Misplaced Pages

Nitrogen

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#615384

200-527: Nitrogen is a chemical element ; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table , often called the pnictogens . It is a common element in the universe , estimated at seventh in total abundance in the Milky Way and the Solar System . At standard temperature and pressure , two atoms of the element bond to form N 2 ,

400-513: A dinitrogen complex to be discovered was [Ru(NH 3 ) 5 (N 2 )] (see figure at right), and soon many other such complexes were discovered. These complexes , in which a nitrogen molecule donates at least one lone pair of electrons to a central metal cation, illustrate how N 2 might bind to the metal(s) in nitrogenase and the catalyst for the Haber process : these processes involving dinitrogen activation are vitally important in biology and in

600-569: A disulfiram -like chemical reaction with alcohol by inhibiting its breakdown by acetaldehyde dehydrogenase , which may result in vomiting, nausea, and shortness of breath. In addition, the efficacy of doxycycline and erythromycin succinate may be reduced by alcohol consumption. Other effects of alcohol on antibiotic activity include altered activity of the liver enzymes that break down the antibiotic compound. The successful outcome of antimicrobial therapy with antibacterial compounds depends on several factors. These include host defense mechanisms ,

800-501: A molecular weight of less than 1000 daltons . Since the first pioneering efforts of Howard Florey and Chain in 1939, the importance of antibiotics, including antibacterials, to medicine has led to intense research into producing antibacterials at large scales. Following screening of antibacterials against a wide range of bacteria , production of the active compounds is carried out using fermentation , usually in strongly aerobic conditions. Antimicrobial resistance (AMR or AR)

1000-738: A pure element . In chemistry, a pure element means a substance whose atoms all (or in practice almost all) have the same atomic number, or number of protons . Nuclear scientists, however, define a pure element as one that consists of only one isotope. For example, a copper wire is 99.99% chemically pure if 99.99% of its atoms are copper, with 29 protons each. However it is not isotopically pure since ordinary copper consists of two stable isotopes, 69% Cu and 31% Cu, with different numbers of neutrons. However, pure gold would be both chemically and isotopically pure, since ordinary gold consists only of one isotope, Au. Atoms of chemically pure elements may bond to each other chemically in more than one way, allowing

1200-497: A Japanese bacteriologist working with Ehrlich in the quest for a drug to treat syphilis , achieved success with the 606th compound in their series of experiments. In 1910, Ehrlich and Hata announced their discovery, which they called drug "606", at the Congress for Internal Medicine at Wiesbaden . The Hoechst company began to market the compound toward the end of 1910 under the name Salvarsan, now known as arsphenamine . The drug

1400-643: A biological cost, thereby reducing fitness of resistant strains, which can limit the spread of antibacterial-resistant bacteria, for example, in the absence of antibacterial compounds. Additional mutations, however, may compensate for this fitness cost and can aid the survival of these bacteria. Paleontological data show that both antibiotics and antibiotic resistance are ancient compounds and mechanisms. Useful antibiotic targets are those for which mutations negatively impact bacterial reproduction or viability. Several molecular mechanisms of antibacterial resistance exist. Intrinsic antibacterial resistance may be part of

1600-473: A bridging ligand, donating all three electron pairs from the triple bond ( μ 3 -N 2 ). A few complexes feature multiple N 2 ligands and some feature N 2 bonded in multiple ways. Since N 2 is isoelectronic with carbon monoxide (CO) and acetylene (C 2 H 2 ), the bonding in dinitrogen complexes is closely allied to that in carbonyl compounds, although N 2 is a weaker σ -donor and π -acceptor than CO. Theoretical studies show that σ donation

1800-471: A colourless and odourless diatomic gas . N 2 forms about 78% of Earth's atmosphere , making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth. It was first discovered and isolated by Scottish physician Daniel Rutherford in 1772 and independently by Carl Wilhelm Scheele and Henry Cavendish at about

2000-549: A considerable amount of time. (See element naming controversy ). Precursors of such controversies involved the nationalistic namings of elements in the late 19th century. For example, lutetium was named in reference to Paris, France. The Germans were reluctant to relinquish naming rights to the French, often calling it cassiopeium . Similarly, the British discoverer of niobium originally named it columbium , in reference to

2200-477: A different element in nuclear reactions , which change an atom's atomic number. Historically, the term "chemical element" meant a substance that cannot be broken down into constituent substances by chemical reactions, and for most practical purposes this definition still has validity. There was some controversy in the 1920s over whether isotopes deserved to be recognized as separate elements if they could be separated by chemical means. The term "(chemical) element"

SECTION 10

#1732783258616

2400-426: A dilute gas it is less dangerous and is thus used industrially to bleach and sterilise flour. Nitrogen tribromide (NBr 3 ), first prepared in 1975, is a deep red, temperature-sensitive, volatile solid that is explosive even at −100 °C. Nitrogen triiodide (NI 3 ) is still more unstable and was only prepared in 1990. Its adduct with ammonia, which was known earlier, is very shock-sensitive: it can be set off by

2600-453: A dissertation, " Contribution à l'étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes " (Contribution to the study of vital competition in micro-organisms: antagonism between moulds and microbes), the first known scholarly work to consider the therapeutic capabilities of moulds resulting from their anti-microbial activity. In his thesis, Duchesne proposed that bacteria and moulds engage in

2800-652: A few decay products, to have been differentiated from other elements. Most recently, the synthesis of element 118 (since named oganesson ) was reported in October 2006, and the synthesis of element 117 ( tennessine ) was reported in April 2010. Of these 118 elements, 94 occur naturally on Earth. Six of these occur in extreme trace quantities: technetium , atomic number 43; promethium , number 61; astatine , number 85; francium , number 87; neptunium , number 93; and plutonium , number 94. These 94 elements have been detected in

3000-529: A few elements, such as silver and gold , are found uncombined as relatively pure native element minerals . Nearly all other naturally occurring elements occur in the Earth as compounds or mixtures. Air is mostly a mixture of molecular nitrogen and oxygen , though it does contain compounds including carbon dioxide and water , as well as atomic argon , a noble gas which is chemically inert and therefore does not undergo chemical reactions. The history of

3200-498: A liquid, it is a very good solvent with a high heat of vaporisation (enabling it to be used in vacuum flasks), that also has a low viscosity and electrical conductivity and high dielectric constant , and is less dense than water. However, the hydrogen bonding in NH 3 is weaker than that in H 2 O due to the lower electronegativity of nitrogen compared to oxygen and the presence of only one lone pair in NH 3 rather than two in H 2 O. It

3400-482: A long time, sources of nitrogen compounds were limited. Natural sources originated either from biology or deposits of nitrates produced by atmospheric reactions. Nitrogen fixation by industrial processes like the Frank–Caro process (1895–1899) and Haber–Bosch process (1908–1913) eased this shortage of nitrogen compounds, to the extent that half of global food production now relies on synthetic nitrogen fertilisers. At

3600-401: A metal complex, for example by directly reacting coordinated ammonia (NH 3 ) with nitrous acid (HNO 2 ), but this is not generally applicable. Most dinitrogen complexes have colours within the range white-yellow-orange-red-brown; a few exceptions are known, such as the blue [{Ti( η -C 5 H 5 ) 2 } 2 -(N 2 )]. Nitrogen bonds to almost all the elements in the periodic table except

3800-466: A million new cases of multidrug-resistant tuberculosis (MDR-TB) are estimated to occur worldwide. For example, NDM-1 is a newly identified enzyme conveying bacterial resistance to a broad range of beta-lactam antibacterials. The United Kingdom's Health Protection Agency has stated that "most isolates with NDM-1 enzyme are resistant to all standard intravenous antibiotics for treatment of severe infections." On 26 May 2016, an E. coli " superbug "

4000-517: A patient is infected with a β-lactamase -producing strain of bacteria. Antibiotics are commonly classified based on their mechanism of action , chemical structure , or spectrum of activity. Most target bacterial functions or growth processes. Those that target the bacterial cell wall ( penicillins and cephalosporins ) or the cell membrane ( polymyxins ), or interfere with essential bacterial enzymes ( rifamycins , lipiarmycins , quinolones , and sulfonamides ) have bactericidal activities, killing

4200-460: A perpetual battle for survival. Duchesne observed that E. coli was eliminated by Penicillium glaucum when they were both grown in the same culture. He also observed that when he inoculated laboratory animals with lethal doses of typhoid bacilli together with Penicillium glaucum , the animals did not contract typhoid. Duchesne's army service after getting his degree prevented him from doing any further research. Duchesne died of tuberculosis ,

SECTION 20

#1732783258616

4400-493: A preference for forming multiple bonds, typically with carbon, oxygen, or other nitrogen atoms, through p π –p π interactions. Thus, for example, nitrogen occurs as diatomic molecules and therefore has very much lower melting (−210 °C) and boiling points (−196 °C) than the rest of its group, as the N 2 molecules are only held together by weak van der Waals interactions and there are very few electrons available to create significant instantaneous dipoles. This

4600-500: A pressure of 1 bar and a given temperature (typically at 298.15K). However, for phosphorus, the reference state is white phosphorus even though it is not the most stable allotrope, and the reference state for carbon is graphite, because the structure of graphite is more stable than that of the other allotropes. In thermochemistry , an element is defined to have an enthalpy of formation of zero in its reference state. Several kinds of descriptive categorizations can be applied broadly to

4800-483: A pressure of one atmosphere, are commonly used in characterizing the various elements. While known for most elements, either or both of these measurements is still undetermined for some of the radioactive elements available in only tiny quantities. Since helium remains a liquid even at absolute zero at atmospheric pressure, it has only a boiling point, and not a melting point, in conventional presentations. The density at selected standard temperature and pressure (STP)

5000-585: A problem which is only exacerbated by its low gyromagnetic ratio , (only 10.14% that of H). As a result, the signal-to-noise ratio for H is about 300 times as much as that for N at the same magnetic field strength. This may be somewhat alleviated by isotopic enrichment of N by chemical exchange or fractional distillation. N-enriched compounds have the advantage that under standard conditions, they do not undergo chemical exchange of their nitrogen atoms with atmospheric nitrogen, unlike compounds with labelled hydrogen , carbon, and oxygen isotopes that must be kept away from

5200-470: A promising ceramic if not for the difficulty of working with and sintering it. In particular, the group 13 nitrides, most of which are promising semiconductors , are isoelectronic with graphite, diamond, and silicon carbide and have similar structures: their bonding changes from covalent to partially ionic to metallic as the group is descended. In particular, since the B–N unit is isoelectronic to C–C, and carbon

5400-465: A resistance mechanism encoded by a single gene conveys resistance to more than one antibacterial compound. Antibacterial-resistant strains and species, sometimes referred to as "superbugs", now contribute to the emergence of diseases that were, for a while, well controlled. For example, emergent bacterial strains causing tuberculosis that are resistant to previously effective antibacterial treatments pose many therapeutic challenges. Every year, nearly half

5600-460: A significant dynamic surface coverage on Pluto and outer moons of the Solar System such as Triton . Even at the low temperatures of solid nitrogen it is fairly volatile and can sublime to form an atmosphere, or condense back into nitrogen frost. It is very weak and flows in the form of glaciers, and on Triton geysers of nitrogen gas come from the polar ice cap region. The first example of

5800-456: A small group, (the metalloids ), having intermediate properties and often behaving as semiconductors . A more refined classification is often shown in colored presentations of the periodic table. This system restricts the terms "metal" and "nonmetal" to only certain of the more broadly defined metals and nonmetals, adding additional terms for certain sets of the more broadly viewed metals and nonmetals. The version of this classification used in

6000-603: A very high energy density, that could be used as powerful propellants or explosives. Under extremely high pressures (1.1 million  atm ) and high temperatures (2000 K), as produced in a diamond anvil cell , nitrogen polymerises into the single-bonded cubic gauche crystal structure. This structure is similar to that of diamond , and both have extremely strong covalent bonds , resulting in its nickname "nitrogen diamond". At atmospheric pressure , molecular nitrogen condenses ( liquefies ) at 77  K (−195.79 ° C ) and freezes at 63 K (−210.01 °C) into

6200-474: A whole number. For example, the relative atomic mass of chlorine is 35.453 u, which differs greatly from a whole number as it is an average of about 76% chlorine-35 and 24% chlorine-37. Whenever a relative atomic mass value differs by more than ~1% from a whole number, it is due to this averaging effect, as significant amounts of more than one isotope are naturally present in a sample of that element. Chemists and nuclear scientists have different definitions of

Nitrogen - Misplaced Pages Continue

6400-537: A wide range of bacteria. Following a 40-year break in discovering classes of antibacterial compounds, four new classes of antibiotics were introduced to clinical use in the late 2000s and early 2010s: cyclic lipopeptides (such as daptomycin ), glycylcyclines (such as tigecycline ), oxazolidinones (such as linezolid ), and lipiarmycins (such as fidaxomicin ). With advances in medicinal chemistry , most modern antibacterials are semisynthetic modifications of various natural compounds. These include, for example,

6600-464: Is oxatetrazole (N 4 O), an aromatic ring. Nitrous oxide (N 2 O), better known as laughing gas, is made by thermal decomposition of molten ammonium nitrate at 250 °C. This is a redox reaction and thus nitric oxide and nitrogen are also produced as byproducts. It is mostly used as a propellant and aerating agent for sprayed canned whipped cream , and was formerly commonly used as an anaesthetic. Despite appearances, it cannot be considered to be

6800-404: Is 10 (for tin , element 50). The mass number of an element, A , is the number of nucleons (protons and neutrons) in the atomic nucleus. Different isotopes of a given element are distinguished by their mass number, which is written as a superscript on the left hand side of the chemical symbol (e.g., U). The mass number is always an integer and has units of "nucleons". Thus, magnesium-24 (24

7000-439: Is ONF 3 , which has aroused interest due to the short N–O distance implying partial double bonding and the highly polar and long N–F bond. Tetrafluorohydrazine, unlike hydrazine itself, can dissociate at room temperature and above to give the radical NF 2 •. Fluorine azide (FN 3 ) is very explosive and thermally unstable. Dinitrogen difluoride (N 2 F 2 ) exists as thermally interconvertible cis and trans isomers, and

7200-606: Is a mixture of C (about 98.9%), C (about 1.1%) and about 1 atom per trillion of C. Most (54 of 94) naturally occurring elements have more than one stable isotope. Except for the isotopes of hydrogen (which differ greatly from each other in relative mass—enough to cause chemical effects), the isotopes of a given element are chemically nearly indistinguishable. All elements have radioactive isotopes (radioisotopes); most of these radioisotopes do not occur naturally. Radioisotopes typically decay into other elements via alpha decay , beta decay , or inverse beta decay ; some isotopes of

7400-679: Is a colourless and odourless gas that is thermodynamically stable, and most readily produced by the electrolysis of molten ammonium fluoride dissolved in anhydrous hydrogen fluoride . Like carbon tetrafluoride , it is not at all reactive and is stable in water or dilute aqueous acids or alkalis. Only when heated does it act as a fluorinating agent, and it reacts with copper , arsenic, antimony, and bismuth on contact at high temperatures to give tetrafluorohydrazine (N 2 F 4 ). The cations NF 4 and N 2 F 3 are also known (the latter from reacting tetrafluorohydrazine with strong fluoride-acceptors such as arsenic pentafluoride ), as

7600-406: Is a dimensionless number equal to the atomic mass divided by the atomic mass constant , which equals 1 Da. In general, the mass number of a given nuclide differs in value slightly from its relative atomic mass, since the mass of each proton and neutron is not exactly 1 Da; since the electrons contribute a lesser share to the atomic mass as neutron number exceeds proton number; and because of

7800-418: Is a fuming, colourless liquid that smells similar to ammonia. Its physical properties are very similar to those of water (melting point 2.0 °C, boiling point 113.5 °C, density 1.00 g/cm). Despite it being an endothermic compound, it is kinetically stable. It burns quickly and completely in air very exothermically to give nitrogen and water vapour. It is a very useful and versatile reducing agent and

8000-576: Is a more important factor allowing the formation of the M–N bond than π back-donation, which mostly only weakens the N–N bond, and end-on ( η ) donation is more readily accomplished than side-on ( η ) donation. Today, dinitrogen complexes are known for almost all the transition metals , accounting for several hundred compounds. They are normally prepared by three methods: Occasionally the N≡N bond may be formed directly within

8200-811: Is a naturally occurring process. AMR is driven largely by the misuse and overuse of antimicrobials. Yet, at the same time, many people around the world do not have access to essential antimicrobials. The emergence of antibiotic-resistant bacteria is a common phenomenon mainly caused by the overuse/misuse. It represents a threat to health globally. Each year, nearly 5 million deaths are associated with AMR globally. Emergence of resistance often reflects evolutionary processes that take place during antibiotic therapy. The antibiotic treatment may select for bacterial strains with physiologically or genetically enhanced capacity to survive high doses of antibiotics. Under certain conditions, it may result in preferential growth of resistant bacteria, while growth of susceptible bacteria

Nitrogen - Misplaced Pages Continue

8400-447: Is a type of antimicrobial substance active against bacteria . It is the most important type of antibacterial agent for fighting bacterial infections , and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as

8600-467: Is a weak base in aqueous solution ( p K b 4.74); its conjugate acid is ammonium , NH 4 . It can also act as an extremely weak acid, losing a proton to produce the amide anion, NH 2 . It thus undergoes self-dissociation, similar to water, to produce ammonium and amide. Ammonia burns in air or oxygen, though not readily, to produce nitrogen gas; it burns in fluorine with a greenish-yellow flame to give nitrogen trifluoride . Reactions with

8800-400: Is a weak diprotic acid with the structure HON=NOH (p K a1 6.9, p K a2 11.6). Acidic solutions are quite stable but above pH 4 base-catalysed decomposition occurs via [HONNO] to nitrous oxide and the hydroxide anion. Hyponitrites (involving the N 2 O 2 anion) are stable to reducing agents and more commonly act as reducing agents themselves. They are an intermediate step in

9000-543: Is a weaker base than ammonia. It is also commonly used as a rocket fuel. Hydrazine is generally made by reaction of ammonia with alkaline sodium hypochlorite in the presence of gelatin or glue: (The attacks by hydroxide and ammonia may be reversed, thus passing through the intermediate NHCl instead.) The reason for adding gelatin is that it removes metal ions such as Cu that catalyses the destruction of hydrazine by reaction with monochloramine (NH 2 Cl) to produce ammonium chloride and nitrogen. Hydrogen azide (HN 3 )

9200-477: Is almost always used as a partner drug. Methicillin-resistant Staphylococcus aureus infections may be treated with a combination therapy of fusidic acid and rifampicin. Antibiotics used in combination may also be antagonistic and the combined effects of the two antibiotics may be less than if one of the antibiotics was given as a monotherapy . For example, chloramphenicol and tetracyclines are antagonists to penicillins . However, this can vary depending on

9400-611: Is also evidence for the asymmetric red dimer O=N–O=N when nitric oxide is condensed with polar molecules. It reacts with oxygen to give brown nitrogen dioxide and with halogens to give nitrosyl halides. It also reacts with transition metal compounds to give nitrosyl complexes, most of which are deeply coloured. Blue dinitrogen trioxide (N 2 O 3 ) is only available as a solid because it rapidly dissociates above its melting point to give nitric oxide, nitrogen dioxide (NO 2 ), and dinitrogen tetroxide (N 2 O 4 ). The latter two compounds are somewhat difficult to study individually because of

9600-486: Is also one of the treatment options for some skin conditions including acne and cellulitis . Advantages of topical application include achieving high and sustained concentration of antibiotic at the site of infection; reducing the potential for systemic absorption and toxicity, and total volumes of antibiotic required are reduced, thereby also reducing the risk of antibiotic misuse. Topical antibiotics applied over certain types of surgical wounds have been reported to reduce

9800-399: Is an example of misuse. Many antibiotics are frequently prescribed to treat symptoms or diseases that do not respond to antibiotics or that are likely to resolve without treatment. Also, incorrect or suboptimal antibiotics are prescribed for certain bacterial infections. The overuse of antibiotics, like penicillin and erythromycin, has been associated with emerging antibiotic resistance since

10000-812: Is an ongoing area of scientific study. The lightest elements are hydrogen and helium , both created by Big Bang nucleosynthesis in the first 20 minutes of the universe in a ratio of around 3:1 by mass (or 12:1 by number of atoms), along with tiny traces of the next two elements, lithium and beryllium . Almost all other elements found in nature were made by various natural methods of nucleosynthesis . On Earth, small amounts of new atoms are naturally produced in nucleogenic reactions, or in cosmogenic processes, such as cosmic ray spallation . New atoms are also naturally produced on Earth as radiogenic daughter isotopes of ongoing radioactive decay processes such as alpha decay , beta decay , spontaneous fission , cluster decay , and other rarer modes of decay. Of

10200-460: Is based on a Latin or other traditional word, for example adopting "gold" rather than "aurum" as the name for the 79th element (Au). IUPAC prefers the British spellings " aluminium " and "caesium" over the U.S. spellings "aluminum" and "cesium", and the U.S. "sulfur" over British "sulphur". However, elements that are practical to sell in bulk in many countries often still have locally used national names, and countries whose national language does not use

SECTION 50

#1732783258616

10400-464: Is common, where the nitrito form is usually less stable. Chemical element A chemical element is a chemical substance whose atoms all have the same number of protons . The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8, meaning each oxygen atom has 8 protons in its nucleus. Atoms of the same element can have different numbers of neutrons in their nuclei, known as isotopes of

10600-479: Is considered one of the drivers of antibiotic misuse. Several organizations concerned with antimicrobial resistance are lobbying to eliminate the unnecessary use of antibiotics. The issues of misuse and overuse of antibiotics have been addressed by the formation of the US Interagency Task Force on Antimicrobial Resistance. This task force aims to actively address antimicrobial resistance, and

10800-703: Is coordinated by the US Centers for Disease Control and Prevention , the Food and Drug Administration (FDA), and the National Institutes of Health , as well as other US agencies. A non-governmental organization campaign group is Keep Antibiotics Working . In France, an "Antibiotics are not automatic" government campaign started in 2002 and led to a marked reduction of unnecessary antibiotic prescriptions, especially in children. The emergence of antibiotic resistance has prompted restrictions on their use in

11000-626: Is critically important as it can reduce the cost and toxicity of the antibiotic therapy and also reduce the possibility of the emergence of antimicrobial resistance. To avoid surgery, antibiotics may be given for non-complicated acute appendicitis . Antibiotics may be given as a preventive measure and this is usually limited to at-risk populations such as those with a weakened immune system (particularly in HIV cases to prevent pneumonia ), those taking immunosuppressive drugs , cancer patients, and those having surgery . Their use in surgical procedures

11200-607: Is driven largely by the misuse and overuse of antimicrobials. Yet, at the same time, many people around the world do not have access to essential antimicrobials. The World Health Organization has classified AMR as a widespread "serious threat [that] is no longer a prediction for the future, it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country". Each year, nearly 5 million deaths are associated with AMR globally. Global deaths attributable to AMR numbered 1.27 million in 2019. The term 'antibiosis', meaning "against life",

11400-403: Is essentially intermediate in size between boron and nitrogen, much of organic chemistry finds an echo in boron–nitrogen chemistry, such as in borazine ("inorganic benzene "). Nevertheless, the analogy is not exact due to the ease of nucleophilic attack at boron due to its deficiency in electrons, which is not possible in a wholly carbon-containing ring. The largest category of nitrides are

11600-489: Is inhibited by the drug. For example, antibacterial selection for strains having previously acquired antibacterial-resistance genes was demonstrated in 1943 by the Luria–Delbrück experiment . Antibiotics such as penicillin and erythromycin, which used to have a high efficacy against many bacterial species and strains, have become less effective, due to the increased resistance of many bacterial strains. Resistance may take

11800-514: Is known. Industrially, ammonia (NH 3 ) is the most important compound of nitrogen and is prepared in larger amounts than any other compound because it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilisers. It is a colourless alkaline gas with a characteristic pungent smell. The presence of hydrogen bonding has very significant effects on ammonia, conferring on it its high melting (−78 °C) and boiling (−33 °C) points. As

12000-433: Is mildly toxic in concentrations above 100 mg/kg, but small amounts are often used to cure meat and as a preservative to avoid bacterial spoilage. It is also used to synthesise hydroxylamine and to diazotise primary aromatic amines as follows: Nitrite is also a common ligand that can coordinate in five ways. The most common are nitro (bonded from the nitrogen) and nitrito (bonded from an oxygen). Nitro-nitrito isomerism

12200-627: Is mostly unreactive at room temperature, but it will nevertheless react with lithium metal and some transition metal complexes. This is due to its bonding, which is unique among the diatomic elements at standard conditions in that it has an N≡N triple bond . Triple bonds have short bond lengths (in this case, 109.76 pm) and high dissociation energies (in this case, 945.41 kJ/mol), and are thus very strong, explaining dinitrogen's low level of chemical reactivity. Other nitrogen oligomers and polymers may be possible. If they could be synthesised, they may have potential applications as materials with

SECTION 60

#1732783258616

12400-486: Is much more common, making up 99.634% of natural nitrogen, and the second (which is slightly heavier) makes up the remaining 0.366%. This leads to an atomic weight of around 14.007 u. Both of these stable isotopes are produced in the CNO cycle in stars , but N is more common as its proton capture is the rate-limiting step. N is one of the five stable odd–odd nuclides (a nuclide having an odd number of protons and neutrons);

12600-676: Is not possible for its vertical neighbours; thus, the nitrogen oxides , nitrites , nitrates , nitro- , nitroso -, azo -, and diazo -compounds, azides , cyanates , thiocyanates , and imino -derivatives find no echo with phosphorus, arsenic, antimony, or bismuth. By the same token, however, the complexity of the phosphorus oxoacids finds no echo with nitrogen. Setting aside their differences, nitrogen and phosphorus form an extensive series of compounds with one another; these have chain, ring, and cage structures. Table of thermal and physical properties of nitrogen (N 2 ) at atmospheric pressure: Nitrogen has two stable isotopes : N and N. The first

12800-656: Is of interest for the preparation of explosives. It is a deliquescent , colourless crystalline solid that is sensitive to light. In the solid state it is ionic with structure [NO 2 ][NO 3 ]; as a gas and in solution it is molecular O 2 N–O–NO 2 . Hydration to nitric acid comes readily, as does analogous reaction with hydrogen peroxide giving peroxonitric acid (HOONO 2 ). It is a violent oxidising agent. Gaseous dinitrogen pentoxide decomposes as follows: Many nitrogen oxoacids are known, though most of them are unstable as pure compounds and are known only as aqueous solutions or as salts. Hyponitrous acid (H 2 N 2 O 2 )

13000-436: Is often used in characterizing the elements. Density is often expressed in grams per cubic centimetre (g/cm ). Since several elements are gases at commonly encountered temperatures, their densities are usually stated for their gaseous forms; when liquefied or solidified, the gaseous elements have densities similar to those of the other elements. When an element has allotropes with different densities, one representative allotrope

13200-519: Is prepared by passing an electric discharge through nitrogen gas at 0.1–2 mmHg, which produces atomic nitrogen along with a peach-yellow emission that fades slowly as an afterglow for several minutes even after the discharge terminates. Given the great reactivity of atomic nitrogen, elemental nitrogen usually occurs as molecular N 2 , dinitrogen. This molecule is a colourless, odourless, and tasteless diamagnetic gas at standard conditions: it melts at −210 °C and boils at −196 °C. Dinitrogen

13400-436: Is produced from O (in water) via an (n,p) reaction , in which the O atom captures a neutron and expels a proton. It has a short half-life of about 7.1 s, but its decay back to O produces high-energy gamma radiation (5 to 7 MeV). Because of this, access to the primary coolant piping in a pressurised water reactor must be restricted during reactor power operation. It is a sensitive and immediate indicator of leaks from

13600-474: Is significant. It is a weak acid with p K a 3.35 at 18 °C. They may be titrimetrically analysed by their oxidation to nitrate by permanganate . They are readily reduced to nitrous oxide and nitric oxide by sulfur dioxide , to hyponitrous acid with tin (II), and to ammonia with hydrogen sulfide . Salts of hydrazinium N 2 H 5 react with nitrous acid to produce azides which further react to give nitrous oxide and nitrogen. Sodium nitrite

13800-482: Is similar to that in nitrogen, but one extra electron is added to a π * antibonding orbital and thus the bond order has been reduced to approximately 2.5; hence dimerisation to O=N–N=O is unfavourable except below the boiling point (where the cis isomer is more stable) because it does not actually increase the total bond order and because the unpaired electron is delocalised across the NO molecule, granting it stability. There

14000-399: Is smaller than those of boron (84 pm) and carbon (76 pm), while it is larger than those of oxygen (66 pm) and fluorine (57 pm). The nitride anion, N, is much larger at 146 pm, similar to that of the oxide (O: 140 pm) and fluoride (F: 133 pm) anions. The first three ionisation energies of nitrogen are 1.402, 2.856, and 4.577 MJ·mol, and the sum of

14200-426: Is the mass number) is an atom with 24 nucleons (12 protons and 12 neutrons). Whereas the mass number simply counts the total number of neutrons and protons and is thus an integer, the atomic mass of a particular isotope (or "nuclide") of the element is the mass of a single atom of that isotope, and is typically expressed in daltons (symbol: Da), or universal atomic mass units (symbol: u). Its relative atomic mass

14400-519: Is the most important nitrogen radioisotope, being relatively long-lived enough to use in positron emission tomography (PET), although its half-life is still short and thus it must be produced at the venue of the PET, for example in a cyclotron via proton bombardment of O producing N and an alpha particle . The radioisotope N is the dominant radionuclide in the coolant of pressurised water reactors or boiling water reactors during normal operation. It

14600-399: Is the simplest stable molecule with an odd number of electrons. In mammals, including humans, it is an important cellular signalling molecule involved in many physiological and pathological processes. It is formed by catalytic oxidation of ammonia. It is a colourless paramagnetic gas that, being thermodynamically unstable, decomposes to nitrogen and oxygen gas at 1100–1200 °C. Its bonding

14800-474: Is the strongest π donor known among ligands (the second-strongest is O). Nitrido complexes are generally made by the thermal decomposition of azides or by deprotonating ammonia, and they usually involve a terminal {≡N} group. The linear azide anion ( N 3 ), being isoelectronic with nitrous oxide , carbon dioxide , and cyanate , forms many coordination complexes. Further catenation is rare, although N 4 (isoelectronic with carbonate and nitrate )

15000-494: Is to help prevent infection of incisions . They have an important role in dental antibiotic prophylaxis where their use may prevent bacteremia and consequent infective endocarditis . Antibiotics are also used to prevent infection in cases of neutropenia particularly cancer-related. The use of antibiotics for secondary prevention of coronary heart disease is not supported by current scientific evidence, and may actually increase cardiovascular mortality, all-cause mortality and

15200-551: Is to try not to use them, and the second rule is try not to use too many of them." Inappropriate antibiotic treatment and overuse of antibiotics have contributed to the emergence of antibiotic-resistant bacteria. However, potential harm from antibiotics extends beyond selection of antimicrobial resistance and their overuse is associated with adverse effects for patients themselves, seen most clearly in critically ill patients in Intensive care units . Self-prescribing of antibiotics

15400-532: Is typically selected in summary presentations, while densities for each allotrope can be stated where more detail is provided. For example, the three familiar allotropes of carbon ( amorphous carbon , graphite , and diamond ) have densities of 1.8–2.1, 2.267, and 3.515 g/cm , respectively. The elements studied to date as solid samples have eight kinds of crystal structures : cubic , body-centered cubic , face-centered cubic, hexagonal , monoclinic , orthorhombic , rhombohedral , and tetragonal . For some of

15600-406: Is unlikely to interfere with many common antibiotics, there are specific types of antibiotics with which alcohol consumption may cause serious side effects. Therefore, potential risks of side effects and effectiveness depend on the type of antibiotic administered. Antibiotics such as metronidazole , tinidazole , cephamandole , latamoxef , cefoperazone , cefmenoxime , and furazolidone , cause

15800-417: Is used in two different but closely related meanings: it can mean a chemical substance consisting of a single kind of atoms, or it can mean that kind of atoms as a component of various chemical substances. For example, molecules of water (H 2 O) contain atoms of hydrogen (H) and oxygen (O), so water can be said as a compound consisting of the elements hydrogen (H) and oxygen (O) even though it does not contain

16000-506: Is usually produced from air by pressure swing adsorption technology. About 2/3 of commercially produced elemental nitrogen is used as an inert (oxygen-free) gas for commercial uses such as food packaging, and much of the rest is used as liquid nitrogen in cryogenic applications. Many industrially important compounds, such as ammonia , nitric acid, organic nitrates ( propellants and explosives ), and cyanides , contain nitrogen. The extremely strong triple bond in elemental nitrogen (N≡N),

16200-429: Is very strong; fullerenes , which have nearly spherical shapes; and carbon nanotubes , which are tubes with a hexagonal structure (even these may differ from each other in electrical properties). The ability of an element to exist in one of many structural forms is known as 'allotropy'. The reference state of an element is defined by convention, usually as the thermodynamically most stable allotrope and physical state at

16400-590: Is widely used. For example, the French chemical terminology distinguishes élément chimique (kind of atoms) and corps simple (chemical substance consisting of a single kind of atoms); the Russian chemical terminology distinguishes химический элемент and простое вещество . Almost all baryonic matter in the universe is composed of elements (among rare exceptions are neutron stars ). When different elements undergo chemical reactions, atoms are rearranged into new compounds held together by chemical bonds . Only

16600-510: The Greek word άζωτικός (azotikos), "no life", due to it being asphyxiant . In an atmosphere of pure nitrogen, animals died and flames were extinguished. Though Lavoisier's name was not accepted in English since it was pointed out that all gases but oxygen are either asphyxiant or outright toxic, it is used in many languages (French, Italian, Portuguese, Polish, Russian, Albanian, Turkish, etc.;

16800-489: The International Union of Pure and Applied Chemistry (IUPAC) had recognized a total of 118 elements. The first 94 occur naturally on Earth , and the remaining 24 are synthetic elements produced in nuclear reactions. Save for unstable radioactive elements (radioelements) which decay quickly, nearly all elements are available industrially in varying amounts. The discovery and synthesis of further new elements

17000-583: The Latin alphabet are likely to use the IUPAC element names. According to IUPAC, element names are not proper nouns; therefore, the full name of an element is not capitalized in English, even if derived from a proper noun , as in californium and einsteinium . Isotope names are also uncapitalized if written out, e.g., carbon-12 or uranium-235 . Chemical element symbols (such as Cf for californium and Es for einsteinium), are always capitalized (see below). In

17200-597: The New World . It was used extensively as such by American publications before the international standardization (in 1950). Before chemistry became a science , alchemists designed arcane symbols for both metals and common compounds. These were however used as abbreviations in diagrams or procedures; there was no concept of atoms combining to form molecules . With his advances in the atomic theory of matter, John Dalton devised his own simpler symbols, based on circles, to depict molecules. Antibiotic An antibiotic

17400-430: The anhydride of hyponitrous acid (H 2 N 2 O 2 ) because that acid is not produced by the dissolution of nitrous oxide in water. It is rather unreactive (not reacting with the halogens, the alkali metals, or ozone at room temperature, although reactivity increases upon heating) and has the unsymmetrical structure N–N–O (N≡NO↔N=N=O): above 600 °C it dissociates by breaking the weaker N–O bond. Nitric oxide (NO)

17600-458: The beta-lactam antibiotics , which include the penicillins (produced by fungi in the genus Penicillium ), the cephalosporins , and the carbapenems . Compounds that are still isolated from living organisms are the aminoglycosides , whereas other antibacterials—for example, the sulfonamides , the quinolones , and the oxazolidinones —are produced solely by chemical synthesis . Many antibacterial compounds are relatively small molecules with

17800-441: The bioenergetic failure of immune cells seen in sepsis . They also alter the microbiome of the gut, lungs, and skin, which may be associated with adverse effects such as Clostridioides difficile associated diarrhoea . Whilst antibiotics can clearly be lifesaving in patients with bacterial infections, their overuse, especially in patients where infections are hard to diagnose, can lead to harm via multiple mechanisms. Before

18000-476: The eutrophication of water systems. Apart from its use in fertilisers and energy stores, nitrogen is a constituent of organic compounds as diverse as aramids used in high-strength fabric and cyanoacrylate used in superglue . Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins ), in the nucleic acids ( DNA and RNA ) and in the energy transfer molecule adenosine triphosphate . The human body contains about 3% nitrogen by mass,

18200-423: The kinetic isotope effect is significant). Thus, all carbon isotopes have nearly identical chemical properties because they all have six electrons, even though they may have 6 to 8 neutrons. That is why atomic number, rather than mass number or atomic weight , is considered the identifying characteristic of an element. The symbol for atomic number is Z . Isotopes are atoms of the same element (that is, with

18400-405: The nuclear binding energy and electron binding energy. For example, the atomic mass of chlorine-35 to five significant digits is 34.969 Da and that of chlorine-37 is 36.966 Da. However, the relative atomic mass of each isotope is quite close to its mass number (always within 1%). The only isotope whose atomic mass is exactly a natural number is C, which has a mass of 12 Da; because

18600-558: The sulfonamides . In current usage, the term "antibiotic" is applied to any medication that kills bacteria or inhibits their growth, regardless of whether that medication is produced by a microorganism or not. The term "antibiotic" derives from anti + βιωτικός ( biōtikos ), "fit for life, lively", which comes from βίωσις ( biōsis ), "way of life", and that from βίος ( bios ), "life". The term "antibacterial" derives from Greek ἀντί ( anti ), "against" + βακτήριον ( baktērion ), diminutive of βακτηρία ( baktēria ), "staff, cane", because

18800-402: The 1950s. Widespread usage of antibiotics in hospitals has also been associated with increases in bacterial strains and species that no longer respond to treatment with the most common antibiotics. Common forms of antibiotic misuse include excessive use of prophylactic antibiotics in travelers and failure of medical professionals to prescribe the correct dosage of antibiotics on the basis of

19000-565: The 2s and 2p orbitals, three of which (the p-electrons) are unpaired. It has one of the highest electronegativities among the elements (3.04 on the Pauling scale), exceeded only by chlorine (3.16), oxygen (3.44), and fluorine (3.98). (The light noble gases , helium , neon , and argon , would presumably also be more electronegative, and in fact are on the Allen scale.) Following periodic trends, its single-bond covalent radius of 71 pm

19200-638: The 94 naturally occurring elements, those with atomic numbers 1 through 82 each have at least one stable isotope (except for technetium , element 43 and promethium , element 61, which have no stable isotopes). Isotopes considered stable are those for which no radioactive decay has yet been observed. Elements with atomic numbers 83 through 94 are unstable to the point that radioactive decay of all isotopes can be detected. Some of these elements, notably bismuth (atomic number 83), thorium (atomic number 90), and uranium (atomic number 92), have one or more isotopes with half-lives long enough to survive as remnants of

19400-660: The American Holistic Nurses' Association, the American Medical Association , and the American Public Health Association . Despite pledges by food companies and restaurants to reduce or eliminate meat that comes from animals treated with antibiotics, the purchase of antibiotics for use on farm animals has been increasing every year. There has been extensive use of antibiotics in animal husbandry. In

19600-579: The French nitrogène , coined in 1790 by French chemist Jean-Antoine Chaptal (1756–1832), from the French nitre ( potassium nitrate , also called saltpetre ) and the French suffix -gène , "producing", from the Greek -γενής (-genes, "begotten"). Chaptal's meaning was that nitrogen is the essential part of nitric acid , which in turn was produced from nitre . In earlier times, nitre had been confused with Egyptian "natron" ( sodium carbonate ) – called νίτρον (nitron) in Greek ;– which, despite

19800-487: The French, Italians, Greeks, Portuguese and Poles prefer "azote/azot/azoto" (from roots meaning "no life") for "nitrogen". For purposes of international communication and trade, the official names of the chemical elements both ancient and more recently recognized are decided by the International Union of Pure and Applied Chemistry (IUPAC), which has decided on a sort of international English language, drawing on traditional English names even when an element's chemical symbol

20000-534: The German Stickstoff similarly refers to the same characteristic, viz. ersticken "to choke or suffocate") and still remains in English in the common names of many nitrogen compounds, such as hydrazine and compounds of the azide ion. Finally, it led to the name " pnictogens " for the group headed by nitrogen, from the Greek πνίγειν "to choke". The English word nitrogen (1794) entered the language from

20200-740: The Middle Ages. Alchemists knew nitric acid as aqua fortis (strong water), as well as other nitrogen compounds such as ammonium salts and nitrate salts. The mixture of nitric and hydrochloric acids was known as aqua regia (royal water), celebrated for its ability to dissolve gold , the king of metals. The discovery of nitrogen is attributed to the Scottish physician Daniel Rutherford in 1772, who called it noxious air . Though he did not recognise it as an entirely different chemical substance, he clearly distinguished it from Joseph Black's "fixed air" , or carbon dioxide. The fact that there

20400-858: The N anion, although charge separation is not actually complete even for these highly electropositive elements. However, the alkali metal azides NaN 3 and KN 3 , featuring the linear N 3 anion, are well-known, as are Sr(N 3 ) 2 and Ba(N 3 ) 2 . Azides of the B-subgroup metals (those in groups 11 through 16 ) are much less ionic, have more complicated structures, and detonate readily when shocked. Many covalent binary nitrides are known. Examples include cyanogen ((CN) 2 ), triphosphorus pentanitride (P 3 N 5 ), disulfur dinitride (S 2 N 2 ), and tetrasulfur tetranitride (S 4 N 4 ). The essentially covalent silicon nitride (Si 3 N 4 ) and germanium nitride (Ge 3 N 4 ) are also known: silicon nitride, in particular, would make

20600-713: The UK in 1970 (Swann report 1969), and the European Union has banned the use of antibiotics as growth-promotional agents since 2003. Moreover, several organizations (including the World Health Organization, the National Academy of Sciences , and the U.S. Food and Drug Administration ) have advocated restricting the amount of antibiotic use in food animal production. However, commonly there are delays in regulatory and legislative actions to limit

20800-810: The United States, the question of emergence of antibiotic-resistant bacterial strains due to use of antibiotics in livestock was raised by the US Food and Drug Administration (FDA) in 1977. In March 2012, the United States District Court for the Southern District of New York, ruling in an action brought by the Natural Resources Defense Council and others, ordered the FDA to revoke approvals for

21000-413: The ability to form coordination complexes by donating its lone pairs of electrons. There are some parallels between the chemistry of ammonia NH 3 and water H 2 O. For example, the capacity of both compounds to be protonated to give NH 4 and H 3 O or deprotonated to give NH 2 and OH, with all of these able to be isolated in solid compounds. Nitrogen shares with both its horizontal neighbours

21200-565: The activity of antibacterials depends frequently on its concentration, in vitro characterization of antibacterial activity commonly includes the determination of the minimum inhibitory concentration and minimum bactericidal concentration of an antibacterial. To predict clinical outcome, the antimicrobial activity of an antibacterial is usually combined with its pharmacokinetic profile, and several pharmacological parameters are used as markers of drug efficacy. In important infectious diseases, including tuberculosis, combination therapy (i.e.,

21400-438: The administration of a broad-spectrum antibiotic based on the signs and symptoms presented and is initiated pending laboratory results that can take several days. When the responsible pathogenic microorganism is already known or has been identified, definitive therapy can be started. This will usually involve the use of a narrow-spectrum antibiotic. The choice of antibiotic given will also be based on its cost. Identification

21600-485: The antagonism observed between some bacteria, it would offer perhaps the greatest hopes for therapeutics". In 1874, physician Sir William Roberts noted that cultures of the mould Penicillium glaucum that is used in the making of some types of blue cheese did not display bacterial contamination. In 1895 Vincenzo Tiberio , Italian physician, published a paper on the antibacterial power of some extracts of mold. In 1897, doctoral student Ernest Duchesne submitted

21800-406: The atmosphere. The N:N ratio is commonly used in stable isotope analysis in the fields of geochemistry , hydrology , paleoclimatology and paleoceanography , where it is called δ N . Of the thirteen other isotopes produced synthetically, ranging from N to N, N has a half-life of ten minutes and the remaining isotopes have half-lives less than eight seconds. Given the half-life difference, N

22000-487: The atomic masses of the elements (their atomic weights or atomic masses) do not always increase monotonically with their atomic numbers. The naming of various substances now known as elements precedes the atomic theory of matter, as names were given locally by various cultures to various minerals, metals, compounds, alloys, mixtures, and other materials, though at the time it was not known which chemicals were elements and which compounds. As they were identified as elements,

22200-423: The bacteria. Protein synthesis inhibitors ( macrolides , lincosamides , and tetracyclines ) are usually bacteriostatic , inhibiting further growth (with the exception of bactericidal aminoglycosides ). Further categorization is based on their target specificity. "Narrow-spectrum" antibiotics target specific types of bacteria, such as gram-negative or gram-positive , whereas broad-spectrum antibiotics affect

22400-433: The beta hexagonal close-packed crystal allotropic form. Below 35.4 K (−237.6 °C) nitrogen assumes the cubic crystal allotropic form (called the alpha phase). Liquid nitrogen , a colourless fluid resembling water in appearance, but with 80.8% of the density (the density of liquid nitrogen at its boiling point is 0.808 g/mL), is a common cryogen . Solid nitrogen has many crystalline modifications. It forms

22600-437: The blood. Women with menstrual irregularities may be at higher risk of failure and should be advised to use backup contraception during antibiotic treatment and for one week after its completion. If patient-specific risk factors for reduced oral contraceptive efficacy are suspected, backup contraception is recommended. In cases where antibiotics have been suggested to affect the efficiency of birth control pills, such as for

22800-568: The broad-spectrum antibiotic rifampicin , these cases may be due to an increase in the activities of hepatic liver enzymes' causing increased breakdown of the pill's active ingredients. Effects on the intestinal flora , which might result in reduced absorption of estrogens in the colon, have also been suggested, but such suggestions have been inconclusive and controversial. Clinicians have recommended that extra contraceptive measures be applied during therapies using antibiotics that are suspected to interact with oral contraceptives . More studies on

23000-413: The chemical substances (di)hydrogen (H 2 ) and (di)oxygen (O 2 ), as H 2 O molecules are different from H 2 and O 2 molecules. For the meaning "chemical substance consisting of a single kind of atoms", the terms "elementary substance" and "simple substance" have been suggested, but they have not gained much acceptance in English chemical literature, whereas in some other languages their equivalent

23200-438: The concurrent application of two or more antibiotics) has been used to delay or prevent the emergence of resistance. In acute bacterial infections, antibiotics as part of combination therapy are prescribed for their synergistic effects to improve treatment outcome as the combined effect of both antibiotics is better than their individual effect. Fosfomycin has the highest number of synergistic combinations among antibiotics and

23400-554: The continuity of bonding types instead of the discrete and separate types that it implies. They are normally prepared by directly reacting a metal with nitrogen or ammonia (sometimes after heating), or by thermal decomposition of metal amides: Many variants on these processes are possible. The most ionic of these nitrides are those of the alkali metals and alkaline earth metals , Li 3 N (Na, K, Rb, and Cs do not form stable nitrides for steric reasons) and M 3 N 2 (M = Be, Mg, Ca, Sr, Ba). These can formally be thought of as salts of

23600-408: The dalton is defined as 1/12 of the mass of a free neutral carbon-12 atom in the ground state. The standard atomic weight (commonly called "atomic weight") of an element is the average of the atomic masses of all the chemical element's isotopes as found in a particular environment, weighted by isotopic abundance, relative to the atomic mass unit. This number may be a fraction that is not close to

23800-416: The discovery and use of elements began with early human societies that discovered native minerals like carbon , sulfur , copper and gold (though the modern concept of an element was not yet understood). Attempts to classify materials such as these resulted in the concepts of classical elements , alchemy , and similar theories throughout history. Much of the modern understanding of elements developed from

24000-497: The early 20th century, treatments for infections were based primarily on medicinal folklore . Mixtures with antimicrobial properties that were used in treatments of infections were described over 2,000 years ago. Many ancient cultures, including the ancient Egyptians and ancient Greeks , used specially selected mold and plant materials to treat infections . Nubian mummies studied in the 1990s were found to contain significant levels of tetracycline . The beer brewed at that time

24200-526: The element. Two or more atoms can combine to form molecules . Some elements are formed from molecules of identical atoms , e. g. atoms of hydrogen (H) form diatomic molecules (H 2 ). Chemical compounds are substances made of atoms of different elements; they can have molecular or non-molecular structure. Mixtures are materials containing different chemical substances; that means (in case of molecular substances) that they contain different types of molecules. Atoms of one element can be transformed into atoms of

24400-406: The elements are available by name, atomic number, density, melting point, boiling point and chemical symbol , as well as ionization energy . The nuclides of stable and radioactive elements are also available as a list of nuclides , sorted by length of half-life for those that are unstable. One of the most convenient, and certainly the most traditional presentation of the elements, is in the form of

24600-470: The elements are often summarized using the periodic table, which powerfully and elegantly organizes the elements by increasing atomic number into rows ( "periods" ) in which the columns ( "groups" ) share recurring ("periodic") physical and chemical properties. The table contains 118 confirmed elements as of 2021. Although earlier precursors to this presentation exist, its invention is generally credited to Russian chemist Dmitri Mendeleev in 1869, who intended

24800-480: The elements can be uniquely sequenced by atomic number, conventionally from lowest to highest (as in a periodic table), sets of elements are sometimes specified by such notation as "through", "beyond", or "from ... through", as in "through iron", "beyond uranium", or "from lanthanum through lutetium". The terms "light" and "heavy" are sometimes also used informally to indicate relative atomic numbers (not densities), as in "lighter than carbon" or "heavier than lead", though

25000-413: The elements without any stable isotopes are technetium (atomic number 43), promethium (atomic number 61), and all observed elements with atomic number greater than 82. Of the 80 elements with at least one stable isotope, 26 have only one stable isotope. The mean number of stable isotopes for the 80 stable elements is 3.1 stable isotopes per element. The largest number of stable isotopes for a single element

25200-474: The elements, including consideration of their general physical and chemical properties, their states of matter under familiar conditions, their melting and boiling points, their densities, their crystal structures as solids, and their origins. Several terms are commonly used to characterize the general physical and chemical properties of the chemical elements. A first distinction is between metals , which readily conduct electricity , nonmetals , which do not, and

25400-467: The equilibrium between them, although sometimes dinitrogen tetroxide can react by heterolytic fission to nitrosonium and nitrate in a medium with high dielectric constant. Nitrogen dioxide is an acrid, corrosive brown gas. Both compounds may be easily prepared by decomposing a dry metal nitrate. Both react with water to form nitric acid . Dinitrogen tetroxide is very useful for the preparation of anhydrous metal nitrates and nitrato complexes, and it became

25600-492: The existing names for anciently known elements (e.g., gold, mercury, iron) were kept in most countries. National differences emerged over the element names either for convenience, linguistic niceties, or nationalism. For example, German speakers use "Wasserstoff" (water substance) for "hydrogen", "Sauerstoff" (acid substance) for "oxygen" and "Stickstoff" (smothering substance) for "nitrogen"; English and some other languages use "sodium" for "natrium", and "potassium" for "kalium"; and

25800-630: The explosive stellar nucleosynthesis that produced the heavy metals before the formation of our Solar System . At over 1.9 × 10 years, over a billion times longer than the estimated age of the universe, bismuth-209 has the longest known alpha decay half-life of any isotope, and is almost always considered on par with the 80 stable elements. The heaviest elements (those beyond plutonium, element 94) undergo radioactive decay with half-lives so short that they are not found in nature and must be synthesized . There are now 118 known elements. In this context, "known" means observed well enough, even from just

26000-605: The first systemically active antibacterial drug, Prontosil , was developed by a research team led by Gerhard Domagk in 1932 or 1933 at the Bayer Laboratories of the IG Farben conglomerate in Germany. However, the effectiveness and easy access to antibiotics have also led to their overuse and some bacteria have evolved resistance to them. Antimicrobial resistance (AMR), a naturally occurring process,

26200-399: The first bacteria to be discovered were rod-shaped. Antibiotics are used to treat or prevent bacterial infections, and sometimes protozoan infections . ( Metronidazole is effective against a number of parasitic diseases ). When an infection is suspected of being responsible for an illness but the responsible pathogen has not been identified, an empiric therapy is adopted. This involves

26400-419: The first gases to be identified: N 2 O ( nitrous oxide ), NO ( nitric oxide ), N 2 O 3 ( dinitrogen trioxide ), NO 2 ( nitrogen dioxide ), N 2 O 4 ( dinitrogen tetroxide ), N 2 O 5 ( dinitrogen pentoxide ), N 4 O ( nitrosylazide ), and N(NO 2 ) 3 ( trinitramide ). All are thermally unstable towards decomposition to their elements. One other possible oxide that has not yet been synthesised

26600-514: The first synthetic antibacterial organoarsenic compound salvarsan , now called arsphenamine. This heralded the era of antibacterial treatment that was begun with the discovery of a series of arsenic-derived synthetic antibiotics by both Alfred Bertheim and Ehrlich in 1907. Ehrlich and Bertheim had experimented with various chemicals derived from dyes to treat trypanosomiasis in mice and spirochaeta infection in rabbits. While their early compounds were too toxic, Ehrlich and Sahachiro Hata ,

26800-691: The first two noble gases , helium and neon , and some of the very short-lived elements after bismuth , creating an immense variety of binary compounds with varying properties and applications. Many binary compounds are known: with the exception of the nitrogen hydrides, oxides, and fluorides, these are typically called nitrides . Many stoichiometric phases are usually present for most elements (e.g. MnN, Mn 6 N 5 , Mn 3 N 2 , Mn 2 N, Mn 4 N, and Mn x N for 9.2 < x < 25.3). They may be classified as "salt-like" (mostly ionic), covalent, "diamond-like", and metallic (or interstitial ), although this classification has limitations generally stemming from

27000-444: The form of biodegradation of pharmaceuticals, such as sulfamethazine-degrading soil bacteria introduced to sulfamethazine through medicated pig feces. The survival of bacteria often results from an inheritable resistance, but the growth of resistance to antibacterials also occurs through horizontal gene transfer . Horizontal transfer is more likely to happen in locations of frequent antibiotic use. Antibacterial resistance may impose

27200-529: The formation of Earth, they are certain to have completely decayed, and if present in novae, are in quantities too small to have been noted. Technetium was the first purportedly non-naturally occurring element synthesized, in 1937, though trace amounts of technetium have since been found in nature (and also the element may have been discovered naturally in 1925). This pattern of artificial production and later natural discovery has been repeated with several other radioactive naturally occurring rare elements. List of

27400-494: The fourth and fifth is 16.920 MJ·mol . Due to these very high figures, nitrogen has no simple cationic chemistry. The lack of radial nodes in the 2p subshell is directly responsible for many of the anomalous properties of the first row of the p-block , especially in nitrogen, oxygen, and fluorine. The 2p subshell is very small and has a very similar radius to the 2s shell, facilitating orbital hybridisation . It also results in very large electrostatic forces of attraction between

27600-422: The fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes the movement of the element from the air, into the biosphere and organic compounds, then back into the atmosphere. Nitrogen is a constituent of every major pharmacological drug class, including antibiotics . Many drugs are mimics or prodrugs of natural nitrogen-containing signal molecules : for example,

27800-923: The genetic makeup of bacterial strains. For example, an antibiotic target may be absent from the bacterial genome . Acquired resistance results from a mutation in the bacterial chromosome or the acquisition of extra-chromosomal DNA. Antibacterial-producing bacteria have evolved resistance mechanisms that have been shown to be similar to, and may have been transferred to, antibacterial-resistant strains. The spread of antibacterial resistance often occurs through vertical transmission of mutations during growth and by genetic recombination of DNA by horizontal genetic exchange . For instance, antibacterial resistance genes can be exchanged between different bacterial strains or species via plasmids that carry these resistance genes. Plasmids that carry several different resistance genes can confer resistance to multiple antibacterials. Cross-resistance to several antibacterials may also occur when

28000-431: The half-lives predicted for the observationally stable lead isotopes range from 10 to 10 years. Elements with atomic numbers 43, 61, and 83 through 94 are unstable enough that their radioactive decay can be detected. Three of these elements, bismuth (element 83), thorium (90), and uranium (92) have one or more isotopes with half-lives long enough to survive as remnants of the explosive stellar nucleosynthesis that produced

28200-436: The head of group 15 in the periodic table, its chemistry shows huge differences from that of its heavier congeners phosphorus , arsenic , antimony , and bismuth . Nitrogen may be usefully compared to its horizontal neighbours' carbon and oxygen as well as its vertical neighbours in the pnictogen column, phosphorus, arsenic, antimony, and bismuth. Although each period 2 element from lithium to oxygen shows some similarities to

28400-399: The heaviest elements also undergo spontaneous fission . Isotopes that are not radioactive, are termed "stable" isotopes. All known stable isotopes occur naturally (see primordial nuclide ). The many radioisotopes that are not found in nature have been characterized after being artificially produced. Certain elements have no stable isotopes and are composed only of radioisotopes: specifically

28600-488: The heavy elements before the formation of the Solar System. For example, at over 1.9 × 10 years, over a billion times longer than the estimated age of the universe, bismuth-209 has the longest known alpha decay half-life of any isotope. The last 24 elements (those beyond plutonium, element 94) undergo radioactive decay with short half-lives and cannot be produced as daughters of longer-lived elements, and thus are not known to occur in nature at all. 1 The properties of

28800-441: The highest consumption with a rate of 64.4. Burundi had the lowest at 4.4. Amoxicillin and amoxicillin/clavulanic acid were the most frequently consumed. Antibiotics are screened for any negative effects before their approval for clinical use, and are usually considered safe and well tolerated. However, some antibiotics have been associated with a wide extent of adverse side effects ranging from mild to very severe depending on

29000-503: The interstitial nitrides of formulae MN, M 2 N, and M 4 N (although variable composition is perfectly possible), where the small nitrogen atoms are positioned in the gaps in a metallic cubic or hexagonal close-packed lattice. They are opaque, very hard, and chemically inert, melting only at very high temperatures (generally over 2500 °C). They have a metallic lustre and conduct electricity as do metals. They hydrolyse only very slowly to give ammonia or nitrogen. The nitride anion (N)

29200-401: The late 1880s. Ehrlich noted certain dyes would colour human, animal, or bacterial cells, whereas others did not. He then proposed the idea that it might be possible to create chemicals that would act as a selective drug that would bind to and kill bacteria without harming the human host. After screening hundreds of dyes against various organisms, in 1907, he discovered a medicinally useful drug,

29400-409: The location of infection, and the pharmacokinetic and pharmacodynamic properties of the antibacterial. The bactericidal activity of antibacterials may depend on the bacterial growth phase, and it often requires ongoing metabolic activity and division of bacterial cells. These findings are based on laboratory studies, and in clinical settings have also been shown to eliminate bacterial infection. Since

29600-522: The name, contained no nitrate. The earliest military, industrial, and agricultural applications of nitrogen compounds used saltpetre ( sodium nitrate or potassium nitrate), most notably in gunpowder , and later as fertiliser . In 1910, Lord Rayleigh discovered that an electrical discharge in nitrogen gas produced "active nitrogen", a monatomic allotrope of nitrogen. The "whirling cloud of brilliant yellow light" produced by his apparatus reacted with mercury to produce explosive mercury nitride . For

29800-573: The nitryl halides (XNO 2 ). The first is very reactive gases that can be made by directly halogenating nitrous oxide. Nitrosyl fluoride (NOF) is colourless and a vigorous fluorinating agent. Nitrosyl chloride (NOCl) behaves in much the same way and has often been used as an ionising solvent. Nitrosyl bromide (NOBr) is red. The reactions of the nitryl halides are mostly similar: nitryl fluoride (FNO 2 ) and nitryl chloride (ClNO 2 ) are likewise reactive gases and vigorous halogenating agents. Nitrogen forms nine molecular oxides, some of which were

30000-436: The nucleus and the valence electrons in the 2s and 2p shells, resulting in very high electronegativities. Hypervalency is almost unknown in the 2p elements for the same reason, because the high electronegativity makes it difficult for a small nitrogen atom to be a central atom in an electron-rich three-center four-electron bond since it would tend to attract the electrons strongly to itself. Thus, despite nitrogen's position at

30200-516: The occurrence of stroke. There are many different routes of administration for antibiotic treatment. Antibiotics are usually taken by mouth . In more severe cases, particularly deep-seated systemic infections , antibiotics can be given intravenously or by injection. Where the site of infection is easily accessed, antibiotics may be given topically in the form of eye drops onto the conjunctiva for conjunctivitis or ear drops for ear infections and acute cases of swimmer's ear . Topical use

30400-462: The ones which cause the common cold or influenza . Drugs which inhibit growth of viruses are termed antiviral drugs or antivirals. Antibiotics are also not effective against fungi . Drugs which inhibit growth of fungi are called antifungal drugs . Sometimes, the term antibiotic —literally "opposing life", from the Greek roots ἀντι anti , "against" and βίος bios , "life"—is broadly used to refer to any substance used against microbes , but in

30600-410: The organic nitrates nitroglycerin and nitroprusside control blood pressure by metabolising into nitric oxide . Many notable nitrogen-containing drugs, such as the natural caffeine and morphine or the synthetic amphetamines , act on receptors of animal neurotransmitters . Nitrogen compounds have a very long history, ammonium chloride having been known to Herodotus . They were well-known by

30800-404: The other four are H , Li, B, and Ta. The relative abundance of N and N is practically constant in the atmosphere but can vary elsewhere, due to natural isotopic fractionation from biological redox reactions and the evaporation of natural ammonia or nitric acid . Biologically mediated reactions (e.g., assimilation , nitrification , and denitrification ) strongly control nitrogen dynamics in

31000-420: The other nonmetals are very complex and tend to lead to a mixture of products. Ammonia reacts on heating with metals to give nitrides. Many other binary nitrogen hydrides are known, but the most important are hydrazine (N 2 H 4 ) and hydrogen azide (HN 3 ). Although it is not a nitrogen hydride, hydroxylamine (NH 2 OH) is similar in properties and structure to ammonia and hydrazine as well. Hydrazine

31200-477: The oxidation of ammonia to nitrite, which occurs in the nitrogen cycle . Hyponitrite can act as a bridging or chelating bidentate ligand. Nitrous acid (HNO 2 ) is not known as a pure compound, but is a common component in gaseous equilibria and is an important aqueous reagent: its aqueous solutions may be made from acidifying cool aqueous nitrite ( NO 2 , bent) solutions, although already at room temperature disproportionation to nitrate and nitric oxide

31400-707: The patient's weight and history of prior use. Other forms of misuse include failure to take the entire prescribed course of the antibiotic, incorrect dosage and administration, or failure to rest for sufficient recovery. Inappropriate antibiotic treatment, for example, is their prescription to treat viral infections such as the common cold . One study on respiratory tract infections found "physicians were more likely to prescribe antibiotics to patients who appeared to expect them". Multifactorial interventions aimed at both physicians and patients can reduce inappropriate prescription of antibiotics. The lack of rapid point of care diagnostic tests, particularly in resource-limited settings

31600-702: The period 3 element in the next group (from magnesium to chlorine; these are known as diagonal relationships ), their degree drops off abruptly past the boron–silicon pair. The similarities of nitrogen to sulfur are mostly limited to sulfur nitride ring compounds when both elements are the only ones present. Nitrogen does not share the proclivity of carbon for catenation . Like carbon, nitrogen tends to form ionic or metallic compounds with metals. Nitrogen forms an extensive series of nitrides with carbon, including those with chain-, graphitic- , and fullerenic -like structures. It resembles oxygen with its high electronegativity and concomitant capability for hydrogen bonding and

31800-418: The periodic table, which groups together elements with similar chemical properties (and usually also similar electronic structures). The atomic number of an element is equal to the number of protons in each atom, and defines the element. For example, all carbon atoms contain 6 protons in their atomic nucleus ; so the atomic number of carbon is 6. Carbon atoms may have different numbers of neutrons; atoms of

32000-426: The periodic tables presented here includes: actinides , alkali metals , alkaline earth metals , halogens , lanthanides , transition metals , post-transition metals , metalloids , reactive nonmetals , and noble gases . In this system, the alkali metals, alkaline earth metals, and transition metals, as well as the lanthanides and the actinides, are special groups of the metals viewed in a broader sense. Similarly,

32200-511: The possibility of tendon damage from the administration of a quinolone antibiotic with a systemic corticosteroid . Some antibiotics may also damage the mitochondrion , a bacteria-derived organelle found in eukaryotic, including human, cells. Mitochondrial damage cause oxidative stress in cells and has been suggested as a mechanism for side effects from fluoroquinolones . They are also known to affect chloroplasts . There are few well-controlled studies on whether antibiotic use increases

32400-447: The possible interactions between antibiotics and birth control pills (oral contraceptives) are required as well as careful assessment of patient-specific risk factors for potential oral contractive pill failure prior to dismissing the need for backup contraception. Interactions between alcohol and certain antibiotics may occur and may cause side effects and decreased effectiveness of antibiotic therapy. While moderate alcohol consumption

32600-582: The primary coolant system to the secondary steam cycle and is the primary means of detection for such leaks. Atomic nitrogen, also known as active nitrogen, is highly reactive, being a triradical with three unpaired electrons. Free nitrogen atoms easily react with most elements to form nitrides, and even when two free nitrogen atoms collide to produce an excited N 2 molecule, they may release so much energy on collision with even such stable molecules as carbon dioxide and water to cause homolytic fission into radicals such as CO and O or OH and H. Atomic nitrogen

32800-516: The production of fertilisers. Dinitrogen is able to coordinate to metals in five different ways. The more well-characterised ways are the end-on M←N≡N ( η ) and M←N≡N→M ( μ , bis- η ), in which the lone pairs on the nitrogen atoms are donated to the metal cation. The less well-characterised ways involve dinitrogen donating electron pairs from the triple bond, either as a bridging ligand to two metal cations ( μ , bis- η ) or to just one ( η ). The fifth and unique method involves triple-coordination as

33000-412: The pure element to exist in multiple chemical structures ( spatial arrangements of atoms ), known as allotropes , which differ in their properties. For example, carbon can be found as diamond , which has a tetrahedral structure around each carbon atom; graphite , which has layers of carbon atoms with a hexagonal structure stacked on top of each other; graphene , which is a single layer of graphite that

33200-772: The reactive nonmetals and the noble gases are nonmetals viewed in the broader sense. In some presentations, the halogens are not distinguished, with astatine identified as a metalloid and the others identified as nonmetals. Another commonly used basic distinction among the elements is their state of matter (phase), whether solid , liquid , or gas , at standard temperature and pressure (STP). Most elements are solids at STP, while several are gases. Only bromine and mercury are liquid at 0 degrees Celsius (32 degrees Fahrenheit) and 1 atmosphere pressure; caesium and gallium are solid at that temperature, but melt at 28.4°C (83.2°F) and 29.8°C (85.6°F), respectively. Melting and boiling points , typically expressed in degrees Celsius at

33400-919: The remaining 11 elements have half lives too short for them to have been present at the beginning of the Solar System, and are therefore considered transient elements. Of these 11 transient elements, five ( polonium , radon , radium , actinium , and protactinium ) are relatively common decay products of thorium and uranium . The remaining six transient elements (technetium, promethium, astatine, francium , neptunium , and plutonium ) occur only rarely, as products of rare decay modes or nuclear reaction processes involving uranium or other heavy elements. Elements with atomic numbers 1 through 82, except 43 (technetium) and 61 (promethium), each have at least one isotope for which no radioactive decay has been observed. Observationally stable isotopes of some elements (such as tungsten and lead ), however, are predicted to be slightly radioactive with very long half-lives: for example,

33600-536: The risk of oral contraceptive failure. The majority of studies indicate antibiotics do not interfere with birth control pills , such as clinical studies that suggest the failure rate of contraceptive pills caused by antibiotics is very low (about 1%). Situations that may increase the risk of oral contraceptive failure include non-compliance (missing taking the pill), vomiting, or diarrhea. Gastrointestinal disorders or interpatient variability in oral contraceptive absorption affecting ethinylestradiol serum levels in

33800-790: The risk of surgical site infections. However, there are certain general causes for concern with topical administration of antibiotics. Some systemic absorption of the antibiotic may occur; the quantity of antibiotic applied is difficult to accurately dose, and there is also the possibility of local hypersensitivity reactions or contact dermatitis occurring. It is recommended to administer antibiotics as soon as possible, especially in life-threatening infections. Many emergency departments stock antibiotics for this purpose. Antibiotic consumption varies widely between countries. The WHO report on surveillance of antibiotic consumption published in 2018 analysed 2015 data from 65 countries. As measured in defined daily doses per 1,000 inhabitants per day. Mongolia had

34000-495: The same element having different numbers of neutrons are known as isotopes of the element. The number of protons in the nucleus also determines its electric charge , which in turn determines the number of electrons of the atom in its non-ionized state. The electrons are placed into atomic orbitals that determine the atom's chemical properties . The number of neutrons in a nucleus usually has very little effect on an element's chemical properties; except for hydrogen (for which

34200-404: The same number of protons in their nucleus), but having different numbers of neutrons . Thus, for example, there are three main isotopes of carbon. All carbon atoms have 6 protons, but they can have either 6, 7, or 8 neutrons. Since the mass numbers of these are 12, 13 and 14 respectively, said three isotopes are known as carbon-12 , carbon-13 , and carbon-14 ( C, C, and C). Natural carbon

34400-581: The same time, use of the Ostwald process (1902) to produce nitrates from industrial nitrogen fixation allowed the large-scale industrial production of nitrates as feedstock in the manufacture of explosives in the World Wars of the 20th century. A nitrogen atom has seven electrons. In the ground state, they are arranged in the electron configuration 1s 2s 2p x 2p y 2p z . It, therefore, has five valence electrons in

34600-557: The same time. The name nitrogène was suggested by French chemist Jean-Antoine-Claude Chaptal in 1790 when it was found that nitrogen was present in nitric acid and nitrates . Antoine Lavoisier suggested instead the name azote , from the Ancient Greek : ἀζωτικός "no life", as it is an asphyxiant gas ; this name is used in a number of languages, and appears in the English names of some nitrogen compounds such as hydrazine , azides and azo compounds . Elemental nitrogen

34800-457: The second half of the 20th century, physics laboratories became able to produce elements with half-lives too short for an appreciable amount of them to exist at any time. These are also named by IUPAC, which generally adopts the name chosen by the discoverer. This practice can lead to the controversial question of which research group actually discovered an element, a question that delayed the naming of elements with atomic number of 104 and higher for

35000-496: The second strongest bond in any diatomic molecule after carbon monoxide (CO), dominates nitrogen chemistry. This causes difficulty for both organisms and industry in converting N 2 into useful compounds , but at the same time it means that burning, exploding, or decomposing nitrogen compounds to form nitrogen gas releases large amounts of often useful energy. Synthetically produced ammonia and nitrates are key industrial fertilisers , and fertiliser nitrates are key pollutants in

35200-446: The soil. These reactions typically result in N enrichment of the substrate and depletion of the product . The heavy isotope N was first discovered by S. M. Naudé in 1929, and soon after heavy isotopes of the neighbouring elements oxygen and carbon were discovered. It presents one of the lowest thermal neutron capture cross-sections of all isotopes. It is frequently used in nuclear magnetic resonance (NMR) spectroscopy to determine

35400-494: The species composition in the intestinal flora , resulting, for example, in overgrowth of pathogenic bacteria, such as Clostridioides difficile . Taking probiotics during the course of antibiotic treatment can help prevent antibiotic-associated diarrhea. Antibacterials can also affect the vaginal flora , and may lead to overgrowth of yeast species of the genus Candida in the vulvo-vaginal area. Additional side effects can result from interaction with other drugs, such as

35600-402: The species of bacteria. In general, combinations of a bacteriostatic antibiotic and bactericidal antibiotic are antagonistic. In addition to combining one antibiotic with another, antibiotics are sometimes co-administered with resistance-modifying agents. For example, β-lactam antibiotics may be used in combination with β-lactamase inhibitors , such as clavulanic acid or sulbactam , when

35800-456: The storable oxidiser of choice for many rockets in both the United States and USSR by the late 1950s. This is because it is a hypergolic propellant in combination with a hydrazine -based rocket fuel and can be easily stored since it is liquid at room temperature. The thermally unstable and very reactive dinitrogen pentoxide (N 2 O 5 ) is the anhydride of nitric acid , and can be made from it by dehydration with phosphorus pentoxide . It

36000-483: The structures of nitrogen-containing molecules, due to its fractional nuclear spin of one-half, which offers advantages for NMR such as narrower line width. N, though also theoretically usable, has an integer nuclear spin of one and thus has a quadrupole moment that leads to wider and less useful spectra. N NMR nevertheless has complications not encountered in the more common H and C NMR spectroscopy. The low natural abundance of N (0.36%) significantly reduces sensitivity,

36200-496: The synthetically produced transuranic elements, available samples have been too small to determine crystal structures. Chemical elements may also be categorized by their origin on Earth, with the first 94 considered naturally occurring, while those with atomic numbers beyond 94 have only been produced artificially via human-made nuclear reactions. Of the 94 naturally occurring elements, 83 are considered primordial and either stable or weakly radioactive. The longest-lived isotopes of

36400-955: The table to illustrate recurring trends in the properties of the elements. The layout of the table has been refined and extended over time as new elements have been discovered and new theoretical models have been developed to explain chemical behavior. Use of the periodic table is now ubiquitous in chemistry, providing an extremely useful framework to classify, systematize and compare all the many different forms of chemical behavior. The table has also found wide application in physics , geology , biology , materials science , engineering , agriculture , medicine , nutrition , environmental health , and astronomy . Its principles are especially important in chemical engineering . The various chemical elements are formally identified by their unique atomic numbers, their accepted names, and their chemical symbols . The known elements have atomic numbers from 1 to 118, conventionally presented as Arabic numerals . Since

36600-415: The touch of a feather, shifting air currents, or even alpha particles . For this reason, small amounts of nitrogen triiodide are sometimes synthesised as a demonstration to high school chemistry students or as an act of "chemical magic". Chlorine azide (ClN 3 ) and bromine azide (BrN 3 ) are extremely sensitive and explosive. Two series of nitrogen oxohalides are known: the nitrosyl halides (XNO) and

36800-442: The type of antibiotic used, the microbes targeted, and the individual patient. Side effects may reflect the pharmacological or toxicological properties of the antibiotic or may involve hypersensitivity or allergic reactions. Adverse effects range from fever and nausea to major allergic reactions, including photodermatitis and anaphylaxis . Common side effects of oral antibiotics include diarrhea , resulting from disruption of

37000-561: The universe at large, in the spectra of stars and also supernovae, where short-lived radioactive elements are newly being made. The first 94 elements have been detected directly on Earth as primordial nuclides present from the formation of the Solar System , or as naturally occurring fission or transmutation products of uranium and thorium. The remaining 24 heavier elements, not found today either on Earth or in astronomical spectra, have been produced artificially: all are radioactive, with short half-lives; if any of these elements were present at

37200-493: The use of antibiotics in livestock, which violated FDA regulations. Studies have shown that common misconceptions about the effectiveness and necessity of antibiotics to treat common mild illnesses contribute to their overuse. Other forms of antibiotic-associated harm include anaphylaxis , drug toxicity most notably kidney and liver damage, and super-infections with resistant organisms. Antibiotics are also known to affect mitochondrial function, and this may contribute to

37400-508: The use of antibiotics, attributable partly to resistance against such regulation by industries using or selling antibiotics, and to the time required for research to test causal links between their use and resistance to them. Two federal bills (S.742 and H.R. 2562 ) aimed at phasing out nontherapeutic use of antibiotics in US food animals were proposed, but have not passed. These bills were endorsed by public health and medical organizations, including

37600-445: The use of molds to treat infections was John Parkinson (1567–1650). Antibiotics revolutionized medicine in the 20th century. Synthetic antibiotic chemotherapy as a science and development of antibacterials began in Germany with Paul Ehrlich in the late 1880s. Alexander Fleming (1881–1955) discovered modern day penicillin in 1928, the widespread use of which proved significantly beneficial during wartime. The first sulfonamide and

37800-903: The usual medical usage, antibiotics (such as penicillin ) are those produced naturally (by one microorganism fighting another), whereas non-antibiotic antibacterials (such as sulfonamides and antiseptics ) are fully synthetic . However, both classes have the same effect of killing or preventing the growth of microorganisms, and both are included in antimicrobial chemotherapy . "Antibacterials" include bactericides , bacteriostatics , antibacterial soaps , and chemical disinfectants , whereas antibiotics are an important class of antibacterials used more specifically in medicine and sometimes in livestock feed . Antibiotics have been used since ancient times. Many civilizations used topical application of moldy bread, with many references to its beneficial effects arising from ancient Egypt, Nubia , China , Serbia , Greece, and Rome. The first person to directly document

38000-528: The work of Dmitri Mendeleev , a Russian chemist who published the first recognizable periodic table in 1869. This table organizes the elements by increasing atomic number into rows (" periods ") in which the columns (" groups ") share recurring ("periodic") physical and chemical properties . The periodic table summarizes various properties of the elements, allowing chemists to derive relationships between them and to make predictions about elements not yet discovered, and potential new compounds. By November 2016,

38200-409: Was a component of air that does not support combustion was clear to Rutherford, although he was not aware that it was an element. Nitrogen was also studied at about the same time by Carl Wilhelm Scheele , Henry Cavendish , and Joseph Priestley , who referred to it as burnt air or phlogisticated air . French chemist Antoine Lavoisier referred to nitrogen gas as " mephitic air " or azote , from

38400-477: Was conjectured to have been the source. The use of antibiotics in modern medicine began with the discovery of synthetic antibiotics derived from dyes. Various Essential oils have been shown to have anti-microbial properties. Along with this, the plants from which these oils have been derived from can be used as niche anti-microbial agents. Synthetic antibiotic chemotherapy as a science and development of antibacterials began in Germany with Paul Ehrlich in

38600-528: Was developed by a research team led by Gerhard Domagk in 1932 or 1933 at the Bayer Laboratories of the IG Farben conglomerate in Germany, for which Domagk received the 1939 Nobel Prize in Physiology or Medicine. Sulfanilamide, the active drug of Prontosil, was not patentable as it had already been in use in the dye industry for some years. Prontosil had a relatively broad effect against Gram-positive cocci , but not against enterobacteria . Research

38800-441: Was first found as a product of the thermal decomposition of FN 3 . Nitrogen trichloride (NCl 3 ) is a dense, volatile, and explosive liquid whose physical properties are similar to those of carbon tetrachloride , although one difference is that NCl 3 is easily hydrolysed by water while CCl 4 is not. It was first synthesised in 1811 by Pierre Louis Dulong , who lost three fingers and an eye to its explosive tendencies. As

39000-643: Was first produced in 1890 by the oxidation of aqueous hydrazine by nitrous acid. It is very explosive and even dilute solutions can be dangerous. It has a disagreeable and irritating smell and is a potentially lethal (but not cumulative) poison. It may be considered the conjugate acid of the azide anion, and is similarly analogous to the hydrohalic acids . All four simple nitrogen trihalides are known. A few mixed halides and hydrohalides are known, but are mostly unstable; examples include NClF 2 , NCl 2 F, NBrF 2 , NF 2 H, NFH 2 , NCl 2 H , and NClH 2 . Nitrogen trifluoride (NF 3 , first prepared in 1928)

39200-431: Was first used in 1942 by Selman Waksman and his collaborators in journal articles to describe any substance produced by a microorganism that is antagonistic to the growth of other microorganisms in high dilution. This definition excluded substances that kill bacteria but that are not produced by microorganisms (such as gastric juices and hydrogen peroxide ). It also excluded synthetic antibacterial compounds such as

39400-423: Was identified in the United States resistant to colistin , "the last line of defence" antibiotic . In recent years, even anaerobic bacteria, historically considered less concerning in terms of resistance, have demonstrated high rates of antibiotic resistance, particularly Bacteroides , for which resistance rates to penicillin have been reported to exceed 90%. Per The ICU Book , "The first rule of antibiotics

39600-458: Was introduced by the French bacteriologist Jean Paul Vuillemin as a descriptive name of the phenomenon exhibited by these early antibacterial drugs. Antibiosis was first described in 1877 in bacteria when Louis Pasteur and Robert Koch observed that an airborne bacillus could inhibit the growth of Bacillus anthracis . These drugs were later renamed antibiotics by Selman Waksman , an American microbiologist, in 1947. The term antibiotic

39800-434: Was stimulated apace by its success. The discovery and development of this sulfonamide drug opened the era of antibacterials. Observations about the growth of some microorganisms inhibiting the growth of other microorganisms have been reported since the late 19th century. These observations of antibiosis between microorganisms led to the discovery of natural antibacterials. Louis Pasteur observed, "if we could intervene in

40000-577: Was used to treat syphilis in the first half of the 20th century. In 1908, Ehrlich received the Nobel Prize in Physiology or Medicine for his contributions to immunology . Hata was nominated for the Nobel Prize in Chemistry in 1911 and for the Nobel Prize in Physiology or Medicine in 1912 and 1913. The first sulfonamide and the first systemically active antibacterial drug, Prontosil ,

#615384