Misplaced Pages

B-611

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Gunpowder , also commonly known as black powder to distinguish it from modern smokeless powder , is the earliest known chemical explosive . It consists of a mixture of sulfur , charcoal (which is mostly carbon ), and potassium nitrate (saltpeter) . The sulfur and charcoal act as fuels while the saltpeter is an oxidizer . Gunpowder has been widely used as a propellant in firearms , artillery , rocketry , and pyrotechnics , including use as a blasting agent for explosives in quarrying , mining , building pipelines , tunnels , and roads .

#370629

133-422: The B-611 is a Chinese solid-fuelled short-range ballistic missile (SRBM) developed by China Precision Machinery Import-Export Corporation (CPMIEC). The missile has a maximum range of 150–400 km (93–249 mi). The B-611 development began development in 1995, and first shown in 2004. A newer variant was shown in late 2006. The B-611 was sold to Turkey via technology transfer . Further developed into

266-659: A "long lance" sending forth "evil-smelling vapors and smoke", which has been variously interpreted by different historians as the "first-gas attack upon European soil" using gunpowder, "the first use of cannon in Europe", or merely a "toxic gas" with no evidence of gunpowder. It is difficult to accurately translate original Chinese alchemical texts, which tend to explain phenomena through metaphor, into modern scientific language with rigidly defined terminology in English. Early texts potentially mentioning gunpowder are sometimes marked by

399-413: A casing, nozzle , grain ( propellant charge ), and igniter . The solid grain mass burns in a predictable fashion to produce exhaust gases, the flow of which is described by Taylor–Culick flow . The nozzle dimensions are calculated to maintain a design chamber pressure, while producing thrust from the exhaust gases. Once ignited, a simple solid rocket motor cannot be shut off, as it contains all

532-460: A combination of Ottoman and Mughal designs. Shah Jahan also countered the British and other Europeans in his province of Gujarāt , which supplied Europe saltpeter for use in gunpowder warfare during the 17th century. Bengal and Mālwa participated in saltpeter production. The Dutch, French, Portuguese, and English used Chhapra as a center of saltpeter refining. Ever since the founding of

665-487: A control moment. For example, the Titan III C solid boosters injected nitrogen tetroxide for LITV; the tanks can be seen on the sides of the rocket between the main center stage and the boosters. An early Minuteman first stage used a single motor with four gimballed nozzles to provide pitch, yaw, and roll control. A typical, well-designed ammonium perchlorate composite propellant (APCP) first-stage motor may have

798-473: A formula with near-identical ideal composition ratios for explosive gunpowder. Other historians urge caution regarding claims of Islamic firearms use in the 1204–1324 period, as late medieval Arabic texts used the same word for gunpowder, naft , that they used for an earlier incendiary, naphtha. The earliest surviving documentary evidence for cannons in the Islamic world is from an Arabic manuscript dated to

931-436: A gunpowder composition containing pure carbon would burn similarly to a match head, at best. The current standard composition for the gunpowder manufactured by pyrotechnicians was adopted as long ago as 1780. Proportions by weight are 75% potassium nitrate (known as saltpeter or saltpetre), 15% softwood charcoal, and 10% sulfur. These ratios have varied over the centuries and by country, and can be altered somewhat depending on

1064-541: A high-energy (yet unstable) monopropellant and the other acts as a lower-energy stabilizing (and gelling) monopropellant. In typical circumstances, nitroglycerin is dissolved in a nitrocellulose gel and solidified with additives. DB propellants are implemented in applications where minimal smoke is required yet a medium-high I sp of roughly 235 s (2.30 km/s) is required. The addition of metal fuels (such as aluminium ) can increase performance to around 250 s (2.5 km/s), though metal oxide nucleation in

1197-742: A linguistic process where semantic change occurred. For instance, the Arabic word naft transitioned from denoting naphtha to denoting gunpowder, and the Chinese word pào changed in meaning from trebuchet to a cannon . This has led to arguments on the exact origins of gunpowder based on etymological foundations. Science and technology historian Bert S. Hall makes the observation that, "It goes without saying, however, that historians bent on special pleading, or simply with axes of their own to grind, can find rich material in these terminological thickets." Another major area of contention in modern studies of

1330-564: A long history as the final boost stage for satellites due to their simplicity, reliability, compactness and reasonably high mass fraction . A spin-stabilized solid rocket motor is sometimes added when extra velocity is required, such as for a mission to a comet or the outer solar system, because a spinner does not require a guidance system (on the newly added stage). Thiokol's extensive family of mostly titanium-cased Star space motors has been widely used, especially on Delta launch vehicles and as spin-stabilized upper stages to launch satellites from

1463-499: A loss in motor performance. Polyurethane-bound aluminium-APCP solid fuel was used in the submarine-launched Polaris missiles . APCP used in the space shuttle Solid Rocket Boosters consisted of ammonium perchlorate (oxidizer, 69.6% by weight), aluminium (fuel, 16%), iron oxide (a catalyst, 0.4%), polybutadiene acrylonitrile (PBAN) polymer (a non-urethane rubber binder that held the mixture together and acted as secondary fuel, 12.04%), and an epoxy curing agent (1.96%). It developed

SECTION 10

#1732783229371

1596-523: A medicine to an incendiary and explosive, and the evolution of the gun from the fire lance to a metal gun, whereas similar records do not exist elsewhere. As Andrade explains, the large amount of variation in gunpowder recipes in China relative to Europe is "evidence of experimentation in China, where gunpowder was at first used as an incendiary and only later became an explosive and a propellant... in contrast, formulas in Europe diverged only very slightly from

1729-594: A propellant mass fraction of 92.23% while the 14,000-kilogram (31,000 lb) Castor 30 upper stage developed for Orbital Science's Taurus II COTS (Commercial Off The Shelf) (International Space Station resupply) launch vehicle has a 91.3% propellant fraction with 2.9% graphite epoxy motor casing, 2.4% nozzle, igniter and thrust vector actuator, and 3.4% non-motor hardware including such things as payload mount, interstage adapter, cable raceway, instrumentation, etc. Castor 120 and Castor 30 are 2.36 and 2.34 meters (93 and 92 in) in diameter, respectively, and serve as stages on

1862-469: A range of 400 km (250 mi) or eight 400 mm rockets. It was briefly displayed for the first time at the 2008 China International Aviation & Aerospace Exhibition. As a low cost alternative to more expensive ballistic missiles, the accuracy of SY-400 is increased by adding GPS to correct the cascade inertial navigational guidance, and according to the developer, the accuracy can be further improved if military grade GPS signals are used to replacing

1995-895: A range of 5,500 metres (3.4 mi). By the end of World War II total production of rocket launchers reached about 10,000. with 12 million rockets of the RS type produced for the Soviet armed forces. In the United States modern castable composite solid rocket motors were invented by the American aerospace engineer Jack Parsons at Caltech in 1942 when he replaced double base propellant with roofing asphalt and potassium perchlorate . This made possible slow-burning rocket motors of adequate size and with sufficient shelf-life for jet-assisted take off applications. Charles Bartley , employed at JPL (Caltech), substituted curable synthetic rubber for

2128-838: A regular basis outside of China." May also states, "however [, ...] the Mongols used the gunpowder weapon in their wars against the Jin, the Song and in their invasions of Japan." Records show that, in England, gunpowder was being made in 1346 at the Tower of London ; a powder house existed at the Tower in 1461, and in 1515 three King's gunpowder makers worked there. Gunpowder was also being made or stored at other royal castles, such as Portchester . The English Civil War (1642–1645) led to an expansion of

2261-512: A ruler and tried to ward off any Mongol attempt similar to the Siege of Baghdad (1258) . Firearms known as top-o-tufak also existed in many Muslim kingdoms in India by as early as 1366. From then on the employment of gunpowder warfare in India was prevalent, with events such as the "Siege of Belgaum " in 1473 by Sultan Muhammad Shah Bahmani. The shipwrecked Ottoman Admiral Seydi Ali Reis

2394-559: A shipwreck off the shore of Japan dated from 1281, during the Mongol invasions of Japan. By 1083 the Song court was producing hundreds of thousands of fire arrows for their garrisons. Bombs and the first proto-guns, known as "fire lances", became prominent during the 12th century and were used by the Song during the Jin-Song Wars . Fire lances were first recorded to have been used at the Siege of De'an in 1132 by Song forces against

2527-492: A simple, solid-propellant rocket tube that was filled with gunpowder. One open end allowed the gas to escape and was attached to a long stick that acted as a guidance system for flight direction control. The first rockets with tubes of cast iron were used by the Kingdom of Mysore under Hyder Ali and Tipu Sultan in the 1750s. These rockets had a reach of targets up to a mile and a half away. These were extremely effective in

2660-496: A single unit, but they are separated in SY-300. This design difference enables the guidance system of SY-300 to be rapidly changed in the field by soldiers, by simply replacing the guidance system with a dummy weight, when SY-300 needs to be used as an unguided rocket. Each vehicle can carry either six or twelve SY-300 rockets. SY-400 is a further development of SY-300 that can carry either two BP-12A short-range ballistic missiles with

2793-414: A single-piece nozzle or 304 s (2.98 km/s) with a high-area-ratio telescoping nozzle. Aluminium is used as fuel because it has a reasonable specific energy density, a high volumetric energy density, and is difficult to ignite accidentally. Composite propellants are cast, and retain their shape after the rubber binder, such as Hydroxyl-terminated polybutadiene (HTPB), cross-links (solidifies) with

SECTION 20

#1732783229371

2926-943: A small charge that is set off when the propellant is exhausted after a time delay. This charge can be used to trigger a camera , or deploy a parachute . Without this charge and delay, the motor may ignite a second stage (black powder only). In mid- and high-power rocketry , commercially made APCP motors are widely used. They can be designed as either single-use or reloadables. These motors are available in impulse ranges from "A" (1.26 Ns– 2.50 Ns) to "O" (20.48 kNs – 40.96 kNs), from several manufacturers. They are manufactured in standardized diameters and varying lengths depending on required impulse. Standard motor diameters are 13, 18, 24, 29, 38, 54, 75, 98, and 150 millimeters. Different propellant formulations are available to produce different thrust profiles, as well as special effects such as colored flames, smoke trails, or large quantities of sparks (produced by adding titanium sponge to

3059-594: A soldier's position, generating fog that hinders vision, etc.). Some of it ends up as a thick layer of soot inside the barrel, where it also is a nuisance for subsequent shots, and a cause of jamming an automatic weapon. Moreover, this residue is hygroscopic , and with the addition of moisture absorbed from the air forms a corrosive substance . The soot contains potassium oxide or sodium oxide that turns into potassium hydroxide , or sodium hydroxide , which corrodes wrought iron or steel gun barrels. Gunpowder arms therefore require thorough and regular cleaning to remove

3192-406: A specific impulse of 242 seconds (2.37 km/s) at sea level or 268 seconds (2.63 km/s) in a vacuum. The 2005-2009 Constellation Program was to use a similar PBAN-bound APCP. In 2009, a group succeeded in creating a propellant of water and nanoaluminium ( ALICE ). Typical HEC propellants start with a standard composite propellant mixture (such as APCP) and add a high-energy explosive to

3325-408: A stock. Some consider this to be a cannon while others do not. The problem with identifying cannons in early 14th century Arabic texts is the term midfa , which appears from 1342 to 1352 but cannot be proven to be true hand-guns or bombards. Contemporary accounts of a metal-barrel cannon in the Islamic world do not occur until 1365. Needham believes that in its original form the term midfa refers to

3458-466: A sugar fuel (typically dextrose , sorbitol , or sucrose ) that are cast into shape by gently melting the propellant constituents together and pouring or packing the amorphous colloid into a mold. Candy propellants generate a low-medium specific impulse of roughly 130 s (1.3 km/s) and, thus, are used primarily by amateur and experimental rocketeers. DB propellants are composed of two monopropellant fuel components where one typically acts as

3591-461: A supersonic shockwave . Ignition of gunpowder packed behind a projectile generates enough pressure to force the shot from the muzzle at high speed, but usually not enough force to rupture the gun barrel . It thus makes a good propellant but is less suitable for shattering rock or fortifications with its low-yield explosive power. Nonetheless, it was widely used to fill fused artillery shells (and used in mining and civil engineering projects) until

3724-684: A vacuum specific impulse ( I sp ) as high as 285.6 seconds (2.801 km/s) (Titan IVB SRMU). This compares to 339.3 s (3.327 km/s) for RP1/LOX (RD-180) and 452.3 s (4.436 km/s) for LH 2 /LOX (Block II RS-25 ) bipropellant engines. Upper stage specific impulses are somewhat greater: as much as 303.8 s (2.979 km/s) for APCP (Orbus 6E), 359 s (3.52 km/s) for RP1/LOX (RD-0124) and 465.5 s (4.565 km/s) for LH 2 /LOX (RL10B-2). Propellant fractions are usually somewhat higher for (non-segmented) solid propellant first stages than for upper stages. The 53,000-kilogram (117,000 lb) Castor 120 first stage has

3857-509: A very primitive form of solid-propellant rocket. Illustrations and descriptions in the 14th century Chinese military treatise Huolongjing by the Ming dynasty military writer and philosopher Jiao Yu confirm that the Chinese in 1232 used proto solid propellant rockets then known as " fire arrows " to drive back the Mongols during the Mongol siege of Kaifeng . Each arrow took a primitive form of

3990-481: A wad), and by 1287 at the latest, had become true guns, the hand cannon . According to Iqtidar Alam Khan, it was invading Mongols who introduced gunpowder to the Islamic world. The Muslims acquired knowledge of gunpowder sometime between 1240 and 1280, by which point the Syrian Hasan al-Rammah had written recipes, instructions for the purification of saltpeter, and descriptions of gunpowder incendiaries. It

4123-481: Is a low explosive : it does not detonate , but rather deflagrates (burns quickly). This is an advantage in a propellant device, where one does not desire a shock that would shatter the gun and potentially harm the operator; however, it is a drawback when an explosion is desired. In that case, the propellant (and most importantly, gases produced by its burning) must be confined. Since it contains its own oxidizer and additionally burns faster under pressure, its combustion

B-611 - Misplaced Pages Continue

4256-493: Is a development of WS-2/3, with SY standing for Shen Ying (神鹰 meaning 'Divine Eagle'), designed after the 4th Academy and the 9th Academy of the China Aerospace Science and Technology Corporation (CASC) were merged to form a new 4th Academy. The main difference between the SY-300 and its WS-2/3 predecessor is that for WS-2/3, the control section of the forward control surfaces and the warhead are integrated into

4389-400: Is a hypersonic anti-ship ballistic missile developed by the China Aerospace Science and Industry Corporation (CASIC), with a range of up to 290 km (180 mi) and terminal active radar homing guidance. Latest variant, exhibited at the 2016 China International Aviation & Aerospace Exhibition. It uses radar or infrared homing and can hit slow moving targets like ships. SY-300

4522-492: Is another pressed propellant that does not find any practical application outside specialized amateur rocketry circles due to its poor performance (as most ZS burns outside the combustion chamber) and fast linear burn rates on the order of 2 m/s. ZS is most often employed as a novelty propellant as the rocket accelerates extremely quickly leaving a spectacular large orange fireball behind it. In general, rocket candy propellants are an oxidizer (typically potassium nitrate) and

4655-469: Is capable of bursting containers such as a shell, grenade, or improvised " pipe bomb " or "pressure cooker" casings to form shrapnel . In quarrying, high explosives are generally preferred for shattering rock. However, because of its low brisance , gunpowder causes fewer fractures and results in more usable stone compared to other explosives, making it useful for blasting slate , which is fragile, or monumental stone such as granite and marble . Gunpowder

4788-459: Is capable of flying flattened trajectory and performing pre-programmed maneuvers to reduce the chance of interception. The P-12 is a variant of the B-611. The P-12 has a longer strake, and is believed to be lighter than the B-611 and carry a 300 kg (660 lb) HE fragmentation or blast warhead. A pair of the missiles may be carried inside a 6×6 wheeled vehicle. The P-12 was first shown at

4921-552: Is cheap and fairly easy to produce. The fuel grain is typically a mixture of pressed fine powder (into a solid, hard slug), with a burn rate that is highly dependent upon exact composition and operating conditions. The specific impulse of black powder is low, around 80 s (0.78 km/s). The grain is sensitive to fracture and, therefore, catastrophic failure. Black powder does not typically find use in motors above 40 newtons (9.0 pounds-force) thrust. Composed of powdered zinc metal and powdered sulfur (oxidizer), ZS or "micrograin"

5054-778: Is cited as composed of 79% nitre, 3% sulfur, and 18% charcoal per 100 of dry powder, with about 2% moisture. Prismatic Brown Powder is a large-grained product the Rottweil Company introduced in 1884 in Germany, which was adopted by the British Royal Navy shortly thereafter. The French navy adopted a fine, 3.1 millimeter, not prismatic grained product called Slow Burning Cocoa (SBC) or "cocoa powder". These brown powders reduced burning rate even further by using as little as 2 percent sulfur and using charcoal made from rye straw that had not been completely charred, hence

5187-408: Is equal to the volumetric rate times the fuel density ρ {\displaystyle \rho } : Several geometric configurations are often used depending on the application and desired thrust curve : The casing may be constructed from a range of materials. Cardboard is used for small black powder model motors, whereas aluminium is used for larger composite-fuel hobby motors. Steel

5320-532: Is implied by al-Rammah's usage of "terms that suggested he derived his knowledge from Chinese sources" and his references to saltpeter as "Chinese snow" ( Arabic : ثلج الصين thalj al-ṣīn ), fireworks as "Chinese flowers", and rockets as "Chinese arrows" that knowledge of gunpowder arrived from China. However, because al-Rammah attributes his material to "his father and forefathers", al-Hassan argues that gunpowder became prevalent in Syria and Egypt by "the end of

5453-682: Is known to have introduced the earliest type of matchlock weapons, which the Ottomans used against the Portuguese during the Siege of Diu (1531) . After that, a diverse variety of firearms, large guns in particular, became visible in Tanjore , Dacca , Bijapur , and Murshidabad . Guns made of bronze were recovered from Calicut (1504)- the former capital of the Zamorins The Mughal emperor Akbar mass-produced matchlocks for

B-611 - Misplaced Pages Continue

5586-428: Is non-polluting: acid-free, solid particulates-free, and lead-free. It is also smokeless and has only a faint shock diamond pattern that is visible in the otherwise transparent exhaust. Without the bright flame and dense smoke trail produced by the burning of aluminized propellants, these smokeless propellants all but eliminate the risk of giving away the positions from which the missiles are fired. The new CL-20 propellant

5719-411: Is shock-insensitive (hazard class 1.3) as opposed to current HMX smokeless propellants which are highly detonable (hazard class 1.1). CL-20 is considered a major breakthrough in solid rocket propellant technology but has yet to see widespread use because costs remain high. Electric solid propellants (ESPs) are a family of high performance plastisol solid propellants that can be ignited and throttled by

5852-472: Is that it was William Lobb , the plant collector, who recognised the possibilities of sodium nitrate during his travels in South America. Lammot du Pont would have known about the use of graphite and probably also knew about the plants in south-west England. In his patent he was careful to state that his claim was for the combination of graphite with sodium nitrate-based powder, rather than for either of

5985-434: Is to achieve mid-course exo-atmospheric ABM capability from missiles small enough to fit in existing ship-based below-deck vertical launch tubes and air-mobile truck-mounted launch tubes. CL-20 propellant compliant with Congress' 2004 insensitive munitions (IM) law has been demonstrated and may, as its cost comes down, be suitable for use in commercial launch vehicles, with a very significant increase in performance compared with

6118-416: Is well suited for blank rounds , signal flares , burst charges , and rescue-line launches. It is also used in fireworks for lifting shells, in rockets as fuel, and in certain special effects . Combustion converts less than half the mass of gunpowder to gas; most of it turns into particulate matter. Some of it is ejected, wasting propelling power, fouling the air, and generally being a nuisance (giving away

6251-664: The Battle of Khalkhin Gol . In June 1938, the RNII began developing a multiple rocket launcher based on the RS-132 rocket. In August 1939, the completed product was the BM-13 / Katyusha rocket launcher . Towards the end of 1938 the first significant large scale testing of the rocket launchers took place, 233 rockets of various types were used. A salvo of rockets could completely straddle a target at

6384-706: The Delhi Sultanate , and some of the Mongol soldiers remained in northern India after their conversion to Islam. It was written in the Tarikh-i Firishta (1606–1607) that Nasiruddin Mahmud the ruler of the Delhi Sultanate presented the envoy of the Mongol ruler Hulegu Khan with a dazzling pyrotechnics display upon his arrival in Delhi in 1258. Nasiruddin Mahmud tried to express his strength as

6517-510: The J-600T Yıldırım and Bora missiles. Basic variant, with a range of 250–280 km (160–170 mi) and a 500 kg (1,100 lb) warhead . Upgraded variant of the B-611, with a 480 kg (1,060 lb) warhead and a range of 80–260 km (50–162 mi). The B611MR is a semi-ballistic surface-launched anti-radiation missile first advertised in 2014. It uses GPS -inertial guidance and wideband passive radar . The missile

6650-473: The Jin . In the early 13th century the Jin used iron-casing bombs. Projectiles were added to fire lances, and re-usable fire lance barrels were developed, first out of hardened paper, and then metal. By 1257 some fire lances were firing wads of bullets. In the late 13th century metal fire lances became 'eruptors', proto-cannons firing co-viative projectiles (mixed with the propellant, rather than seated over it with

6783-508: The Khmer Empire . Within a decade large quantities of gunpowder could be found in the Khmer Empire . By the end of the century firearms were also used by the Trần dynasty . Even though the knowledge of making gunpowder-based weapons was known after the failed Mongol invasion of Java, and the predecessor of firearms, the pole gun ( bedil tombak ), is recorded as being used by Java in 1413,

SECTION 50

#1732783229371

6916-468: The Mughal Army . Akbar is personally known to have shot a leading Rajput commander during the Siege of Chittorgarh . The Mughals began to use bamboo rockets (mainly for signalling) and employ sappers : special units that undermined heavy stone fortifications to plant gunpowder charges. The Mughal Emperor Shah Jahan is known to have introduced much more advanced matchlocks, their designs were

7049-668: The Reactive Scientific Research Institute (RNII) with the development of the RS-82 and RS-132 rockets , including designing several variations for ground-to-air, ground-to-ground, air-to-ground and air-to-air combat. The earliest known use by the Soviet Air Force of aircraft-launched unguided anti-aircraft rockets in combat against heavier-than-air aircraft took place in August 1939 , during

7182-733: The Second Anglo-Mysore War that ended in a humiliating defeat for the British East India Company . Word of the success of the Mysore rockets against the British triggered research in England, France, Ireland and elsewhere. When the British finally conquered the fort of Srirangapatana in 1799, hundreds of rockets were shipped off to the Royal Arsenal near London to be reverse-engineered. This led to

7315-738: The Sultanate of Mysore by Hyder Ali , French military officers were employed to train the Mysore Army. Hyder Ali and his son Tipu Sultan were the first to introduce modern cannons and muskets , their army was also the first in India to have official uniforms. During the Second Anglo-Mysore War Hyder Ali and his son Tipu Sultan unleashed the Mysorean rockets at their British opponents effectively defeating them on various occasions. The Mysorean rockets inspired

7448-705: The capture of Malacca (1511) resulted in a new type of hybrid tradition matchlock firearm, the istinggar . When the Portuguese came to the archipelago, they referred to the breech-loading swivel gun as berço , while the Spaniards call it verso . By the early 16th century, the Javanese already locally producing large guns, some of them still survived until the present day and dubbed as "sacred cannon" or "holy cannon". These cannons varied between 180- and 260-pounders, weighing anywhere between 3 and 8 tons, length of them between 3 and 6 m. Saltpeter harvesting

7581-415: The droit de fouille or "right to dig", to seize nitrous-containing soil and demolish walls of barnyards, without compensation to the owners. This caused farmers, the wealthy, or entire villages to bribe the petermen and the associated bureaucracy to leave their buildings alone and the saltpeter uncollected. Lavoisier instituted a crash program to increase saltpeter production, revised (and later eliminated)

7714-403: The droit de fouille , researched best refining and powder manufacturing methods, instituted management and record-keeping, and established pricing that encouraged private investment in works. Although saltpeter from new Prussian-style putrefaction works had not been produced yet (the process taking about 18 months), in only a year France had gunpowder to export. A chief beneficiary of this surplus

7847-500: The fuel and oxidizer mass. Grain geometry and chemistry are then chosen to satisfy the required motor characteristics. The following are chosen or solved simultaneously. The results are exact dimensions for grain, nozzle, and case geometries: The grain may or may not be bonded to the casing. Case-bonded motors are more difficult to design, since the deformation of the case and the grain under flight must be compatible. Common modes of failure in solid rocket motors include fracture of

7980-522: The 2006 China International Aviation & Aerospace Exhibition . The BP-12 is a variant that has satellite guidance, and is considered the first member of the family to branch out from the B-611. The BP-12A is similar to the Type 631, with an estimated range of 300–400 km (190–250 mi) and a 480 kg (1,060 lb) warhead. The missile can be integrated into the SY-400 missile launcher. CM-401

8113-582: The 2010s include the European Ariane 5 , US Atlas V and Space Shuttle , and Japan's H-II . The largest solid rocket motors ever built were Aerojet's three 6.60-meter (260 in) monolithic solid motors cast in Florida. Motors 260 SL-1 and SL-2 were 6.63 meters (261 in) in diameter, 24.59 meters (80 ft 8 in) long, weighed 842,900 kilograms (1,858,300 lb), and had a maximum thrust of 16 MN (3,500,000 lbf). Burn duration

SECTION 60

#1732783229371

8246-807: The 9th century AD during the Tang dynasty , first in a formula contained in the Taishang Shengzu Jindan Mijue (太上聖祖金丹秘訣) in 808, and then about 50 years later in a Taoist text known as the Zhenyuan miaodao yaolüe (真元妙道要略). The Taishang Shengzu Jindan Mijue mentions a formula composed of six parts sulfur to six parts saltpeter to one part birthwort herb. According to the Zhenyuan miaodao yaolüe , "Some have heated together sulfur, realgar and saltpeter with honey ; smoke and flames result, so that their hands and faces have been burnt, and even

8379-667: The Athena IC and IIC commercial launch vehicles. A four-stage Athena II using Castor 120s as both first and second stages became the first commercially developed launch vehicle to launch a lunar probe ( Lunar Prospector ) in 1998. Solid rockets can provide high thrust for relatively low cost. For this reason, solids have been used as initial stages in rockets (for example the Space Shuttle ), while reserving high specific impulse engines, especially less massive hydrogen-fueled engines, for higher stages. In addition, solid rockets have

8512-411: The Mongols against European forces at the Battle of Mohi in 1241. Professor Kenneth Warren Chase credits the Mongols for introducing into Europe gunpowder and its associated weaponry. However, there is no clear route of transmission, and while the Mongols are often pointed to as the likeliest vector, Timothy May points out that "there is no concrete evidence that the Mongols used gunpowder weapons on

8645-518: The U.S. until the 1920s that the actual source of corrosion was the potassium chloride residue from potassium chlorate sensitized primers. The bulkier black powder fouling better disperses primer residue. Failure to mitigate primer corrosion by dispersion caused the false impression that nitrocellulose-based powder caused corrosion. Lesmok had some of the bulk of black powder for dispersing primer residue, but somewhat less total bulk than straight black powder, thus requiring less frequent bore cleaning. It

8778-510: The United Kingdom, the finest grain was known as sulfur-free mealed powder ( SMP ). Coarser grains were numbered as sulfur-free gunpowder (SFG n): 'SFG 12', 'SFG 20', 'SFG 40' and 'SFG 90', for example where the number represents the smallest BSS sieve mesh size, which retained no grains. Sulfur's main role in gunpowder is to decrease the ignition temperature. A sample reaction for sulfur-free gunpowder would be: The term black powder

8911-493: The aid of a curative additive. Because of its high performance, moderate ease of manufacturing, and moderate cost, APCP finds widespread use in space, military, and amateur rockets, whereas cheaper and less efficient ANCP finds use in amateur rocketry and gas generators . Ammonium dinitramide , NH 4 N(NO 2 ) 2 , is being considered as a 1-to-1 chlorine-free substitute for ammonium perchlorate in composite propellants. Unlike ammonium nitrate, ADN can be substituted for AP without

9044-1310: The ancient Chinese, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption. All rockets used some form of solid or powdered propellant until the 20th century, when liquid-propellant rockets offered more efficient and controllable alternatives. Because of their simplicity and reliability, solid rockets are still used today in military armaments worldwide, model rockets , solid rocket boosters and on larger applications. Since solid-fuel rockets can remain in storage for an extended period without much propellant degradation, and since they almost always launch reliably, they have been frequently used in military applications such as missiles . The lower performance of solid propellants (as compared to liquids) does not favor their use as primary propulsion in modern medium-to-large launch vehicles customarily used for commercial satellites and major space probes. Solids are, however, frequently used as strap-on boosters to increase payload capacity or as spin-stabilized add-on upper stages when higher-than-normal velocities are required. Solid rockets are used as light launch vehicles for low Earth orbit (LEO) payloads under 2 tons or escape payloads up to 500 kilograms (1,100 lb). A simple solid rocket motor consists of

9177-459: The application of electric current. Unlike conventional rocket motor propellants that are difficult to control and extinguish, ESPs can be ignited reliably at precise intervals and durations. It requires no moving parts and the propellant is insensitive to flames or electrical sparks. Solid propellant rocket motors can be bought for use in model rocketry ; they are normally small cylinders of black powder fuel with an integral nozzle and optionally

9310-404: The brown color. Lesmok powder was a product developed by DuPont in 1911, one of several semi-smokeless products in the industry containing a mixture of black and nitrocellulose powder. It was sold to Winchester and others primarily for .22 and .32 small calibers. Its advantage was that it was believed at the time to be less corrosive than smokeless powders then in use. It was not understood in

9443-399: The bulk semi-smokeless powders ceased to be manufactured in the 1920s. The original dry-compounded powder used in 15th-century Europe was known as "Serpentine", either a reference to Satan or to a common artillery piece that used it. The ingredients were ground together with a mortar and pestle, perhaps for 24 hours, resulting in a fine flour. Vibration during transportation could cause

9576-467: The cargo bay of the Space Shuttle. Star motors have propellant fractions as high as 94.6% but add-on structures and equipment reduce the operating mass fraction by 2% or more. Higher performing solid rocket propellants are used in large strategic missiles (as opposed to commercial launch vehicles). HMX , C 4 H 8 N 4 (NO 2 ) 4 , a nitramine with greater energy than ammonium perchlorate,

9709-452: The casing is often implemented, which ablates to prolong the life of the motor casing. A convergent-divergent design accelerates the exhaust gas out of the nozzle to produce thrust. The nozzle must be constructed from a material that can withstand the heat of the combustion gas flow. Often, heat-resistant carbon-based materials are used, such as amorphous graphite or reinforced carbon–carbon . Some designs include directional control of

9842-427: The compass, and printing did not reach Europe until centuries after they were invented in China. Gunpowder is a granular mixture of: Potassium nitrate is the most important ingredient in terms of both bulk and function because the combustion process releases oxygen from the potassium nitrate, promoting the rapid burning of the other ingredients. To reduce the likelihood of accidental ignition by static electricity ,

9975-454: The currently favored APCP solid propellants. With a specific impulse of 309 s already demonstrated by Peacekeeper's second stage using HMX propellant, the higher energy of CL-20 propellant can be expected to increase specific impulse to around 320 s in similar ICBM or launch vehicle upper stage applications, without the explosive hazard of HMX. An attractive attribute for military use is the ability for solid rocket propellant to remain loaded in

10108-553: The decline of its military might. The earliest Western accounts of gunpowder appear in texts written by English philosopher Roger Bacon in 1267 called Opus Majus and Opus Tertium . The oldest written recipes in continental Europe were recorded under the name Marcus Graecus or Mark the Greek between 1280 and 1300 in the Liber Ignium , or Book of Fires . Some sources mention possible gunpowder weapons being deployed by

10241-677: The development of the Congreve rocket , which the British widely used during the Napoleonic Wars and the War of 1812 . Cannons were introduced to Majapahit when Kublai Khan's Chinese army under the leadership of Ike Mese sought to invade Java in 1293. History of Yuan mentioned that the Mongol used cannons (Chinese: 炮— Pào ) against Daha forces. Cannons were used by the Ayutthaya Kingdom in 1352 during its invasion of

10374-549: The earliest Latin accounts of saltpeter purification are dated after 1200. The earliest chemical formula for gunpowder appeared in the 11th century Song dynasty text, Wujing Zongyao ( Complete Essentials from the Military Classics ), written by Zeng Gongliang between 1040 and 1044. The Wujing Zongyao provides encyclopedia references to a variety of mixtures that included petrochemicals—as well as garlic and honey. A slow match for flame-throwing mechanisms using

10507-459: The early 14th century. The author's name is uncertain but may have been Shams al-Din Muhammad, who died in 1350. Dating from around 1320–1350, the illustrations show gunpowder weapons such as gunpowder arrows, bombs, fire tubes, and fire lances or proto-guns. The manuscript describes a type of gunpowder weapon called a midfa which uses gunpowder to shoot projectiles out of a tube at the end of

10640-738: The end of World War II , and of ICI Nobel 's Roslin gunpowder factory which closed in 1954. This left ICI Nobel's Ardeer site in Scotland , which included a gunpowder factory, as the only factory in Great Britain producing gunpowder. The gunpowder area of the Ardeer site closed in October 1976. Gunpowder and gunpowder weapons were transmitted to India through the Mongol invasions of India . The Mongols were defeated by Alauddin Khalji of

10773-611: The exhaust can turn the smoke opaque. A powdered oxidizer and powdered metal fuel are intimately mixed and immobilized with a rubbery binder (that also acts as a fuel). Composite propellants are often either ammonium-nitrate -based (ANCP) or ammonium-perchlorate -based (APCP). Ammonium nitrate composite propellant often uses magnesium and/or aluminium as fuel and delivers medium performance (I sp of about 210 s (2.1 km/s)) whereas ammonium perchlorate composite propellant often uses aluminium fuel and delivers high performance: vacuum I sp up to 296 s (2.90 km/s) with

10906-542: The exhaust. This can be accomplished by gimballing the nozzle, as in the Space Shuttle SRBs, by the use of jet vanes in the exhaust as in the V-2 rocket, or by liquid injection thrust vectoring (LITV). LITV consists of injecting a liquid into the exhaust stream after the nozzle throat. The liquid then vaporizes, and in most cases chemically reacts, adding mass flow to one side of the exhaust stream and thus providing

11039-483: The existing civilian GPS signal. Another feature of SY-400 is that it shares the same launching vehicle and fire control system of BP-12A ballistic missile, thus simplifying logistics. Solid-fuel rocket A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants ( fuel / oxidizer ). The earliest rockets were solid-fuel rockets powered by gunpowder . The inception of gunpowder rockets in warfare can be credited to

11172-482: The fact, and may well have been colored by the contemporary experiences of the chronicler. Translation difficulties have led to errors or loose interpretations bordering on artistic licence . Ambiguous language can make it difficult to distinguish gunpowder weapons from similar technologies that do not rely on gunpowder. A commonly cited example is a report of the Battle of Mohi in Eastern Europe that mentions

11305-508: The first industrial manufacture of military rockets with the Congreve rocket in 1804. In 1921 the Soviet research and development laboratory Gas Dynamics Laboratory began developing solid-propellant rockets, which resulted in the first launch in 1928, that flew for approximately 1,300 metres. These rockets were used in 1931 for the world's first successful use of rockets to assist take-off of aircraft . The research continued from 1933 by

11438-632: The former Curtis & Harvey 's Glynneath gunpowder factory at Pontneddfechan in Wales closed down. The factory was demolished by fire in 1932. The last remaining gunpowder mill at the Royal Gunpowder Factory, Waltham Abbey was damaged by a German parachute mine in 1941 and it never reopened. This was followed by the closure and demolition of the gunpowder section at the Royal Ordnance Factory , ROF Chorley , at

11571-445: The functional definition of double base propellants. One of the most active areas of solid propellant research is the development of high-energy, minimum-signature propellant using C 6 H 6 N 6 (NO 2 ) 6 CL-20 nitroamine ( China Lake compound #20), which has 14% higher energy per mass and 20% higher energy density than HMX. The new propellant has been successfully developed and tested in tactical rocket motors. The propellant

11704-470: The gooey asphalt, creating a flexible but geometrically stable load-bearing propellant grain that bonded securely to the motor casing. This made possible much larger solid rocket motors. Atlantic Research Corporation significantly boosted composite propellant I sp in 1954 by increasing the amount of powdered aluminium in the propellant to as much as 20%. Solid-propellant rocket technology got its largest boost in technical innovation, size and capability with

11837-440: The grain, failure of case bonding, and air pockets in the grain. All of these produce an instantaneous increase in burn surface area and a corresponding increase in exhaust gas production rate and pressure, which may rupture the casing. Another failure mode is casing seal failure. Seals are required in casings that have to be opened to load the grain. Once a seal fails, hot gas will erode the escape path and result in failure. This

11970-411: The granules of modern gunpowder are typically coated with graphite , which prevents the build-up of electrostatic charge. Charcoal does not consist of pure carbon; rather, it consists of partially pyrolyzed cellulose , in which the wood is not completely decomposed. Carbon differs from ordinary charcoal . Whereas charcoal's autoignition temperature is relatively low, carbon's is much greater. Thus,

12103-584: The gunpowder industry, with the repeal of the Royal Patent in August 1641. In late 14th century Europe, gunpowder was improved by corning , the practice of drying it into small clumps to improve combustion and consistency. During this time, European manufacturers also began regularly purifying saltpeter, using wood ashes containing potassium carbonate to precipitate calcium from their dung liquor, and using ox blood, alum , and slices of turnip to clarify

12236-468: The history of gunpowder is regarding the transmission of gunpowder. While the literary and archaeological evidence supports a Chinese origin for gunpowder and guns, the manner in which gunpowder technology was transferred from China to the West is still under debate. It is unknown why the rapid spread of gunpowder technology across Eurasia took place over several decades whereas other technologies such as paper,

12369-429: The ideal proportions for use as an explosive and a propellant, suggesting that gunpowder was introduced as a mature technology." However, the history of gunpowder is not without controversy. A major problem confronting the study of early gunpowder history is ready access to sources close to the events described. Often the first records potentially describing use of gunpowder in warfare were written several centuries after

12502-658: The ingredients necessary for combustion within the chamber in which they are burned. More advanced solid rocket motors can be throttled , or extinguished and re-ignited, by control of the nozzle geometry or through the use of vent ports. Further, pulsed rocket motors that burn in segments, and that can be ignited upon command are available. Modern designs may also include a steerable nozzle for guidance, avionics , recovery hardware ( parachutes ), self-destruct mechanisms, APUs , controllable tactical motors, controllable divert and attitude control motors, and thermal management materials. The medieval Song dynasty Chinese invented

12635-732: The knowledge of making "true" firearms came much later, after the middle of the 15th century. It was brought by the Islamic nations of West Asia, most probably the Arabs . The precise year of introduction is unknown, but it may be safely concluded to be no earlier than 1460. Before the arrival of the Portuguese in Southeast Asia, the natives already possessed primitive firearms, the Java arquebus . Portuguese influence to local weaponry after

12768-571: The late 19th century led to a contraction of the gunpowder industry. After the end of World War I , the majority of the British gunpowder manufacturers merged into a single company, "Explosives Trades limited", and a number of sites were closed down, including those in Ireland. This company became Nobel Industries Limited, and in 1926 became a founding member of Imperial Chemical Industries . The Home Office removed gunpowder from its list of Permitted Explosives . Shortly afterwards, on 31 December 1931,

12901-419: The main problem of using cheaper sodium nitrate formulations when he patented DuPont "B" blasting powder. After manufacturing grains from press-cake in the usual way, his process tumbled the powder with graphite dust for 12 hours. This formed a graphite coating on each grain that reduced its ability to absorb moisture. Neither the use of graphite nor sodium nitrate was new. Glossing gunpowder corns with graphite

13034-520: The median of 17 of these 22 compositions for rockets (75% nitrates, 9.06% sulfur, and 15.94% charcoal), it is nearly identical to the modern reported ideal recipe of 75% potassium nitrate, 10% sulfur, and 15% charcoal. The text also mentions fuses, incendiary bombs, naphtha pots, fire lances, and an illustration and description of the earliest torpedo . The torpedo was called the "egg which moves itself and burns". Two iron sheets were fastened together and tightened using felt. The flattened pear-shaped vessel

13167-447: The mid-17th century fireworks were used for entertainment on an unprecedented scale in Europe, being popular even at resorts and public gardens. With the publication of Deutliche Anweisung zur Feuerwerkerey (1748), methods for creating fireworks were sufficiently well-known and well-described that "Firework making has become an exact science." In 1774 Louis XVI ascended to the throne of France at age 20. After he discovered that France

13300-634: The mix). Almost all sounding rockets use solid motors. Due to reliability, ease of storage and handling, solid rockets are used on missiles and ICBMs. Solid rockets are suitable for launching small payloads to orbital velocities, especially if three or more stages are used. Many of these are based on repurposed ICBMs. Gunpowder Gunpowder is classified as a low explosive because of its relatively slow decomposition rate, low ignition temperature and consequently low brisance (breaking/shattering) . Low explosives deflagrate (i.e., burn at subsonic speeds), whereas high explosives detonate , producing

13433-560: The mix. This extra component usually is in the form of small crystals of RDX or HMX , both of which have higher energy than ammonium perchlorate. Despite a modest increase in specific impulse, implementation is limited due to the increased hazards of the high-explosive additives. Composite modified double base propellants start with a nitrocellulose/nitroglycerin double base propellant as a binder and add solids (typically ammonium perchlorate (AP) and powdered aluminium ) normally used in composite propellants. The ammonium perchlorate makes up

13566-420: The next 50 years. By the later 1980s and continuing to 2020, these government-developed highly-capable solid rocket technologies have been applied to orbital spaceflight by many government-directed programs , most often as booster rockets to add extra thrust during the early ascent of their primarily liquid rocket launch vehicles . Some designs have had solid rocket upper stages as well. Examples flying in

13699-569: The oxygen deficit introduced by using nitrocellulose , improving the overall specific impulse. The aluminium improves specific impulse as well as combustion stability. High performing propellants such as NEPE-75 used to fuel the Trident II D-5 SLBM replace most of the AP with polyethylene glycol -bound HMX , further increasing specific impulse. The mixing of composite and double base propellant ingredients has become so common as to blur

13832-463: The propellant surface area exposed to the combustion gases. Since the propellant volume is equal to the cross sectional area A s {\displaystyle A_{s}} times the fuel length, the volumetric propellant consumption rate is the cross section area times the linear burn rate b ˙ {\displaystyle {\dot {b}}} , and the instantaneous mass flow rate of combustion gases generated

13965-413: The purest sulfur was supplied from a crater from a mountain near the straits of Bali . On the origins of gunpowder technology, historian Tonio Andrade remarked, "Scholars today overwhelmingly concur that the gun was invented in China." Gunpowder and the gun are widely believed by historians to have originated from China due to the large body of evidence that documents the evolution of gunpowder from

14098-482: The purpose of the powder. For instance, power grades of black powder, unsuitable for use in firearms but adequate for blasting rock in quarrying operations, are called blasting powder rather than gunpowder with standard proportions of 70% nitrate, 14% charcoal, and 16% sulfur; blasting powder may be made with the cheaper sodium nitrate substituted for potassium nitrate and proportions may be as low as 40% nitrate, 30% charcoal, and 30% sulfur. In 1857, Lammot du Pont solved

14231-425: The residue. Gunpowder loads can be used in modern firearms as long as they are not gas-operated . The most compatible modern guns are smoothbore-barreled shotguns that are long-recoil operated with chrome-plated essential parts such as barrels and bores. Such guns have minimal fouling and corrosion and are easier to clean. The first confirmed reference to what can be considered gunpowder in China occurred in

14364-417: The retired Peacekeeper ICBMs). The Naval Air Weapons Station at China Lake, California, developed a new compound, C 6 H 6 N 6 (NO 2 ) 6 , called simply CL-20 (China Lake compound 20). Compared to HMX, CL-20 has 14% more energy per mass, 20% more energy per volume, and a higher oxygen-to-fuel ratio. One of the motivations for development of these very high energy density military solid propellants

14497-403: The rocket for long durations and then be reliably launched at a moment's notice. Black powder (gunpowder) is composed of charcoal (fuel), potassium nitrate (oxidizer), and sulfur (fuel and catalyst). It is one of the oldest pyrotechnic compositions with application to rocketry. In modern times, black powder finds use in low-power model rockets (such as Estes and Quest rockets), as it

14630-561: The second half of the 19th century, when the first high explosives were put into use. Gunpowder is one of the Four Great Inventions of China. Originally developed by Taoists for medicinal purposes, it was first used for warfare around AD 904. Its use in weapons has declined due to smokeless powder replacing it, whilst its relative inefficiency led to newer alternatives such as dynamite and ammonium nitrate/fuel oil replacing it in industrial applications. Gunpowder

14763-414: The siphon principle and for fireworks and rockets is mentioned. The mixture formulas in this book contain at most 50% saltpeter   —   not enough to create an explosion, they produce an incendiary instead. The Essentials was written by a Song dynasty court bureaucrat and there is little evidence that it had any immediate impact on warfare; there is no mention of its use in the chronicles of

14896-622: The solution. During the Renaissance, two European schools of pyrotechnic thought emerged, one in Italy and the other at Nuremberg, Germany. In Italy, Vannoccio Biringuccio , born in 1480, was a member of the guild Fraternita di Santa Barbara but broke with the tradition of secrecy by setting down everything he knew in a book titled De la pirotechnia , written in vernacular. It was published posthumously in 1540, with 9 editions over 138 years, and also reprinted by MIT Press in 1966. By

15029-519: The time. The state-controlled manufacture of gunpowder by the Ottoman Empire through early supply chains to obtain nitre, sulfur and high-quality charcoal from oaks in Anatolia contributed significantly to its expansion between the 15th and 18th century. It was not until later in the 19th century when the syndicalist production of Turkish gunpowder was greatly reduced, which coincided with

15162-463: The tube or cylinder of a naphtha projector ( flamethrower ), then after the invention of gunpowder it meant the tube of fire lances, and eventually it applied to the cylinder of hand-guns and cannons. According to Paul E. J. Hammer, the Mamluks certainly used cannons by 1342. According to J. Lavin, cannons were used by Moors at the siege of Algeciras in 1343. A metal cannon firing an iron ball

15295-446: The twelfth century or the beginning of the thirteenth". In Persia saltpeter was known as "Chinese salt" ( Persian : نمک چینی ) namak-i chīnī ) or "salt from Chinese salt marshes" ( نمک شوره چینی namak-i shūra-yi chīnī ). Hasan al-Rammah included 107 gunpowder recipes in his text al-Furusiyyah wa al-Manasib al-Harbiyya ( The Book of Military Horsemanship and Ingenious War Devices ), 22 of which are for rockets. If one takes

15428-470: The two individual technologies. French war powder in 1879 used the ratio 75% saltpeter, 12.5% charcoal, 12.5% sulfur. English war powder in 1879 used the ratio 75% saltpeter, 15% charcoal, 10% sulfur. The British Congreve rockets used 62.4% saltpeter, 23.2% charcoal and 14.4% sulfur, but the British Mark VII gunpowder was changed to 65% saltpeter, 20% charcoal and 15% sulfur. The explanation for

15561-616: The various mid-20th century government initiatives to develop increasingly capable military missiles. After initial designs of ballistic missile military technology designed with liquid-propellant rockets in the 1940s and 1950s, both the Soviet Union and the United States embarked on major initiatives to develop solid-propellant local , regional , and intercontinental ballistic missiles, including solid-propellant missiles that could be launched from air or sea . Many other governments also developed these military technologies over

15694-528: The wars against the Tanguts in the 11th century, and China was otherwise mostly at peace during this century. However, it had already been used for fire arrows since at least the 10th century. Its first recorded military application dates its use to 904 in the form of incendiary projectiles. In the following centuries various gunpowder weapons such as bombs , fire lances , and the gun appeared in China. Explosive weapons such as bombs have been discovered in

15827-408: The whole house where they were working burned down." Based on these Taoist texts, the invention of gunpowder by Chinese alchemists was likely an accidental byproduct from experiments seeking to create the elixir of life . This experimental medicine origin is reflected in its Chinese name huoyao ( Chinese : 火药/火藥 ; pinyin : huǒ yào /xuo yɑʊ/ ), which means "fire medicine". Saltpeter

15960-517: The wide variety in formulation relates to usage. Powder used for rocketry can use a slower burn rate since it accelerates the projectile for a much longer time—whereas powders for weapons such as flintlocks, cap-locks, or matchlocks need a higher burn rate to accelerate the projectile in a much shorter distance. Cannons usually used lower burn-rate powders, because most would burst with higher burn-rate powders. Besides black powder, there are other historically important types of gunpowder. "Brown gunpowder"

16093-529: Was already an accepted technique in 1839, and sodium nitrate-based blasting powder had been made in Peru for many years using the sodium nitrate mined at Tarapacá (now in Chile). Also, in 1846, two plants were built in south-west England to make blasting powder using this sodium nitrate. The idea may well have been brought from Peru by Cornish miners returning home after completing their contracts. Another suggestion

16226-654: Was coined in the late 19th century, primarily in the United States, to distinguish prior gunpowder formulations from the new smokeless powders and semi-smokeless powders. Semi-smokeless powders featured bulk volume properties that approximated black powder, but had significantly reduced amounts of smoke and combustion products. Smokeless powder has different burning properties (pressure vs. time) and can generate higher pressures and work per gram. This can rupture older weapons designed for black powder. Smokeless powders ranged in color from brownish tan to yellow to white. Most of

16359-606: Was described by Shihab al-Din Abu al-Abbas al-Qalqashandi between 1365 and 1376. The musket appeared in the Ottoman Empire by 1465. In 1598, Chinese writer Zhao Shizhen described Turkish muskets as being superior to European muskets. The Chinese military book Wu Pei Chih (1621) later described Turkish muskets that used a rack-and-pinion mechanism, which was not known to have been used in European or Chinese firearms at

16492-521: Was filled with gunpowder, metal filings, "good mixtures", two rods, and a large rocket for propulsion. Judging by the illustration, it was evidently supposed to glide across the water. Fire lances were used in battles between the Muslims and Mongols in 1299 and 1303. Al-Hassan claims that in the Battle of Ain Jalut of 1260, the Mamluks used "the first cannon in history" against the Mongols, utilizing

16625-476: Was known to the Chinese by the mid-1st century AD and was primarily produced in the provinces of Sichuan , Shanxi , and Shandong . There is strong evidence of the use of saltpeter and sulfur in various medicinal combinations. A Chinese alchemical text dated 492 noted saltpeter burnt with a purple flame, providing a practical and reliable means of distinguishing it from other inorganic salts, thus enabling alchemists to evaluate and compare purification techniques;

16758-535: Was last sold by Winchester in 1947. The development of smokeless powders, such as cordite , in the late 19th century created the need for a spark-sensitive priming charge , such as gunpowder. However, the sulfur content of traditional gunpowders caused corrosion problems with Cordite Mk I and this led to the introduction of a range of sulfur-free gunpowders, of varying grain sizes. They typically contain 70.5 parts of saltpeter and 29.5 parts of charcoal. Like black powder, they were produced in different grain sizes. In

16891-594: Was not self-sufficient in gunpowder, a Gunpowder Administration was established; to head it, the lawyer Antoine Lavoisier was appointed. Although from a bourgeois family, after his degree in law Lavoisier became wealthy from a company set up to collect taxes for the Crown; this allowed him to pursue experimental natural science as a hobby. Without access to cheap saltpeter (controlled by the British), for hundreds of years France had relied on saltpetremen with royal warrants,

17024-572: Was recorded by Dutch and German travelers as being common in even the smallest villages and was collected from the decomposition process of large dung hills specifically piled for the purpose. The Dutch punishment for possession of non-permitted gunpowder appears to have been amputation. Ownership and manufacture of gunpowder was later prohibited by the colonial Dutch occupiers. According to colonel McKenzie quoted in Sir Thomas Stamford Raffles ', The History of Java (1817),

17157-603: Was the American Revolution . By careful testing and adjusting the proportions and grinding time, powder from mills such as at Essonne outside Paris became the best in the world by 1788, and inexpensive. Two British physicists, Andrew Noble and Frederick Abel , worked to improve the properties of gunpowder during the late 19th century. This formed the basis for the Noble-Abel gas equation for internal ballistics . The introduction of smokeless powder in

17290-488: Was the cause of the Space Shuttle Challenger disaster . Solid rocket fuel deflagrates from the surface of exposed propellant in the combustion chamber. In this fashion, the geometry of the propellant inside the rocket motor plays an important role in the overall motor performance. As the surface of the propellant burns, the shape evolves (a subject of study in internal ballistics), most often changing

17423-423: Was two minutes. The nozzle throat was large enough to walk through standing up. The motor was capable of serving as a 1-to-1 replacement for the 8-engine Saturn I liquid-propellant first stage but was never used as such. Motor 260 SL-3 was of similar length and weight but had a maximum thrust of 24 MN (5,400,000 lbf) and a shorter duration. Design begins with the total impulse required, which determines

17556-407: Was used for the space shuttle boosters . Filament-wound graphite epoxy casings are used for high-performance motors. The casing must be designed to withstand the pressure and resulting stresses of the rocket motor, possibly at elevated temperature. For design, the casing is considered a pressure vessel . To protect the casing from corrosive hot gases, a sacrificial thermal liner on the inside of

17689-673: Was used in the propellant of the Peacekeeper ICBM and is the main ingredient in NEPE-75 propellant used in the Trident II D-5 Fleet Ballistic Missile. It is because of explosive hazard that the higher energy military solid propellants containing HMX are not used in commercial launch vehicles except when the LV is an adapted ballistic missile already containing HMX propellant (Minotaur IV and V based on

#370629