Geology (from Ancient Greek γῆ ( gê ) 'earth' and λoγία ( -logía ) 'study of, discourse') is a branch of natural science concerned with the Earth and other astronomical objects , the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences , including hydrology . It is integrated with Earth system science and planetary science .
97-513: In geology , a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth 's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults . Energy release associated with rapid movement on active faults
194-535: A characteristic fabric . All three types may melt again, and when this happens, new magma is formed, from which an igneous rock may once again solidify. Organic matter, such as coal, bitumen, oil, and natural gas, is linked mainly to organic-rich sedimentary rocks. To study all three types of rock, geologists evaluate the minerals of which they are composed and their other physical properties, such as texture and fabric . Geologists also study unlithified materials (referred to as superficial deposits ) that lie above
291-485: A petrographic microscope , where the minerals can be identified through their different properties in plane-polarized and cross-polarized light, including their birefringence , pleochroism , twinning , and interference properties with a conoscopic lens . In the electron microprobe, individual locations are analyzed for their exact chemical compositions and variation in composition within individual crystals. Stable and radioactive isotope studies provide insight into
388-405: A fault as oblique requires both dip and strike components to be measurable and significant. Some oblique faults occur within transtensional and transpressional regimes, and others occur where the direction of extension or shortening changes during the deformation but the earlier formed faults remain active. The hade angle is defined as the complement of the dip angle; it is the angle between
485-580: A fault hosting valuable porphyry copper deposits is northern Chile's Domeyko Fault with deposits at Chuquicamata , Collahuasi , El Abra , El Salvador , La Escondida and Potrerillos . Further south in Chile Los Bronces and El Teniente porphyry copper deposit lie each at the intersection of two fault systems. Faults may not always act as conduits to surface. It has been proposed that deep-seated "misoriented" faults may instead be zones where magmas forming porphyry copper stagnate achieving
582-488: A fault plane, where it becomes locked, are called asperities . Stress builds up when a fault is locked, and when it reaches a level that exceeds the strength threshold, the fault ruptures and the accumulated strain energy is released in part as seismic waves , forming an earthquake . Strain occurs accumulatively or instantaneously, depending on the liquid state of the rock; the ductile lower crust and mantle accumulate deformation gradually via shearing , whereas
679-408: A fault's age by studying soil features seen in shallow excavations and geomorphology seen in aerial photographs. Subsurface clues include shears and their relationships to carbonate nodules , eroded clay, and iron oxide mineralization, in the case of older soil, and lack of such signs in the case of younger soil. Radiocarbon dating of organic material buried next to or over a fault shear
776-426: A hanging wall or foot wall where a thrust fault formed along a relatively weak bedding plane is known as a flat and a section where the thrust fault cut upward through the stratigraphic sequence is known as a ramp . Typically, thrust faults move within formations by forming flats and climbing up sections with ramps. This results in the hanging wall flat (or a portion thereof) lying atop the foot wall ramp as shown in
873-409: A junction with another plate boundary, while transcurrent faults may die out without a junction with another fault. Finally, transform faults form a tectonic plate boundary, while transcurrent faults do not. Faults in general are focused areas of deformation or strain , which are the response of built-up stresses in the form of compression , tension, or shear stress in rock at the surface or deep in
970-627: A length of less than a meter. Rocks at the depth to be ductilely stretched are often also metamorphosed. These stretched rocks can also pinch into lenses, known as boudins , after the French word for "sausage" because of their visual similarity. Where rock units slide past one another, strike-slip faults develop in shallow regions, and become shear zones at deeper depths where the rocks deform ductilely. The addition of new rock units, both depositionally and intrusively, often occurs during deformation. Faulting and other deformational processes result in
1067-484: A major fault. Synthetic faults dip in the same direction as the major fault while the antithetic faults dip in the opposite direction. These faults may be accompanied by rollover anticlines (e.g. the Niger Delta Structural Style). All faults have a measurable thickness, made up of deformed rock characteristic of the level in the crust where the faulting happened, of the rock types affected by
SECTION 10
#17327916695961164-400: A manner that creates multiple listric faults. The fault panes of listric faults can further flatten and evolve into a horizontal or near-horizontal plane, where slip progresses horizontally along a decollement . Extensional decollements can grow to great dimensions and form detachment faults , which are low-angle normal faults with regional tectonic significance. Due to the curvature of
1261-452: A means to provide information about geological history and the timing of geological events. The principle of uniformitarianism states that the geological processes observed in operation that modify the Earth's crust at present have worked in much the same way over geological time. A fundamental principle of geology advanced by the 18th-century Scottish physician and geologist James Hutton
1358-419: A non-vertical fault are known as the hanging wall and footwall . The hanging wall occurs above the fault plane and the footwall occurs below it. This terminology comes from mining: when working a tabular ore body, the miner stood with the footwall under his feet and with the hanging wall above him. These terms are important for distinguishing different dip-slip fault types: reverse faults and normal faults. In
1455-608: A number of fields, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth. In typical geological investigations, geologists use primary information related to petrology (the study of rocks), stratigraphy (the study of sedimentary layers), and structural geology (the study of positions of rock units and their deformation). In many cases, geologists also study modern soils, rivers , landscapes , and glaciers ; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate
1552-411: A reverse fault, the hanging wall displaces upward, while in a normal fault the hanging wall displaces downward. Distinguishing between these two fault types is important for determining the stress regime of the fault movement. Faults are mainly classified in terms of the angle that the fault plane makes with the Earth's surface, known as the dip , and the direction of slip along the fault plane. Based on
1649-499: A single environment and do not necessarily occur in a single order. The Hawaiian Islands , for example, consist almost entirely of layered basaltic lava flows. The sedimentary sequences of the mid-continental United States and the Grand Canyon in the southwestern United States contain almost-undeformed stacks of sedimentary rocks that have remained in place since Cambrian time. Other areas are much more geologically complex. In
1746-404: A spreading ridge, or a subduction zone . A transform fault is a special case of a strike-slip fault that also forms a plate boundary. Most such faults are found in oceanic crust , where they accommodate the lateral offset between segments of divergent boundaries , forming a zigzag pattern. This results from oblique seafloor spreading where the direction of motion is not perpendicular to
1843-418: A transform fault links a spreading center and the upper block of a subduction zone or where two upper blocks of subduction zones are linked, the transform fault itself will grow in length. [REDACTED] [REDACTED] Constant length: In other cases, transform faults will remain at a constant length. This steadiness can be attributed to many different causes. In the case of ridge-to-ridge transforms,
1940-400: A variety of applications. Dating of lava and volcanic ash layers found within a stratigraphic sequence can provide absolute age data for sedimentary rock units that do not contain radioactive isotopes and calibrate relative dating techniques. These methods can also be used to determine ages of pluton emplacement. Thermochemical techniques can be used to determine temperature profiles within
2037-422: Is a horst . A sequence of grabens and horsts on the surface of the Earth produces a characteristic basin and range topography . Normal faults can evolve into listric faults, with their plane dip being steeper near the surface, then shallower with increased depth, with the fault plane curving into the Earth. They can also form where the hanging wall is absent (such as on a cliff), where the footwall may slump in
SECTION 20
#17327916695962134-655: Is a major academic discipline , and it is central to geological engineering and plays an important role in geotechnical engineering . The majority of geological data comes from research on solid Earth materials. Meteorites and other extraterrestrial natural materials are also studied by geological methods. Minerals are naturally occurring elements and compounds with a definite homogeneous chemical composition and an ordered atomic arrangement. Each mineral has distinct physical properties, and there are many tests to determine each of them. Minerals are often identified through these tests. The specimens can be tested for: A rock
2231-422: Is a zone of folding close to a fault that likely arises from frictional resistance to movement on the fault. The direction and magnitude of heave and throw can be measured only by finding common intersection points on either side of the fault (called a piercing point ). In practice, it is usually only possible to find the slip direction of faults, and an approximation of the heave and throw vector. The two sides of
2328-422: Is accomplished in two primary ways: through faulting and folding . In the shallow crust, where brittle deformation can occur, thrust faults form, which causes the deeper rock to move on top of the shallower rock. Because deeper rock is often older, as noted by the principle of superposition , this can result in older rocks moving on top of younger ones. Movement along faults can result in folding, either because
2425-556: Is an igneous rock . This rock can be weathered and eroded , then redeposited and lithified into a sedimentary rock. Sedimentary rocks are mainly divided into four categories: sandstone, shale, carbonate, and evaporite. This group of classifications focuses partly on the size of sedimentary particles (sandstone and shale), and partly on mineralogy and formation processes (carbonation and evaporation). Igneous and sedimentary rocks can then be turned into metamorphic rocks by heat and pressure that change its mineral content, resulting in
2522-460: Is an intimate coupling between the movement of the plates on the surface and the convection of the mantle (that is, the heat transfer caused by the slow movement of ductile mantle rock). Thus, oceanic parts of plates and the adjoining mantle convection currents always move in the same direction – because the oceanic lithosphere is actually the rigid upper thermal boundary layer of the convecting mantle. This coupling between rigid plates moving on
2619-469: Is any naturally occurring solid mass or aggregate of minerals or mineraloids . Most research in geology is associated with the study of rocks, as they provide the primary record of the majority of the geological history of the Earth. There are three major types of rock: igneous , sedimentary , and metamorphic . The rock cycle illustrates the relationships among them (see diagram). When a rock solidifies or crystallizes from melt ( magma or lava ), it
2716-507: Is being created to change that length. [REDACTED] [REDACTED] Decreasing length faults: In rare cases, transform faults can shrink in length. These occur when two descending subduction plates are linked by a transform fault. In time as the plates are subducted, the transform fault will decrease in length until the transform fault disappears completely, leaving only two subduction zones facing in opposite directions. [REDACTED] [REDACTED] The most prominent examples of
2813-435: Is constantly created through the upwelling of new basaltic magma . With new seafloor being pushed and pulled out, the older seafloor slowly slides away from the mid-oceanic ridges toward the continents. Although separated only by tens of kilometers, this separation between segments of the ridges causes portions of the seafloor to push past each other in opposing directions. This lateral movement of seafloors past each other
2910-544: Is defined by the direction of movement of the ground as would be seen by an observer on the opposite side of the fault. A special class of strike-slip fault is the transform fault when it forms a plate boundary. This class is related to an offset in a spreading center , such as a mid-ocean ridge , or, less common, within continental lithosphere , such as the Dead Sea Transform in the Middle East or
3007-433: Is horizontal). The principle of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. Logically a younger layer cannot slip beneath a layer previously deposited. This principle allows sedimentary layers to be viewed as a form of the vertical timeline, a partial or complete record of the time elapsed from deposition of
Fault (geology) - Misplaced Pages Continue
3104-541: Is often critical in distinguishing active from inactive faults. From such relationships, paleoseismologists can estimate the sizes of past earthquakes over the past several hundred years, and develop rough projections of future fault activity. Many ore deposits lie on or are associated with faults. This is because the fractured rock associated with fault zones allow for magma ascent or the circulation of mineral-bearing fluids. Intersections of near-vertical faults are often locations of significant ore deposits. An example of
3201-492: Is particularly clear in the case of detachment faults and major thrust faults . The main types of fault rock include: In geotechnical engineering , a fault often forms a discontinuity that may have a large influence on the mechanical behavior (strength, deformation, etc.) of soil and rock masses in, for example, tunnel , foundation , or slope construction. The level of a fault's activity can be critical for (1) locating buildings, tanks, and pipelines and (2) assessing
3298-484: Is primarily accomplished through normal faulting and through the ductile stretching and thinning. Normal faults drop rock units that are higher below those that are lower. This typically results in younger units ending up below older units. Stretching of units can result in their thinning. In fact, at one location within the Maria Fold and Thrust Belt , the entire sedimentary sequence of the Grand Canyon appears over
3395-568: Is that "the present is the key to the past." In Hutton's words: "the past history of our globe must be explained by what can be seen to be happening now." The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock , it can be determined that the igneous intrusion is younger than the sedimentary rock. Different types of intrusions include stocks, laccoliths , batholiths , sills and dikes . The principle of cross-cutting relationships pertains to
3492-994: Is the San Andreas Fault on the Pacific coast of the United States. The San Andreas Fault links the East Pacific Rise off the West coast of Mexico (Gulf of California) to the Mendocino Triple Junction (Part of the Juan de Fuca plate ) off the coast of the Northwestern United States , making it a ridge-to-transform-style fault. The formation of the San Andreas Fault system occurred fairly recently during
3589-420: Is the cause of most earthquakes . Faults may also displace slowly, by aseismic creep . A fault plane is the plane that represents the fracture surface of a fault. A fault trace or fault line is a place where the fault can be seen or mapped on the surface. A fault trace is also the line commonly plotted on geologic maps to represent a fault. A fault zone is a cluster of parallel faults. However,
3686-523: Is used for geologically young materials containing organic carbon . The geology of an area changes through time as rock units are deposited and inserted, and deformational processes alter their shapes and locations. Rock units are first emplaced either by deposition onto the surface or intrusion into the overlying rock . Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows blanket
3783-435: Is where transform faults are currently active. Transform faults move differently from a strike-slip fault at the mid-oceanic ridge. Instead of the ridges moving away from each other, as they do in other strike-slip faults, transform-fault ridges remain in the same, fixed locations, and the new ocean seafloor created at the ridges is pushed away from the ridge. Evidence of this motion can be found in paleomagnetic striping on
3880-761: The Alpine Fault in New Zealand. Transform faults are also referred to as "conservative" plate boundaries since the lithosphere is neither created nor destroyed. Dip-slip faults can be either normal (" extensional ") or reverse . The terminology of "normal" and "reverse" comes from coal mining in England, where normal faults are the most common. With the passage of time, a regional reversal between tensional and compressional stresses (or vice-versa) might occur, and faults may be reactivated with their relative block movement inverted in opposite directions to
3977-705: The Oligocene Period between 34 million and 24 million years ago. During this period, the Farallon plate , followed by the Pacific plate, collided into the North American plate . The collision led to the subduction of the Farallon plate underneath the North American plate. Once the spreading center separating the Pacific and the Farallon plates was subducted beneath the North American plate,
Fault (geology) - Misplaced Pages Continue
4074-506: The bedrock . This study is often known as Quaternary geology , after the Quaternary period of geologic history, which is the most recent period of geologic time. Magma is the original unlithified source of all igneous rocks . The active flow of molten rock is closely studied in volcanology , and igneous petrology aims to determine the history of igneous rocks from their original molten source to their final crystallization. In
4171-512: The geochemical evolution of rock units. Petrologists can also use fluid inclusion data and perform high temperature and pressure physical experiments to understand the temperatures and pressures at which different mineral phases appear, and how they change through igneous and metamorphic processes. This research can be extrapolated to the field to understand metamorphic processes and the conditions of crystallization of igneous rocks. This work can also help to explain processes that occur within
4268-402: The mantle below (separated within itself by seismic discontinuities at 410 and 660 kilometers), and the outer core and inner core below that. More recently, seismologists have been able to create detailed images of wave speeds inside the earth in the same way a doctor images a body in a CT scan . These images have led to a much more detailed view of the interior of the Earth, and have replaced
4365-434: The relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages . By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle the geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth . Geology provides evidence for plate tectonics , the evolutionary history of life , and
4462-656: The seismic shaking and tsunami hazard to infrastructure and people in the vicinity. In California, for example, new building construction has been prohibited directly on or near faults that have moved within the Holocene Epoch (the last 11,700 years) of the Earth's geological history. Also, faults that have shown movement during the Holocene plus Pleistocene Epochs (the last 2.6 million years) may receive consideration, especially for critical structures such as power plants, dams, hospitals, and schools. Geologists assess
4559-440: The 1960s, it was discovered that the Earth's lithosphere , which includes the crust and rigid uppermost portion of the upper mantle , is separated into tectonic plates that move across the plastically deforming, solid, upper mantle, which is called the asthenosphere . This theory is supported by several types of observations, including seafloor spreading and the global distribution of mountain terrain and seismicity. There
4656-622: The Earth's past climates . Geologists broadly study the properties and processes of Earth and other terrestrial planets. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including fieldwork , rock description , geophysical techniques , chemical analysis , physical experiments , and numerical modelling . In practical terms, geology is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources , understanding natural hazards , remediating environmental problems, and providing insights into past climate change . Geology
4753-420: The Earth's subsurface. Transform faults specifically accommodate lateral strain by transferring displacement between mid-ocean ridges or subduction zones. They also act as the plane of weakness, which may result in splitting in rift zones . Transform faults are commonly found linking segments of divergent boundaries ( mid-oceanic ridges or spreading centres). These mid-oceanic ridges are where new seafloor
4850-424: The Earth, such as subduction and magma chamber evolution. Structural geologists use microscopic analysis of oriented thin sections of geological samples to observe the fabric within the rocks, which gives information about strain within the crystalline structure of the rocks. They also plot and combine measurements of geological structures to better understand the orientations of faults and folds to reconstruct
4947-484: The Grand Canyon in the southwestern United States being a very visible example, the lower rock units were metamorphosed and deformed, and then deformation ended and the upper, undeformed units were deposited. Although any amount of rock emplacement and rock deformation can occur, and they can occur any number of times, these concepts provide a guide to understanding the geological history of an area. Geologists use
SECTION 50
#17327916695965044-695: The San Andreas Continental Transform-Fault system was created. In New Zealand , the South Island 's Alpine Fault is a transform fault for much of its length. This has resulted in the folded land of the Southland Syncline being split into an eastern and western section several hundred kilometres apart. The majority of the syncline is found in Southland and The Catlins in the island's southeast, but
5141-537: The beginning of the 20th century, advancement in geological science was facilitated by the ability to obtain accurate absolute dates to geological events using radioactive isotopes and other methods. This changed the understanding of geological time. Previously, geologists could only use fossils and stratigraphic correlation to date sections of rock relative to one another. With isotopic dates, it became possible to assign absolute ages to rock units, and these absolute dates could be applied to fossil sequences in which there
5238-402: The brittle upper crust reacts by fracture – instantaneous stress release – resulting in motion along the fault. A fault in ductile rocks can also release instantaneously when the strain rate is too great. Slip is defined as the relative movement of geological features present on either side of a fault plane. A fault's sense of slip is defined as the relative motion of the rock on each side of
5335-456: The constancy is caused by the continuous growth by both ridges outward, canceling any change in length. The opposite occurs when a ridge linked to a subducting plate, where all the lithosphere (new seafloor) being created by the ridge is subducted, or swallowed up, by the subduction zone. Finally, when two upper subduction plates are linked there is no change in length. This is due to the plates moving parallel with each other and no new lithosphere
5432-515: The creation of topographic gradients, causing material on the rock unit that is increasing in elevation to be eroded by hillslopes and channels. These sediments are deposited on the rock unit that is going down. Continual motion along the fault maintains the topographic gradient in spite of the movement of sediment and continues to create accommodation space for the material to deposit. Deformational events are often also associated with volcanism and igneous activity. Volcanic ashes and lavas accumulate on
5529-437: The crust, the uplift of mountain ranges, and paleo-topography. Fractionation of the lanthanide series elements is used to compute ages since rocks were removed from the mantle. Other methods are used for more recent events. Optically stimulated luminescence and cosmogenic radionuclide dating are used to date surfaces and/or erosion rates. Dendrochronology can also be used for the dating of landscapes. Radiocarbon dating
5626-434: The direction of slip, faults can be categorized as: In a strike-slip fault (also known as a wrench fault , tear fault or transcurrent fault ), the fault surface (plane) is usually near vertical, and the footwall moves laterally either left or right with very little vertical motion. Strike-slip faults with left-lateral motion are also known as sinistral faults and those with right-lateral motion as dextral faults. Each
5723-526: The distance between the ridges it separates; the distance remains constant in earthquakes because the ridges are spreading centers. This hypothesis was confirmed in a study of the fault plane solutions that showed the slip on transform faults points in the opposite direction than classical interpretation would suggest. Transform faults are closely related to transcurrent faults and are commonly confused. Both types of fault are strike-slip or side-to-side in movement; nevertheless, transform faults always end at
5820-456: The fault and of the presence and nature of any mineralising fluids . Fault rocks are classified by their textures and the implied mechanism of deformation. A fault that passes through different levels of the lithosphere will have many different types of fault rock developed along its surface. Continued dip-slip displacement tends to juxtapose fault rocks characteristic of different crustal levels, with varying degrees of overprinting. This effect
5917-442: The fault changes from a normal fault with extensional stress to a strike-slip fault with lateral stress. In the study done by Bonatti and Crane, peridotite and gabbro rocks were discovered in the edges of the transform ridges. These rocks are created deep inside the Earth's mantle and then rapidly exhumed to the surface. This evidence helps to prove that new seafloor is being created at the mid-oceanic ridges and further supports
SECTION 60
#17327916695966014-399: The fault concerning the other side. In measuring the horizontal or vertical separation, the throw of the fault is the vertical component of the separation and the heave of the fault is the horizontal component, as in "Throw up and heave out". The vector of slip can be qualitatively assessed by studying any drag folding of strata, which may be visible on either side of the fault. Drag folding
6111-570: The fault is a normal fault or a thrust fault . The principle of inclusions and components states that, with sedimentary rocks, if inclusions (or clasts ) are found in a formation, then the inclusions must be older than the formation that contains them. For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks occurs when xenoliths are found. These foreign bodies are picked up as magma or lava flows, and are incorporated, later to cool in
6208-574: The fault plane and a vertical plane that strikes parallel to the fault. Ring faults , also known as caldera faults , are faults that occur within collapsed volcanic calderas and the sites of bolide strikes, such as the Chesapeake Bay impact crater . Ring faults are the result of a series of overlapping normal faults, forming a circular outline. Fractures created by ring faults may be filled by ring dikes . Synthetic and antithetic are terms used to describe minor faults associated with
6305-401: The fault plane, the horizontal extensional displacement on a listric fault implies a geometric "gap" between the hanging and footwalls of the fault forms when the slip motion occurs. To accommodate into the geometric gap, and depending on its rheology , the hanging wall might fold and slide downwards into the gap and produce rollover folding , or break into further faults and blocks which fil in
6402-427: The fault-bend fold diagram. Thrust faults form nappes and klippen in the large thrust belts. Subduction zones are a special class of thrusts that form the largest faults on Earth and give rise to the largest earthquakes. A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault . Nearly all faults have some component of both dip-slip and strike-slip; hence, defining
6499-403: The faults are not planar or because rock layers are dragged along, forming drag folds as slip occurs along the fault. Deeper in the Earth, rocks behave plastically and fold instead of faulting. These folds can either be those where the material in the center of the fold buckles upwards, creating " antiforms ", or where it buckles downwards, creating " synforms ". If the tops of the rock units within
6596-483: The folds remain pointing upwards, they are called anticlines and synclines , respectively. If some of the units in the fold are facing downward, the structure is called an overturned anticline or syncline, and if all of the rock units are overturned or the correct up-direction is unknown, they are simply called by the most general terms, antiforms, and synforms. Even higher pressures and temperatures during horizontal shortening can cause both folding and metamorphism of
6693-404: The formation of faults and the age of the sequences through which they cut. Faults are younger than the rocks they cut; accordingly, if a fault is found that penetrates some formations but not those on top of it, then the formations that were cut are older than the fault, and the ones that are not cut must be younger than the fault. Finding the key bed in these situations may help determine whether
6790-473: The gap. If faults form, imbrication fans or domino faulting may form. A reverse fault is the opposite of a normal fault—the hanging wall moves up relative to the footwall. Reverse faults indicate compressive shortening of the crust. A thrust fault has the same sense of motion as a reverse fault, but with the dip of the fault plane at less than 45°. Thrust faults typically form ramps, flats and fault-bend (hanging wall and footwall) folds. A section of
6887-404: The history of rock deformation in the area. In addition, they perform analog and numerical experiments of rock deformation in large and small settings. Transform fault A transform fault or transform boundary , is a fault along a plate boundary where the motion is predominantly horizontal . It ends abruptly where it connects to another plate boundary, either another transform,
6984-423: The internal composition and structure of the Earth. Seismologists can use the arrival times of seismic waves to image the interior of the Earth. Early advances in this field showed the existence of a liquid outer core (where shear waves were not able to propagate) and a dense solid inner core . These advances led to the development of a layered model of the Earth, with a lithosphere (including crust) on top,
7081-464: The later end of the scale, it is marked by the present day (in the Holocene epoch ). The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in
7178-454: The lowest layer to deposition of the highest bed. The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist during the same period throughout the world, their presence or (sometimes) absence provides a relative age of the formations where they appear. Based on principles that William Smith laid out almost a hundred years before the publication of Charles Darwin 's theory of evolution ,
7275-497: The mantle and show the crystallographic structures expected in the inner core of the Earth. The geological time scale encompasses the history of the Earth. It is bracketed at the earliest by the dates of the first Solar System material at 4.567 Ga (or 4.567 billion years ago) and the formation of the Earth at 4.54 Ga (4.54 billion years), which is the beginning of the Hadean eon – a division of geological time. At
7372-405: The matrix. As a result, xenoliths are older than the rock that contains them. The principle of original horizontality states that the deposition of sediments occurs as essentially horizontal beds. Observation of modern marine and non-marine sediments in a wide variety of environments supports this generalization (although cross-bedding is inclined, the overall orientation of cross-bedded units
7469-846: The mid-oceanic ridge transform zones are in the Atlantic Ocean between South America and Africa . Known as the St. Paul, Romanche , Chain, and Ascension fracture zones, these areas have deep, easily identifiable transform faults and ridges. Other locations include: the East Pacific Ridge located in the South Eastern Pacific Ocean , which meets up with San Andreas Fault to the North. Transform faults are not limited to oceanic crust and spreading centers; many of them are on continental margins . The best example
7566-483: The offsets of oceanic ridges by faults do not follow the classical pattern of an offset fence or geological marker in Reid's rebound theory of faulting , from which the sense of slip is derived. The new class of faults, called transform faults, produce slip in the opposite direction from what one would surmise from the standard interpretation of an offset geological feature. Slip along transform faults does not increase
7663-499: The original movement (fault inversion). In such a way, a normal fault may therefore become a reverse fault and vice versa. In a normal fault, the hanging wall moves downward, relative to the footwall. The dip of most normal faults is at least 60 degrees but some normal faults dip at less than 45 degrees. A downthrown block between two normal faults dipping towards each other is a graben . A block stranded between two grabens, and therefore two normal faults dipping away from each other,
7760-505: The other continent. In his work on transform-fault systems, geologist Tuzo Wilson said that transform faults must be connected to other faults or tectonic-plate boundaries on both ends; because of that requirement, transform faults can grow in length, keep a constant length, or decrease in length. These length changes are dependent on which type of fault or tectonic structure connect with the transform fault. Wilson described six types of transform faults: Growing length: In situations where
7857-569: The principles of succession developed independently of evolutionary thought. The principle becomes quite complex, however, given the uncertainties of fossilization, localization of fossil types due to lateral changes in habitat ( facies change in sedimentary strata), and that not all fossils formed globally at the same time. Geologists also use methods to determine the absolute age of rock samples and geological events. These dates are useful on their own and may also be used in conjunction with relative dating methods or to calibrate relative methods. At
7954-410: The right time for—and type of— igneous differentiation . At a given time differentiated magmas would burst violently out of the fault-traps and head to shallower places in the crust where porphyry copper deposits would be formed. As faults are zones of weakness, they facilitate the interaction of water with the surrounding rock and enhance chemical weathering . The enhanced chemical weathering increases
8051-428: The rocks. This metamorphism causes changes in the mineral composition of the rocks; creates a foliation , or planar surface, that is related to mineral growth under stress. This can remove signs of the original textures of the rocks, such as bedding in sedimentary rocks, flow features of lavas , and crystal patterns in crystalline rocks . Extension causes the rock units as a whole to become longer and thinner. This
8148-444: The seafloor. A paper written by geophysicist Taras Gerya theorizes that the creation of the transform faults between the ridges of the mid-oceanic ridge is attributed to rotated and stretched sections of the mid-oceanic ridge. This occurs over a long period of time with the spreading center or ridge slowly deforming from a straight line to a curved line. Finally, fracturing along these planes forms transform faults. As this takes place,
8245-433: The simplified layered model with a much more dynamic model. Mineralogists have been able to use the pressure and temperature data from the seismic and modeling studies alongside knowledge of the elemental composition of the Earth to reproduce these conditions in experimental settings and measure changes within the crystal structure. These studies explain the chemical changes associated with the major seismic discontinuities in
8342-426: The size of the weathered zone and hence creates more space for groundwater . Fault zones act as aquifers and also assist groundwater transport. Geology Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines
8439-532: The southwestern United States, sedimentary, volcanic, and intrusive rocks have been metamorphosed, faulted, foliated, and folded. Even older rocks, such as the Acasta gneiss of the Slave craton in northwestern Canada , the oldest known rock in the world have been metamorphosed to the point where their origin is indiscernible without laboratory analysis. In addition, these processes can occur in stages. In many places,
8536-550: The subsurface. Sub-specialities of geology may distinguish endogenous and exogenous geology. Geological field work varies depending on the task at hand. Typical fieldwork could consist of: In addition to identifying rocks in the field ( lithology ), petrologists identify rock samples in the laboratory. Two of the primary methods for identifying rocks in the laboratory are through optical microscopy and by using an electron microprobe . In an optical mineralogy analysis, petrologists analyze thin sections of rock samples using
8633-407: The surface of the Earth and the convecting mantle is called plate tectonics . The development of plate tectonics has provided a physical basis for many observations of the solid Earth . Long linear regions of geological features are explained as plate boundaries: Plate tectonics has provided a mechanism for Alfred Wegener 's theory of continental drift , in which the continents move across
8730-488: The surface of the Earth over geological time. They also provided a driving force for crustal deformation, and a new setting for the observations of structural geology. The power of the theory of plate tectonics lies in its ability to combine all of these observations into a single theory of how the lithosphere moves over the convecting mantle. Advances in seismology , computer modeling , and mineralogy and crystallography at high temperatures and pressures give insights into
8827-479: The surface, and igneous intrusions enter from below. Dikes , long, planar igneous intrusions, enter along cracks, and therefore often form in large numbers in areas that are being actively deformed. This can result in the emplacement of dike swarms , such as those that are observable across the Canadian shield, or rings of dikes around the lava tube of a volcano. All of these processes do not necessarily occur in
8924-742: The surface. Igneous intrusions such as batholiths , laccoliths , dikes , and sills , push upwards into the overlying rock, and crystallize as they intrude. After the initial sequence of rocks has been deposited, the rock units can be deformed and/or metamorphosed . Deformation typically occurs as a result of horizontal shortening, horizontal extension , or side-to-side ( strike-slip ) motion. These structural regimes broadly relate to convergent boundaries , divergent boundaries , and transform boundaries, respectively, between tectonic plates. When rock units are placed under horizontal compression , they shorten and become thicker. Because rock units, other than muds, do not significantly change in volume , this
9021-466: The term is also used for the zone of crushed rock along a single fault. Prolonged motion along closely spaced faults can blur the distinction, as the rock between the faults is converted to fault-bound lenses of rock and then progressively crushed. Due to friction and the rigidity of the constituent rocks, the two sides of a fault cannot always glide or flow past each other easily, and so occasionally all movement stops. The regions of higher friction along
9118-408: The theory of plate tectonics. Active transform faults are between two tectonic structures or faults. Fracture zones represent the previously active transform-fault lines, which have since passed the active transform zone and are being pushed toward the continents. These elevated ridges on the ocean floor can be traced for hundreds of miles and in some cases even from one continent across an ocean to
9215-407: The third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) Epochs: Methods for relative dating were developed when geology first emerged as a natural science . Geologists still use the following principles today as
9312-419: The trend of the overall divergent boundary. A smaller number of such faults are found on land, although these are generally better-known, such as the San Andreas Fault and North Anatolian Fault . Transform boundaries are also known as conservative plate boundaries because they involve no addition or loss of lithosphere at the Earth's surface. Geophysicist and geologist John Tuzo Wilson recognized that
9409-615: Was datable material, converting the old relative ages into new absolute ages. For many geological applications, isotope ratios of radioactive elements are measured in minerals that give the amount of time that has passed since a rock passed through its particular closure temperature , the point at which different radiometric isotopes stop diffusing into and out of the crystal lattice . These are used in geochronologic and thermochronologic studies. Common methods include uranium–lead dating , potassium–argon dating , argon–argon dating and uranium–thorium dating . These methods are used for
#595404