traditionally, trains are pulled using

10528-471: The transport of ore tubs to and from mines and soon became popular in Europe. Such an operation was illustrated in Germany in 1556 by Georgius Agricola in his work De re metallica . This line used "Hund" carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way. The miners called the wagons Hunde ("dogs") from

10640-629: The wheels on track. For example, evidence indicates that a 6 to 8.5 km long Diolkos paved trackway transported boats across the Isthmus of Corinth in Greece from around 600 BC. The Diolkos was in use for over 650 years, until at least the 1st century AD. Paved trackways were also later built in Roman Egypt . In 1515, Cardinal Matthäus Lang wrote a description of the Reisszug ,

10752-622: The world in 1825, although it used both horse power and steam power on different runs. In 1829, he built the locomotive Rocket , which entered in and won the Rainhill Trials . This success led to Stephenson establishing his company as the pre-eminent builder of steam locomotives for railways in Great Britain and Ireland, the United States, and much of Europe. The first public railway which used only steam locomotives, all

10864-602: Was electrified along with the rest of the WCML during the late 1960s in the wake of the BR 1955 Modernisation Plan . In 1987, British Rail commissioned artist Kevin Atherton to produce a series of sculptures to be erected along the line between Birmingham New Street station and Wolverhampton. The finished piece was titled Iron Horse , and consists of twelve different horse silhouettes, fashioned from steel . The construction material

10976-512: Was a soft material that contained slag or dross . The softness and dross tended to make iron rails distort and delaminate and they lasted less than 10 years. Sometimes they lasted as little as one year under high traffic. All these developments in the production of iron eventually led to the replacement of composite wood/iron rails with superior all-iron rails. The introduction of the Bessemer process , enabling steel to be made inexpensively, led to

11088-602: Was accomplished by the distribution of weight between a number of wheels. Puffing Billy is now on display in the Science Museum in London, and is the oldest locomotive in existence. In 1814, George Stephenson , inspired by the early locomotives of Trevithick, Murray and Hedley, persuaded the manager of the Killingworth colliery where he worked to allow him to build a steam-powered machine. Stephenson played

11200-514: Was built by Siemens. The tram ran on 180 volts DC, which was supplied by running rails. In 1891 the track was equipped with an overhead wire and the line was extended to Berlin-Lichterfelde West station . The Volk's Electric Railway opened in 1883 in Brighton , England. The railway is still operational, thus making it the oldest operational electric railway in the world. Also in 1883, Mödling and Hinterbrühl Tram opened near Vienna in Austria. It

11312-706: Was built in 1758, later became the world's oldest operational railway (other than funiculars), albeit now in an upgraded form. In 1764, the first railway in the Americas was built in Lewiston, New York . In the late 1760s, the Coalbrookdale Company began to fix plates of cast iron to the upper surface of the wooden rails. This allowed a variation of gauge to be used. At first only balloon loops could be used for turning, but later, movable points were taken into use that allowed for switching. A system

11424-578: Was chosen for its historic associations with the Black Country . Many of the smaller stations on the line were closed in the 1950s and 60s, especially between Birmingham and Wolverhampton. However, some new stations were opened in the late 20th century: Birmingham International station was opened in 1976 to serve Birmingham Airport and the National Exhibition Centre , and in 1995 another new station; Smethwick Galton Bridge

11536-467: Was first introduced around 1893, making train rides quieter and safer. With the introduction of thermite welding after 1899, the process became less labour-intensive, and ubiquitous. Modern production techniques allowed the production of longer unwelded segments. Newer longer rails tend to be made as simple multiples of older shorter rails, so that old rails can be replaced without cutting. Some cutting would be needed as slightly longer rails are needed on

11648-432: Was found to be more expensive to maintain than rail with cross sleepers . This type of track still exists on some bridges on Network Rail where the timber baulks are called waybeams or longitudinal timbers. Generally the speed over such structures is low. Later applications of continuously supported track include Balfour Beatty 's 'embedded slab track', which uses a rounded rectangular rail profile (BB14072) embedded in

11760-548: Was introduced in which unflanged wheels ran on L-shaped metal plates, which came to be known as plateways . John Curr , a Sheffield colliery manager, invented this flanged rail in 1787, though the exact date of this is disputed. The plate rail was taken up by Benjamin Outram for wagonways serving his canals, manufacturing them at his Butterley ironworks . In 1803, William Jessop opened the Surrey Iron Railway ,

11872-489: Was light enough to not break the edge-rails track and solved the problem of adhesion by a cog-wheel using teeth cast on the side of one of the rails. Thus it was also the first rack railway . This was followed in 1813 by the locomotive Puffing Billy built by Christopher Blackett and William Hedley for the Wylam Colliery Railway, the first successful locomotive running by adhesion only. This

11984-551: Was opened, serving as a two-level interchange with trains on the Birmingham Snow Hill to Worcester Line . There were also three services a day to Walsall , until a timetable change in May 2019 saw it removed and replaced by two morning services per day to Shrewsbury . Despite the heavy traffic carried by the line, it is only double track throughout, and heavily congested, especially between Coventry and Birmingham. In

12096-466: Was soon replaced with flexible track structures that allowed a degree of elastic movement as trains passed over them. Traditionally, tracks are constructed using flat-bottomed steel rails laid on and spiked or screwed into timber or pre-stressed concrete sleepers (known as ties in North America), with crushed stone ballast placed beneath and around the sleepers. Most modern railroads with heavy traffic use continuously welded rails that are attached to

12208-762: Was tested on the Edinburgh and Glasgow Railway in September of the following year, but the limited power from batteries prevented its general use. It was destroyed by railway workers, who saw it as a threat to their job security. By the middle of the nineteenth century most european countries had military uses for railways. Werner von Siemens demonstrated an electric railway in 1879 in Berlin. The world's first electric tram line, Gross-Lichterfelde Tramway , opened in Lichterfelde near Berlin , Germany, in 1881. It

12320-541: Was the Wollaton Wagonway , built in 1603 between Wollaton and Strelley in Nottinghamshire. It used wooden rails and was the first of around 50 wooden-railed tramways built over the next 164 years. These early wooden tramways typically used rails of oak or beech, attached to wooden sleepers with iron or wooden nails. Gravel or small stones were packed around the sleepers to hold them in place and provide

12432-580: Was the first tram line in the world in regular service powered from an overhead line. Five years later, in the U.S. electric trolleys were pioneered in 1888 on the Richmond Union Passenger Railway , using equipment designed by Frank J. Sprague . The first use of electrification on a main line was on a four-mile section of the Baltimore Belt Line of the Baltimore and Ohio Railroad (B&O) in 1895 connecting

12544-450: Was used in Germany in 1924. and has become common on main lines since the 1950s. The preferred process of flash butt welding involves an automated track-laying machine running a strong electric current through the touching ends of two unjoined rails. The ends become white hot due to electrical resistance and are then pressed together forming a strong weld. Thermite welding is used to repair or splice together existing CWR segments. This

#589410