118-633: Computer-aided technologies ( CAx ) is the use of computer technology to aid in the design , analysis, and manufacture of products. Advanced CAx tools merge many different aspects of product lifecycle management (PLM), including design, finite element analysis (FEA), manufacturing, production planning, product Computer A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations ( computation ). Modern digital electronic computers can perform generic sets of operations known as programs . These programs enable computers to perform
236-521: A binary system meant that Zuse's machines were easier to build and potentially more reliable, given the technologies available at that time. The Z3 was not itself a universal computer but could be extended to be Turing complete . Zuse's next computer, the Z4 , became the world's first commercial computer; after initial delay due to the Second World War, it was completed in 1950 and delivered to
354-632: A central processing unit (CPU) in the form of a microprocessor , together with some type of computer memory , typically semiconductor memory chips. The processing element carries out arithmetic and logical operations, and a sequencing and control unit can change the order of operations in response to stored information . Peripheral devices include input devices ( keyboards , mice , joysticks , etc.), output devices ( monitors , printers , etc.), and input/output devices that perform both functions (e.g. touchscreens ). Peripheral devices allow information to be retrieved from an external source, and they enable
472-419: A keyboard , and computed and printed the results, demonstrating the feasibility of an electromechanical analytical engine. During the first half of the 20th century, many scientific computing needs were met by increasingly sophisticated analog computers, which used a direct mechanical or electrical model of the problem as a basis for computation . However, these were not programmable and generally lacked
590-524: A mass-production basis, which limited them to a number of specialized applications. At the University of Manchester , a team under the leadership of Tom Kilburn designed and built a machine using the newly developed transistors instead of valves. Their first transistorized computer and the first in the world, was operational by 1953 , and a second version was completed there in April 1955. However,
708-429: A monolithic integrated circuit (IC) chip. Kilby's IC had external wire connections, which made it difficult to mass-produce. Noyce also came up with his own idea of an integrated circuit half a year later than Kilby. Noyce's invention was the first true monolithic IC chip. His chip solved many practical problems that Kilby's had not. Produced at Fairchild Semiconductor, it was made of silicon , whereas Kilby's chip
826-428: A pointer in two dimensions in a graphical user interface (GUI). The mouse turns movements of the hand backward and forward, left and right into equivalent electronic signals that in turn are used to move the pointer. The relative movements of the mouse on the surface are applied to the position of the pointer on the screen, which signals the point where actions of the user take place, so hand movements are replicated by
944-652: A 1998 retrospective, it was the first working machine to contain all of the elements essential to a modern electronic computer. As soon as the Baby had demonstrated the feasibility of its design, a project began at the university to develop it into a practically useful computer, the Manchester Mark 1 . The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1 , the world's first commercially available general-purpose computer. Built by Ferranti , it
1062-512: A Chip (SoCs) are complete computers on a microchip (or chip) the size of a coin. They may or may not have integrated RAM and flash memory . If not integrated, the RAM is usually placed directly above (known as Package on package ) or below (on the opposite side of the circuit board ) the SoC, and the flash memory is usually placed right next to the SoC. This is done to improve data transfer speeds, as
1180-432: A cable, many modern mice are cordless, relying on short-range radio communication with the connected system. In addition to moving a cursor , computer mice have one or more buttons to allow operations such as the selection of a menu item on a display. Mice often also feature other elements, such as touch surfaces and scroll wheels , which enable additional control and dimensional input. The earliest known written use of
1298-661: A large organization believed at first that his company sold lab mice . Hawley, who manufactured mice for Xerox, stated that "Practically, I have the market all to myself right now"; a Hawley mouse cost $ 415. In 1982, Logitech introduced the P4 Mouse at the Comdex trade show in Las Vegas, its first hardware mouse. That same year Microsoft made the decision to make the MS-DOS program Microsoft Word mouse-compatible, and developed
SECTION 10
#17327986197101416-403: A medieval European counting house , a checkered cloth would be placed on a table, and markers moved around on it according to certain rules, as an aid to calculating sums of money. The Antikythera mechanism is believed to be the earliest known mechanical analog computer , according to Derek J. de Solla Price . It was designed to calculate astronomical positions. It was discovered in 1901 in
1534-498: A metal ball rolling on two rubber-coated wheels was ever built, and the device was kept as a military secret. Another early trackball was built by Kenyon Taylor , a British electrical engineer working in collaboration with Tom Cranston and Fred Longstaff. Taylor was part of the original Ferranti Canada , working on the Royal Canadian Navy 's DATAR (Digital Automated Tracking and Resolving) system in 1952. DATAR
1652-555: A mouse as well. The third marketed version of an integrated mouse shipped as a part of a computer and intended for personal computer navigation came with the Xerox 8010 Star in 1981. By 1982, the Xerox 8010 was probably the best-known computer with a mouse. The Sun-1 also came with a mouse, and the forthcoming Apple Lisa was rumored to use one, but the peripheral remained obscure; Jack Hawley of The Mouse House reported that one buyer for
1770-580: A mouse device named Rollkugelsteuerung (German for "Trackball control") was shown in a sales brochure by the German company AEG - Telefunken as an optional input device for the SIG ;100 vector graphics terminal, part of the system around their process computer TR 86 and the TR 440 [ de ] main frame. Based on an even earlier trackball device, the mouse device had been developed by
1888-525: A much more general design, an analytical engine , was possible. The input of programs and data was to be provided to the machine via punched cards , a method being used at the time to direct mechanical looms such as the Jacquard loom . For output, the machine would have a printer, a curve plotter and a bell. The machine would also be able to punch numbers onto cards to be read in later. The engine would incorporate an arithmetic logic unit , control flow in
2006-529: A number of successes at breaking encrypted German military communications. The German encryption machine, Enigma , was first attacked with the help of the electro-mechanical bombes which were often run by women. To crack the more sophisticated German Lorenz SZ 40/42 machine, used for high-level Army communications, Max Newman and his colleagues commissioned Flowers to build the Colossus . He spent eleven months from early February 1943 designing and building
2124-505: A pair of light beams, located so that a given beam becomes interrupted or again starts to pass light freely when the other beam of the pair is about halfway between changes. Simple logic circuits interpret the relative timing to indicate which direction the wheel is rotating. This incremental rotary encoder scheme is sometimes called quadrature encoding of the wheel rotation, as the two optical sensors produce signals that are in approximately quadrature phase . The mouse sends these signals to
2242-562: A sequence of sets of values. The whole machine was to be controlled by a read-only program, which was complete with provisions for conditional branching . He also introduced the idea of floating-point arithmetic . In 1920, to celebrate the 100th anniversary of the invention of the arithmometer , Torres presented in Paris the Electromechanical Arithmometer, which allowed a user to input arithmetic problems through
2360-403: A similar product. Modern computer mice took form at the École Polytechnique Fédérale de Lausanne (EPFL) under the inspiration of Professor Jean-Daniel Nicoud and at the hands of engineer and watchmaker André Guignard . This new design incorporated a single hard rubber mouseball and three buttons, and remained a common design until the mainstream adoption of the scroll-wheel mouse during
2478-460: A successful demonstration of its use in computing tables in 1906. In his work Essays on Automatics published in 1914, Leonardo Torres Quevedo wrote a brief history of Babbage's efforts at constructing a mechanical Difference Engine and Analytical Engine. The paper contains a design of a machine capable to calculate formulas like a x ( y − z ) 2 {\displaystyle a^{x}(y-z)^{2}} , for
SECTION 20
#17327986197102596-402: A universal Turing machine. Early computing machines had fixed programs. Changing its function required the re-wiring and re-structuring of the machine. With the proposal of the stored-program computer this changed. A stored-program computer includes by design an instruction set and can store in memory a set of instructions (a program ) that details the computation . The theoretical basis for
2714-419: A user can drag and drop a picture representing a file onto an image of a trash can, indicating the intention to delete the file. This intuitive and visual approach to interaction has become synonymous with organizing digital content and simplifying file management tasks. Standard Semantic Gestures In addition to the drag and drop gesture, several other semantic gestures have emerged as standard conventions within
2832-577: A wide range of tasks. The term computer system may refer to a nominally complete computer that includes the hardware , operating system , software , and peripheral equipment needed and used for full operation; or to a group of computers that are linked and function together, such as a computer network or computer cluster . A broad range of industrial and consumer products use computers as control systems , including simple special-purpose devices like microwave ovens and remote controls , and factory devices like industrial robots . Computers are at
2950-486: Is "mice"; the online Oxford Dictionaries cites a 1984 use, and earlier uses include J. C. R. Licklider 's "The Computer as a Communication Device" of 1968. The trackball , a related pointing device, was invented in 1946 by Ralph Benjamin as part of a post- World War II -era fire-control radar plotting system called the Comprehensive Display System (CDS). Benjamin was then working for
3068-399: Is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of the pointer (called a cursor) on a display , which allows a smooth control of the graphical user interface of a computer . The first public demonstration of a mouse controlling a computer system was done by Doug Engelbart in 1968 as part of
3186-463: Is the stored program , where all the instructions for computing are stored in memory. Von Neumann acknowledged that the central concept of the modern computer was due to this paper. Turing machines are to this day a central object of study in theory of computation . Except for the limitations imposed by their finite memory stores, modern computers are said to be Turing-complete , which is to say, they have algorithm execution capability equivalent to
3304-401: Is the drag and drop gesture, which has become pervasive across various applications and platforms. The Drag and Drop Gesture The drag and drop gesture is a fundamental gestural convention that enables users to manipulate objects on the screen seamlessly. It involves a series of actions performed by the user: This gesture allows users to transfer or rearrange objects effortlessly. For instance,
3422-454: Is typically designed to be plug compatible with an analog joystick. The "Color Mouse", originally marketed by RadioShack for their Color Computer (but also usable on MS-DOS machines equipped with analog joystick ports, provided the software accepted joystick input) was the best-known example. Early optical mice relied entirely on one or more light-emitting diodes (LEDs) and an imaging array of photodiodes to detect movement relative to
3540-619: The Antikythera wreck off the Greek island of Antikythera , between Kythera and Crete , and has been dated to approximately c. 100 BCE . Devices of comparable complexity to the Antikythera mechanism would not reappear until the fourteenth century. Many mechanical aids to calculation and measurement were constructed for astronomical and navigation use. The planisphere was a star chart invented by Abū Rayhān al-Bīrūnī in
3658-507: The E6B circular slide rule used for time and distance calculations on light aircraft. In the 1770s, Pierre Jaquet-Droz , a Swiss watchmaker , built a mechanical doll ( automaton ) that could write holding a quill pen. By switching the number and order of its internal wheels different letters, and hence different messages, could be produced. In effect, it could be mechanically "programmed" to read instructions. Along with two other complex machines,
Computer-aided technologies - Misplaced Pages Continue
3776-641: The ETH Zurich . The computer was manufactured by Zuse's own company, Zuse KG , which was founded in 1941 as the first company with the sole purpose of developing computers in Berlin. The Z4 served as the inspiration for the construction of the ERMETH , the first Swiss computer and one of the first in Europe. Purely electronic circuit elements soon replaced their mechanical and electromechanical equivalents, at
3894-853: The Leibniz Supercomputing Centre in Munich in 1972 are well preserved in a museum, two others survived in a museum at Stuttgart University, two in Hamburg, the one from Aachen at the Computer History Museum in the US, and yet another sample was recently donated to the Heinz Nixdorf MuseumsForum (HNF) in Paderborn. Anecdotal reports claim that Telefunken's attempt to patent the device
4012-464: The Mother of All Demos . Mice originally used two separate wheels to directly track movement across a surface: one in the x-dimension and one in the Y. Later, the standard design shifted to use a ball rolling on a surface to detect motion, in turn connected to internal rollers. Most modern mice use optical movement detection with no moving parts. Though originally all mice were connected to a computer by
4130-476: The Mozilla web browser will follow a link in response to a primary button click, will bring up a contextual menu of alternative actions for that link in response to a secondary-button click, and will often open the link in a new tab or window in response to a click with the tertiary (middle) mouse button. The German company Telefunken published on their early ball mouse on 2 October 1968. Telefunken's mouse
4248-497: The microcomputer revolution in the 1970s. The speed, power, and versatility of computers have been increasing dramatically ever since then, with transistor counts increasing at a rapid pace ( Moore's law noted that counts doubled every two years), leading to the Digital Revolution during the late 20th and early 21st centuries. Conventionally, a modern computer consists of at least one processing element , typically
4366-504: The "second generation" of computers. Compared to vacuum tubes, transistors have many advantages: they are smaller, and require less power than vacuum tubes, so give off less heat. Junction transistors were much more reliable than vacuum tubes and had longer, indefinite, service life. Transistorized computers could contain tens of thousands of binary logic circuits in a relatively compact space. However, early junction transistors were relatively bulky devices that were difficult to manufacture on
4484-525: The 1920s, Vannevar Bush and others developed mechanical differential analyzers. In the 1890s, the Spanish engineer Leonardo Torres Quevedo began to develop a series of advanced analog machines that could solve real and complex roots of polynomials , which were published in 1901 by the Paris Academy of Sciences . Charles Babbage , an English mechanical engineer and polymath , originated
4602-458: The 1990s. In 1985, René Sommer added a microprocessor to Nicoud's and Guignard's design. Through this innovation, Sommer is credited with inventing a significant component of the mouse, which made it more "intelligent"; though optical mice from Mouse Systems had incorporated microprocessors by 1984. Another type of mechanical mouse, the "analog mouse" (now generally regarded as obsolete), uses potentiometers rather than encoder wheels, and
4720-499: The British Royal Navy Scientific Service. Benjamin's project used analog computers to calculate the future position of target aircraft based on several initial input points provided by a user with a joystick . Benjamin felt that a more elegant input device was needed and invented what they called a "roller ball" for this purpose. The device was patented in 1947, but only a prototype using
4838-619: The Cambridge EDSAC of 1949, became operational in April 1951 and ran the world's first routine office computer job . The concept of a field-effect transistor was proposed by Julius Edgar Lilienfeld in 1925. John Bardeen and Walter Brattain , while working under William Shockley at Bell Labs , built the first working transistor , the point-contact transistor , in 1947, which was followed by Shockley's bipolar junction transistor in 1948. From 1955 onwards, transistors replaced vacuum tubes in computer designs, giving rise to
Computer-aided technologies - Misplaced Pages Continue
4956-591: The EDVAC in 1945. The Manchester Baby was the world's first stored-program computer . It was built at the University of Manchester in England by Frederic C. Williams , Tom Kilburn and Geoff Tootill , and ran its first program on 21 June 1948. It was designed as a testbed for the Williams tube , the first random-access digital storage device. Although the computer was described as "small and primitive" by
5074-455: The ENIAC were six women, often known collectively as the "ENIAC girls". It combined the high speed of electronics with the ability to be programmed for many complex problems. It could add or subtract 5000 times a second, a thousand times faster than any other machine. It also had modules to multiply, divide, and square root. High speed memory was limited to 20 words (about 80 bytes). Built under
5192-531: The MOS transistor, was invented at Bell Labs between 1955 and 1960 and was the first truly compact transistor that could be miniaturized and mass-produced for a wide range of uses. With its high scalability , and much lower power consumption and higher density than bipolar junction transistors, the MOSFET made it possible to build high-density integrated circuits . In addition to data processing, it also enabled
5310-455: The Scottish scientist Sir William Thomson in 1872 was of great utility to navigation in shallow waters. It used a system of pulleys and wires to automatically calculate predicted tide levels for a set period at a particular location. The differential analyser , a mechanical analog computer designed to solve differential equations by integration , used wheel-and-disc mechanisms to perform
5428-493: The U.S. Although the ENIAC was similar to the Colossus, it was much faster, more flexible, and it was Turing-complete. Like the Colossus, a "program" on the ENIAC was defined by the states of its patch cables and switches, a far cry from the stored program electronic machines that came later. Once a program was written, it had to be mechanically set into the machine with manual resetting of plugs and switches. The programmers of
5546-538: The US, John Vincent Atanasoff and Clifford E. Berry of Iowa State University developed and tested the Atanasoff–Berry Computer (ABC) in 1942, the first "automatic electronic digital computer". This design was also all-electronic and used about 300 vacuum tubes, with capacitors fixed in a mechanically rotating drum for memory. During World War II, the British code-breakers at Bletchley Park achieved
5664-898: The advent of the integrated circuit (IC). The idea of the integrated circuit was first conceived by a radar scientist working for the Royal Radar Establishment of the Ministry of Defence , Geoffrey W.A. Dummer . Dummer presented the first public description of an integrated circuit at the Symposium on Progress in Quality Electronic Components in Washington, D.C. , on 7 May 1952. The first working ICs were invented by Jack Kilby at Texas Instruments and Robert Noyce at Fairchild Semiconductor . Kilby recorded his initial ideas concerning
5782-647: The basic concept which underlies all electronic digital computers. By 1938, the United States Navy had developed an electromechanical analog computer small enough to use aboard a submarine . This was the Torpedo Data Computer , which used trigonometry to solve the problem of firing a torpedo at a moving target. During World War II similar devices were developed in other countries as well. Early digital computers were electromechanical ; electric switches drove mechanical relays to perform
5900-530: The best Arithmetician that euer [ sic ] breathed, and he reduceth thy dayes into a short number." This usage of the term referred to a human computer , a person who carried out calculations or computations . The word continued to have the same meaning until the middle of the 20th century. During the latter part of this period, women were often hired as computers because they could be paid less than their male counterparts. By 1943, most human computers were women. The Online Etymology Dictionary gives
6018-570: The calculation. These devices had a low operating speed and were eventually superseded by much faster all-electric computers, originally using vacuum tubes . The Z2 , created by German engineer Konrad Zuse in 1939 in Berlin , was one of the earliest examples of an electromechanical relay computer. In 1941, Zuse followed his earlier machine up with the Z3 , the world's first working electromechanical programmable , fully automatic digital computer. The Z3
SECTION 50
#17327986197106136-854: The command to delete the selected shape. This gesture-based interaction enables users to perform actions quickly and efficiently without relying solely on traditional input methods. Challenges and Benefits of Gestural Interfaces While gestural interfaces offer a more immersive and interactive user experience, they also present challenges. One of the primary difficulties lies in the requirement of finer motor control from users. Gestures demand precise movements, which can be more challenging for individuals with limited dexterity or those who are new to this mode of interaction. However, despite these challenges, gestural interfaces have gained popularity due to their ability to simplify complex tasks and improve efficiency. Several gestural conventions have become widely adopted, making them more accessible to users. One such convention
6254-523: The company in 1966 in what had been a parallel and independent discovery . As the name suggests and unlike Engelbart's mouse, the Telefunken model already had a ball (diameter 40 mm, weight 40 g ) and two mechanical 4-bit rotational position transducers with Gray code -like states, allowing easy movement in any direction. The bits remained stable for at least two successive states to relax debouncing requirements. This arrangement
6372-420: The computer system via the mouse cable, directly as logic signals in very old mice such as the Xerox mice, and via a data-formatting IC in modern mice. The driver software in the system converts the signals into motion of the mouse cursor along X and Y axes on the computer screen. The ball is mostly steel, with a precision spherical rubber surface. The weight of the ball, given an appropriate working surface under
6490-565: The concept of a programmable computer. Considered the " father of the computer ", he conceptualized and invented the first mechanical computer in the early 19th century. After working on his difference engine he announced his invention in 1822, in a paper to the Royal Astronomical Society , titled "Note on the application of machinery to the computation of astronomical and mathematical tables". He also designed to aid in navigational calculations, in 1833 he realized that
6608-704: The core of general-purpose devices such as personal computers and mobile devices such as smartphones . Computers power the Internet , which links billions of computers and users. Early computers were meant to be used only for calculations. Simple manual instruments like the abacus have aided people in doing calculations since ancient times. Early in the Industrial Revolution , some mechanical devices were built to automate long, tedious tasks, such as guiding patterns for looms . More sophisticated electrical machines did specialized analog calculations in
6726-499: The data signals do not have to travel long distances. Since ENIAC in 1945, computers have advanced enormously, with modern SoCs (such as the Snapdragon 865) being the size of a coin while also being hundreds of thousands of times more powerful than ENIAC, integrating billions of transistors, and consuming only a few watts of power. The first mobile computers were heavy and ran from mains power. The 50 lb (23 kg) IBM 5100
6844-515: The decision of the British Government to cease funding. Babbage's failure to complete the analytical engine can be chiefly attributed to political and financial difficulties as well as his desire to develop an increasingly sophisticated computer and to move ahead faster than anyone else could follow. Nevertheless, his son, Henry Babbage , completed a simplified version of the analytical engine's computing unit (the mill ) in 1888. He gave
6962-522: The device was based on an earlier trackball-like device (also named Rollkugel ) that was embedded into radar flight control desks. This trackball had been originally developed by a team led by Rainer Mallebrein [ de ] at Telefunken Konstanz for the German Bundesanstalt für Flugsicherung [ de ] (Federal Air Traffic Control). It was part of the corresponding workstation system SAP 300 and
7080-460: The direction of John Mauchly and J. Presper Eckert at the University of Pennsylvania, ENIAC's development and construction lasted from 1943 to full operation at the end of 1945. The machine was huge, weighing 30 tons, using 200 kilowatts of electric power and contained over 18,000 vacuum tubes, 1,500 relays, and hundreds of thousands of resistors, capacitors, and inductors. The principle of
7198-483: The doll is at the Musée d'Art et d'Histoire of Neuchâtel , Switzerland , and still operates. In 1831–1835, mathematician and engineer Giovanni Plana devised a Perpetual Calendar machine , which through a system of pulleys and cylinders could predict the perpetual calendar for every year from 0 CE (that is, 1 BCE) to 4000 CE, keeping track of leap years and varying day length. The tide-predicting machine invented by
SECTION 60
#17327986197107316-435: The drag and drop convention, form the building blocks of gestural interfaces, allowing users to interact with digital content using intuitive and natural movements. At the end of 20th century, digitizer mice (puck) with magnifying glass was used with AutoCAD for the digitizations of blueprints . Other uses of the mouse's input occur commonly in special application domains. In interactive three-dimensional graphics ,
7434-630: The earlier trackball device. The device was finished in early 1968, and together with light pens and trackballs , it was commercially offered as an optional input device for their system starting later that year. Not all customers opted to buy the device, which added costs of DM 1,500 per piece to the already up to 20-million DM deal for the main frame, of which only a total of 46 systems were sold or leased. They were installed at more than 20 German universities including RWTH Aachen , Technische Universität Berlin , University of Stuttgart and Konstanz . Several Rollkugel mice installed at
7552-481: The early 11th century. The astrolabe was invented in the Hellenistic world in either the 1st or 2nd centuries BCE and is often attributed to Hipparchus . A combination of the planisphere and dioptra , the astrolabe was effectively an analog computer capable of working out several different kinds of problems in spherical astronomy . An astrolabe incorporating a mechanical calendar computer and gear -wheels
7670-420: The early 2000s. These smartphones and tablets run on a variety of operating systems and recently became the dominant computing device on the market. These are powered by System on a Chip (SoCs), which are complete computers on a microchip the size of a coin. Computers can be classified in a number of different ways, including: Computer mouse A computer mouse (plural mice , also mouses )
7788-399: The early 20th century. The first digital electronic calculating machines were developed during World War II , both electromechanical and using thermionic valves . The first semiconductor transistors in the late 1940s were followed by the silicon -based MOSFET (MOS transistor) and monolithic integrated circuit chip technologies in the late 1950s, leading to the microprocessor and
7906-477: The exact definition of the term "microprocessor", it is largely undisputed that the first single-chip microprocessor was the Intel 4004 , designed and realized by Federico Faggin with his silicon-gate MOS IC technology, along with Ted Hoff , Masatoshi Shima and Stanley Mazor at Intel . In the early 1970s, MOS IC technology enabled the integration of more than 10,000 transistors on a single chip. System on
8024-420: The few axes of movement mice can detect. When mice have more than one button, the software may assign different functions to each button. Often, the primary (leftmost in a right-handed configuration) button on the mouse will select items, and the secondary (rightmost in a right-handed) button will bring up a menu of alternative actions applicable to that item. For example, on platforms with more than one button,
8142-531: The file in a window. Different ways of operating the mouse cause specific things to happen in the GUI: The Concept of Gestural Interfaces Gestural interfaces have become an integral part of modern computing, allowing users to interact with their devices in a more intuitive and natural way. In addition to traditional pointing-and-clicking actions, users can now employ gestural inputs to issue commands or perform specific actions. These stylized motions of
8260-508: The first Colossus. After a functional test in December 1943, Colossus was shipped to Bletchley Park, where it was delivered on 18 January 1944 and attacked its first message on 5 February. Colossus was the world's first electronic digital programmable computer. It used a large number of valves (vacuum tubes). It had paper-tape input and was capable of being configured to perform a variety of boolean logical operations on its data, but it
8378-633: The first PC-compatible mouse. The Microsoft Mouse shipped in 1983, thus beginning the Microsoft Hardware division of the company. However, the mouse remained relatively obscure until the appearance of the Macintosh 128K (which included an updated version of the single-button Lisa Mouse ) in 1984, and of the Amiga 1000 and the Atari ST in 1985. A mouse typically controls the motion of
8496-725: The first attested use of computer in the 1640s, meaning 'one who calculates'; this is an "agent noun from compute (v.)". The Online Etymology Dictionary states that the use of the term to mean " 'calculating machine' (of any type) is from 1897." The Online Etymology Dictionary indicates that the "modern use" of the term, to mean 'programmable digital electronic computer' dates from "1945 under this name; [in a] theoretical [sense] from 1937, as Turing machine ". The name has remained, although modern computers are capable of many higher-level functions. Devices have been used to aid computation for thousands of years, mostly using one-to-one correspondence with fingers . The earliest counting device
8614-409: The form of conditional branching and loops , and integrated memory , making it the first design for a general-purpose computer that could be described in modern terms as Turing-complete . The machine was about a century ahead of its time. All the parts for his machine had to be made by hand – this was a major problem for a device with thousands of parts. Eventually, the project was dissolved with
8732-427: The forward-backward motion of the mouse and the other the left-right motion. Opposite the two rollers is a third one (white, in the photo, at 45 degrees) that is spring-loaded to push the ball against the other two rollers. Each roller is on the same shaft as an encoder wheel that has slotted edges; the slots interrupt infrared light beams to generate electrical pulses that represent wheel movement. Each wheel's disc has
8850-667: The gestural interface paradigm. These gestures serve specific purposes and contribute to a more intuitive user experience. Some of the notable semantic gestures include: Crossing-based goal: This gesture involves crossing a specific boundary or threshold on the screen to trigger an action or complete a task. For example, swiping across the screen to unlock a device or confirm a selection. Menu traversal: Menu traversal gestures facilitate navigation through hierarchical menus or options. Users can perform gestures such as swiping or scrolling to explore different menu levels or activate specific commands. Pointing: Pointing gestures involve positioning
8968-466: The integrated circuit in July 1958, successfully demonstrating the first working integrated example on 12 September 1958. In his patent application of 6 February 1959, Kilby described his new device as "a body of semiconductor material ... wherein all the components of the electronic circuit are completely integrated". However, Kilby's invention was a hybrid integrated circuit (hybrid IC), rather than
9086-411: The integration. In 1876, Sir William Thomson had already discussed the possible construction of such calculators, but he had been stymied by the limited output torque of the ball-and-disk integrators . In a differential analyzer, the output of one integrator drove the input of the next integrator, or a graphing output. The torque amplifier was the advance that allowed these machines to work. Starting in
9204-617: The inventor of the computer mouse. Engelbart was also recognized as such in various obituary titles after his death in July 2013. By 1963, Engelbart had already established a research lab at SRI, the Augmentation Research Center (ARC), to pursue his objective of developing both hardware and software computer technology to "augment" human intelligence. That November, while attending a conference on computer graphics in Reno, Nevada , Engelbart began to ponder how to adapt
9322-467: The keyboard". In 1964, Bill English joined ARC, where he helped Engelbart build the first mouse prototype. They christened the device the mouse as early models had a cord attached to the rear part of the device which looked like a tail, and in turn, resembled the common mouse . According to Roger Bates, a hardware designer in English, another reason for choosing this name was because the cursor on
9440-590: The machine did make use of valves to generate its 125 kHz clock waveforms and in the circuitry to read and write on its magnetic drum memory , so it was not the first completely transistorized computer. That distinction goes to the Harwell CADET of 1955, built by the electronics division of the Atomic Energy Research Establishment at Harwell . The metal–oxide–silicon field-effect transistor (MOSFET), also known as
9558-452: The modern computer was proposed by Alan Turing in his seminal 1936 paper, On Computable Numbers . Turing proposed a simple device that he called "Universal Computing machine" and that is now known as a universal Turing machine . He proved that such a machine is capable of computing anything that is computable by executing instructions (program) stored on tape, allowing the machine to be programmable. The fundamental concept of Turing's design
9676-403: The more famous Sir William Thomson. The art of mechanical analog computing reached its zenith with the differential analyzer , built by H. L. Hazen and Vannevar Bush at MIT starting in 1927. This built on the mechanical integrators of James Thomson and the torque amplifiers invented by H. W. Nieman. A dozen of these devices were built before their obsolescence became obvious. By the 1950s,
9794-405: The mouse became widely used in personal computers. In any event, the invention of the mouse was just a small part of Engelbart's much larger project of augmenting human intellect. Several other experimental pointing-devices developed for Engelbart's oN-Line System ( NLS ) exploited different body movements – for example, head-mounted devices attached to the chin or nose – but ultimately
9912-456: The mouse cursor over an object or element to interact with it. This fundamental gesture enables users to select, click, or access contextual menus. Mouseover (pointing or hovering): Mouseover gestures occur when the cursor is positioned over an object without clicking. This action often triggers a visual change or displays additional information about the object, providing users with real-time feedback. These standard semantic gestures, along with
10030-459: The mouse cursor, known as "gestures", have the potential to enhance user experience and streamline workflow. Mouse Gestures in Action To illustrate the concept of gestural interfaces, let's consider a drawing program as an example. In this scenario, a user can employ a gesture to delete a shape on the canvas. By rapidly moving the mouse cursor in an "x" motion over the shape, the user can trigger
10148-495: The mouse won out because of its speed and convenience. The first mouse, a bulky device (pictured) used two potentiometers perpendicular to each other and connected to wheels: the rotation of each wheel translated into motion along one axis . At the time of the "Mother of All Demos", Engelbart's group had been using their second-generation, 3-button mouse for about a year. On 2 October 1968, three years after Engelbart's prototype but more than two months before his public demo ,
10266-617: The mouse's motion often translates directly into changes in the virtual objects' or camera's orientation. For example, in the first-person shooter genre of games (see below), players usually employ the mouse to control the direction in which the virtual player's "head" faces: moving the mouse up will cause the player to look up, revealing the view above the player's head. A related function makes an image of an object rotate so that all sides can be examined. 3D design and animation software often modally chord many different combinations to allow objects and cameras to be rotated and moved through space with
10384-568: The mouse, provides a reliable grip so the mouse's movement is transmitted accurately. Ball mice and wheel mice were manufactured for Xerox by Jack Hawley, doing business as The Mouse House in Berkeley, California, starting in 1975. Based on another invention by Jack Hawley, proprietor of the Mouse House, Honeywell produced another type of mechanical mouse. Instead of a ball, it had two wheels rotating at off axes. Key Tronic later produced
10502-420: The pointer. Clicking or pointing (stopping movement while the cursor is within the bounds of an area) can select files, programs or actions from a list of names, or (in graphical interfaces) through small images called "icons" and other elements. For example, a text file might be represented by a picture of a paper notebook and clicking while the cursor points at this icon might cause a text editing program to open
10620-486: The practical use of MOS transistors as memory cell storage elements, leading to the development of MOS semiconductor memory , which replaced earlier magnetic-core memory in computers. The MOSFET led to the microcomputer revolution , and became the driving force behind the computer revolution . The MOSFET is the most widely used transistor in computers, and is the fundamental building block of digital electronics . The next great advance in computing power came with
10738-493: The results of operations to be saved and retrieved. It was not until the mid-20th century that the word acquired its modern definition; according to the Oxford English Dictionary , the first known use of the word computer was in a different sense, in a 1613 book called The Yong Mans Gleanings by the English writer Richard Brathwait : "I haue [ sic ] read the truest computer of Times, and
10856-591: The same time that digital calculation replaced analog. The engineer Tommy Flowers , working at the Post Office Research Station in London in the 1930s, began to explore the possible use of electronics for the telephone exchange . Experimental equipment that he built in 1934 went into operation five years later, converting a portion of the telephone exchange network into an electronic data processing system, using thousands of vacuum tubes . In
10974-408: The screen was also referred to as "CAT" at this time. As noted above, this "mouse" was first mentioned in print in a July 1965 report, on which English was the lead author. On 9 December 1968, Engelbart publicly demonstrated the mouse at what would come to be known as The Mother of All Demos . Engelbart never received any royalties for it, as his employer SRI held the patent, which expired before
11092-490: The stored-program computer was laid out by Alan Turing in his 1936 paper. In 1945, Turing joined the National Physical Laboratory and began work on developing an electronic stored-program digital computer. His 1945 report "Proposed Electronic Calculator" was the first specification for such a device. John von Neumann at the University of Pennsylvania also circulated his First Draft of a Report on
11210-443: The success of digital electronic computers had spelled the end for most analog computing machines, but analog computers remained in use during the 1950s in some specialized applications such as education ( slide rule ) and aircraft ( control systems ). Claude Shannon 's 1937 master's thesis laid the foundations of digital computing, with his insight of applying Boolean algebra to the analysis and synthesis of switching circuits being
11328-472: The term mouse or mice in reference to a computer pointing device is in Bill English 's July 1965 publication, "Computer-Aided Display Control". This likely originated from its resemblance to the shape and size of a mouse , with the cord resembling its tail . The popularity of wireless mice without cords makes the resemblance less obvious. According to Roger Bates, a hardware designer under English,
11446-410: The term also came about because the cursor on the screen was, for an unknown reason, referred to as "CAT" and was seen by the team as if it would be chasing the new desktop device. The plural for the small rodent is always "mice" in modern usage. The plural for a computer mouse is either "mice" or "mouses" according to most dictionaries, with "mice" being more common. The first recorded plural usage
11564-553: The terminal SIG 3001, which had been designed and developed since 1963. Development for the TR ;440 main frame began in 1965. This led to the development of the TR 86 process computer system with its SIG 100-86 terminal. Inspired by a discussion with a university customer, Mallebrein came up with the idea of "reversing" the existing Rollkugel trackball into a moveable mouse-like device in 1966, so that customers did not have to be bothered with mounting holes for
11682-532: The tracks and sent the resulting data to other ships in a task force using pulse-code modulation radio signals. This trackball used a standard Canadian five-pin bowling ball. It was not patented, since it was a secret military project. Douglas Engelbart of the Stanford Research Institute (now SRI International ) has been credited in published books by Thierry Bardini , Paul Ceruzzi , Howard Rheingold , and several others as
11800-470: The underlying principles of the planimeter to inputting X- and Y-coordinate data. On 14 November 1963, he first recorded his thoughts in his personal notebook about something he initially called a " bug ", which is a "3-point" form could have a "drop point and 2 orthogonal wheels". He wrote that the "bug" would be "easier" and "more natural" to use, and unlike a stylus, it would stay still when let go, which meant it would be "much better for coordination with
11918-607: The underlying surface, eschewing the internal moving parts a mechanical mouse uses in addition to its optics. A laser mouse is an optical mouse that uses coherent (laser) light. The earliest optical mice detected movement on pre-printed mousepad surfaces, whereas the modern LED optical mouse works on most opaque diffuse surfaces; it is usually unable to detect movement on specular surfaces like polished stone. Laser diodes provide good resolution and precision, improving performance on opaque specular surfaces. Later, more surface-independent optical mice use an optoelectronic sensor (essentially,
12036-412: The versatility and accuracy of modern digital computers. The first modern analog computer was a tide-predicting machine , invented by Sir William Thomson (later to become Lord Kelvin) in 1872. The differential analyser , a mechanical analog computer designed to solve differential equations by integration using wheel-and-disc mechanisms, was conceptualized in 1876 by James Thomson , the elder brother of
12154-486: The way to light sensors, thus detecting in their turn the motion of the ball. This variant of the mouse resembled an inverted trackball and became the predominant form used with personal computers throughout the 1980s and 1990s. The Xerox PARC group also settled on the modern technique of using both hands to type on a full-size keyboard and grabbing the mouse when required. The ball mouse has two freely rotating rollers. These are located 90 degrees apart. One roller detects
12272-406: Was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA in 1962. General Microelectronics later introduced the first commercial MOS IC in 1964, developed by Robert Norman. Following the development of the self-aligned gate (silicon-gate) MOS transistor by Robert Kerwin, Donald Klein and John Sarace at Bell Labs in 1967, the first silicon-gate MOS IC with self-aligned gates
12390-625: Was an early example. Later portables such as the Osborne 1 and Compaq Portable were considerably lighter but still needed to be plugged in. The first laptops, such as the Grid Compass , removed this requirement by incorporating batteries – and with the continued miniaturization of computing resources and advancements in portable battery life, portable computers grew in popularity in the 2000s. The same developments allowed manufacturers to integrate computing resources into cellular mobile phones by
12508-537: Was built with 2000 relays , implementing a 22 bit word length that operated at a clock frequency of about 5–10 Hz . Program code was supplied on punched film while data could be stored in 64 words of memory or supplied from the keyboard. It was quite similar to modern machines in some respects, pioneering numerous advances such as floating-point numbers . Rather than the harder-to-implement decimal system (used in Charles Babbage 's earlier design), using
12626-430: Was chosen so that the data could also be transmitted to the TR 86 front-end process computer and over longer distance telex lines with c. 50 baud . Weighing 465 grams (16.4 oz), the device with a total height of about 7 cm (2.8 in) came in a c. 12 cm (4.7 in) diameter hemispherical injection-molded thermoplastic casing featuring one central push button. As noted above,
12744-511: Was delivered to the University of Manchester in February 1951. At least seven of these later machines were delivered between 1953 and 1957, one of them to Shell labs in Amsterdam . In October 1947 the directors of British catering company J. Lyons & Company decided to take an active role in promoting the commercial development of computers. Lyons's LEO I computer, modelled closely on
12862-443: Was developed by Federico Faggin at Fairchild Semiconductor in 1968. The MOSFET has since become the most critical device component in modern ICs. The development of the MOS integrated circuit led to the invention of the microprocessor , and heralded an explosion in the commercial and personal use of computers. While the subject of exactly which device was the first microprocessor is contentious, partly due to lack of agreement on
12980-825: Was developed in the late 16th century and found application in gunnery, surveying and navigation. The planimeter was a manual instrument to calculate the area of a closed figure by tracing over it with a mechanical linkage. The slide rule was invented around 1620–1630, by the English clergyman William Oughtred , shortly after the publication of the concept of the logarithm . It is a hand-operated analog computer for doing multiplication and division. As slide rule development progressed, added scales provided reciprocals, squares and square roots, cubes and cube roots, as well as transcendental functions such as logarithms and exponentials, circular and hyperbolic trigonometry and other functions . Slide rules with special scales are still used for quick performance of routine calculations, such as
13098-449: Was invented by Abi Bakr of Isfahan , Persia in 1235. Abū Rayhān al-Bīrūnī invented the first mechanical geared lunisolar calendar astrolabe, an early fixed- wired knowledge processing machine with a gear train and gear-wheels, c. 1000 AD . The sector , a calculating instrument used for solving problems in proportion, trigonometry , multiplication and division, and for various functions, such as squares and cube roots,
13216-477: Was made of germanium . Noyce's monolithic IC was fabricated using the planar process , developed by his colleague Jean Hoerni in early 1959. In turn, the planar process was based on Carl Frosch and Lincoln Derick work on semiconductor surface passivation by silicon dioxide. Modern monolithic ICs are predominantly MOS ( metal–oxide–semiconductor ) integrated circuits, built from MOSFETs (MOS transistors). The earliest experimental MOS IC to be fabricated
13334-643: Was most likely a form of tally stick . Later record keeping aids throughout the Fertile Crescent included calculi (clay spheres, cones, etc.) which represented counts of items, likely livestock or grains, sealed in hollow unbaked clay containers. The use of counting rods is one example. The abacus was initially used for arithmetic tasks. The Roman abacus was developed from devices used in Babylonia as early as 2400 BCE. Since then, many other forms of reckoning boards or tables have been invented. In
13452-434: Was not Turing-complete. Nine Mk II Colossi were built (The Mk I was converted to a Mk II making ten machines in total). Colossus Mark I contained 1,500 thermionic valves (tubes), but Mark II with 2,400 valves, was both five times faster and simpler to operate than Mark I, greatly speeding the decoding process. The ENIAC (Electronic Numerical Integrator and Computer) was the first electronic programmable computer built in
13570-479: Was one of the first computers designed for individual use in 1973 and is regarded as the first modern computer to use a mouse. Alan Kay designed the 16-by-16 mouse cursor icon with its left edge vertical and right edge 45-degrees so it displays well on the bitmap. Inspired by PARC 's Alto, the Lilith , a computer which had been developed by a team around Niklaus Wirth at ETH Zürich between 1978 and 1980, provided
13688-555: Was rejected by the German Patent Office due to lack of inventiveness. For the air traffic control system, the Mallebrein team had already developed a precursor to touch screens in form of an ultrasonic-curtain-based pointing device in front of the display. In 1970, they developed a device named " Touchinput - Einrichtung " ("touch input device") based on a conductively coated glass screen. The Xerox Alto
13806-460: Was similar in concept to Benjamin's display. The trackball used four disks to pick up motion, two each for the X and Y directions. Several rollers provided mechanical support. When the ball was rolled, the pickup discs spun and contacts on their outer rim made periodic contact with wires, producing pulses of output with each movement of the ball. By counting the pulses, the physical movement of the ball could be determined. A digital computer calculated
13924-493: Was sold as optional equipment for their computer systems. Bill English , builder of Engelbart's original mouse, created a ball mouse in 1972 while working for Xerox PARC . The ball mouse replaced the external wheels with a single ball that could rotate in any direction. It came as part of the hardware package of the Xerox Alto computer. Perpendicular chopper wheels housed inside the mouse's body chopped beams of light on
#709290