Misplaced Pages

Coriobacteriia

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In bacteriology , gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall .

#57942

51-944: The Coriobacteriia are a class of Gram-positive bacteria within the Actinomycetota phylum. Species within this group are non sporulating , strict or facultative anaerobes that are capable of thriving in a diverse set of ecological niches. Gordonibacter species are the only members capable of motility by means of flagella within the class. Several species within the Coriobacteriia class have been implicated with human diseases that range in severity. Atopobium , Olsenella , and Cryptobacterium species have responsible for human oral infections including periodontitis , halitosis , and other endodontic infections. Eggerthella species have been associated with severe blood bacteraemia and ulcerative colitis . Historically, all Coriobacteriia species were placed within

102-461: A cell or tissue can be readily seen and studied. The usual purpose is to reveal cytological details that might otherwise not be apparent; however, staining can also reveal where certain chemicals or specific chemical reactions are taking place within cells or tissues. In vitro staining involves colouring cells or structures that have been removed from their biological context. Certain stains are often combined to reveal more details and features than

153-493: A class-specific ( DNA , proteins , lipids , carbohydrates ) dye to a substrate to qualify or quantify the presence of a specific compound. Staining and fluorescent tagging can serve similar purposes. Biological staining is also used to mark cells in flow cytometry , and to flag proteins or nucleic acids in gel electrophoresis . Light microscopes are used for viewing stained samples at high magnification, typically using bright-field or epi-fluorescence illumination. Staining

204-399: A cytoplasmic membrane and an outer cell membrane; they contain only a thin layer of peptidoglycan (2–3 nm) between these membranes. The presence of inner and outer cell membranes defines a new compartment in these cells: the periplasmic space or the periplasmic compartment. These bacteria have been designated as diderm bacteria . The distinction between the monoderm and diderm bacteria

255-471: A living cell, when supravital stains enter a living cell, they might produce a characteristic pattern of staining different from the staining of an already fixed cell (e.g. "reticulocyte" look versus diffuse "polychromasia"). To achieve desired effects, the stains are used in very dilute solutions ranging from 1 : 5 000 to 1 : 500 000 (Howey, 2000). Note that many stains may be used in both living and fixed cells. The preparatory steps involved depend on

306-621: A monophyletic clade and that no loss of the outer membrane from any species from this group has occurred. In the classical sense, six gram-positive genera are typically pathogenic in humans. Two of these, Streptococcus and Staphylococcus , are cocci (sphere-shaped). The remaining organisms are bacilli (rod-shaped) and can be subdivided based on their ability to form spores . The non-spore formers are Corynebacterium and Listeria (a coccobacillus), whereas Bacillus and Clostridium produce spores. The spore-forming bacteria can again be divided based on their respiration : Bacillus

357-972: A number of bacterial taxa (viz. Negativicutes , Fusobacteriota , Synergistota , and Elusimicrobiota ) that are either part of the phylum Bacillota or branch in its proximity are found to possess a diderm cell structure. However, a conserved signature indel (CSI) in the HSP60 ( GroEL ) protein distinguishes all traditional phyla of gram-negative bacteria (e.g., Pseudomonadota , Aquificota , Chlamydiota , Bacteroidota , Chlorobiota , " Cyanobacteria ", Fibrobacterota , Verrucomicrobiota , Planctomycetota , Spirochaetota , Acidobacteriota , etc.) from these other atypical diderm bacteria, as well as other phyla of monoderm bacteria (e.g., Actinomycetota , Bacillota , Thermotogota , Chloroflexota , etc.). The presence of this CSI in all sequenced species of conventional LPS ( lipopolysaccharide )-containing gram-negative bacterial phyla provides evidence that these phyla of bacteria form

408-793: A recipient host bacterium). In transformation, the genetic material passes through the intervening medium, and uptake is completely dependent on the recipient bacterium. As of 2014 about 80 species of bacteria were known to be capable of transformation, about evenly divided between gram-positive and gram-negative bacteria ; the number might be an overestimate since several of the reports are supported by single papers. Transformation among gram-positive bacteria has been studied in medically important species such as Streptococcus pneumoniae , Streptococcus mutans , Staphylococcus aureus and Streptococcus sanguinis and in gram-positive soil bacteria Bacillus subtilis and Bacillus cereus . The adjectives gram-positive and gram-negative derive from

459-508: A single membrane, but stain gram-negative due to either lack of the peptidoglycan layer, as in the mycoplasmas , or their inability to retain the Gram stain because of their cell wall composition—also show close relationship to the gram-positive bacteria. For the bacterial cells bounded by a single cell membrane, the term monoderm bacteria has been proposed. In contrast to gram-positive bacteria, all typical gram-negative bacteria are bounded by

510-453: A single order ( Coriobacteriales ) and a single family ( Coriobacteriaceae ). This view, however, was not reflective of accurate evolutionary interrelationships within the class. The current taxonomic view is justified by the presence of several conserved signature indels (CSIs) that have been found at the different taxonomic ranks. These CSIs are specific and represent synapomorphic characteristics that can be used to distinguish groups within

561-482: A single stain alone. Combined with specific protocols for fixation and sample preparation, scientists and physicians can use these standard techniques as consistent, repeatable diagnostic tools. A counterstain is stain that makes cells or structures more visible, when not completely visible with the principal stain. While ex vivo, many cells continue to live and metabolize until they are "fixed". Some staining methods are based on this property. Those stains excluded by

SECTION 10

#1732776246058

612-455: A surface layer called an S-layer . In gram-positive bacteria, the S-layer is attached to the peptidoglycan layer. Gram-negative bacteria's S-layer is attached directly to the outer membrane . Specific to gram-positive bacteria is the presence of teichoic acids in the cell wall. Some of these are lipoteichoic acids, which have a lipid component in the cell membrane that can assist in anchoring

663-469: A useful tool in clinical microbiology laboratories, where it can be important in early selection of appropriate antibiotics . On most Gram-stained preparations, Gram-negative organisms appear red or pink due to their counterstain. Due to the presence of higher lipid content, after alcohol-treatment, the porosity of the cell wall increases, hence the CVI complex (crystal violet – iodine) can pass through. Thus,

714-402: Is a facultative anaerobe , while Clostridium is an obligate anaerobe . Also, Rathybacter , Leifsonia , and Clavibacter are three gram-positive genera that cause plant disease. Gram-positive bacteria are capable of causing serious and sometimes fatal infections in newborn infants. Novel species of clinically relevant gram-positive bacteria also include Catabacter hongkongensis , which

765-427: Is able to stain the background instead of the organisms because the cell wall of microorganisms typically has a negative charge which repels the negatively charged stain. The dyes used in negative staining are acidic. Note: negative staining is a mild technique that may not destroy the microorganisms, and is therefore unsuitable for studying pathogens. Unlike negative staining, positive staining uses basic dyes to color

816-428: Is ambiguous as it refers to three distinct aspects (staining result, envelope organization, taxonomic group), which do not necessarily coalesce for some bacterial species. The gram-positive and gram-negative staining response is also not a reliable characteristic as these two kinds of bacteria do not form phylogenetic coherent groups. However, although Gram staining response is an empirical criterion, its basis lies in

867-569: Is an acid-fast stain used to stain species of Mycobacterium tuberculosis that do not stain with the standard laboratory staining procedures such as Gram staining. This stain is performed through the use of both red coloured carbol fuchsin that stains the bacteria and a counter stain such as methylene blue . Haematoxylin and eosin staining is frequently used in histology to examine thin tissue sections. Haematoxylin stains cell nuclei blue, while eosin stains cytoplasm, connective tissue and other extracellular substances pink or red. Eosin

918-427: Is an emerging pathogen belonging to Bacillota . Transformation is one of three processes for horizontal gene transfer , in which exogenous genetic material passes from a donor bacterium to a recipient bacterium, the other two processes being conjugation (transfer of genetic material between two bacterial cells in direct contact) and transduction (injection of donor bacterial DNA by a bacteriophage virus into

969-426: Is because the thick layer of peptidoglycan in the bacterial cell wall retains the stain after it is washed away from the rest of the sample, in the decolorization stage of the test. Conversely, gram-negative bacteria cannot retain the violet stain after the decolorization step; alcohol used in this stage degrades the outer membrane of gram-negative cells, making the cell wall more porous and incapable of retaining

1020-486: Is more commonly used than negative staining in microbiology. The different types of positive staining are listed below. Simple Staining is a technique that only uses one type of stain on a slide at a time. Because only one stain is being used, the specimens (for positive stains) or background (for negative stains) will be one color. Therefore, simple stains are typically used for viewing only one organism per slide. Differential staining uses multiple stains per slide. Based on

1071-465: Is not limited to only biological materials, since it can also be used to study the structure of other materials; for example, the lamellar structures of semi-crystalline polymers or the domain structures of block copolymers . In vivo staining (also called vital staining or intravital staining) is the process of dyeing living tissues. By causing certain cells or structures to take on contrasting colours, their form ( morphology ) or position within

SECTION 20

#1732776246058

1122-525: Is particularly useful for identifying endospore-forming bacterial pathogens such as Clostridioides difficile . Prior to the development of more efficient methods, this stain was performed using the Wirtz method with heat fixation and counterstain. Through the use of malachite green and a diluted ratio of carbol fuchsin, fixing bacteria in osmic acid was a great way to ensure no blending of dyes. However, newly revised staining methods have significantly decreased

1173-407: Is supported by conserved signature indels in a number of important proteins (viz. DnaK, GroEL). Of these two structurally distinct groups of bacteria, monoderms are indicated to be ancestral. Based upon a number of observations including that the gram-positive bacteria are the major producers of antibiotics and that, in general, gram-negative bacteria are resistant to them, it has been proposed that

1224-421: Is used by microbiologists to place bacteria into two main categories, Gram-positive (+) and Gram-negative (-). Gram-positive bacteria have a thick layer of peptidoglycan within the cell wall, and Gram-negative bacteria have a thin layer of peptidoglycan. Gram-positive bacteria take up the crystal violet stain used in the test, and then appear to be purple-coloured when seen through an optical microscope . This

1275-451: Is usually successful, even when the positive staining methods fail, is to use a negative stain . This can be achieved by smearing the sample onto the slide and then applying nigrosin (a black synthetic dye) or India ink (an aqueous suspension of carbon particles). After drying, the microorganisms may be viewed in bright field microscopy as lighter inclusions well-contrasted against the dark environment surrounding them. Negative staining

1326-571: The Coriobacteriia , both at the family and order levels. The distinction of the orders within the Coriobacteriia is also supported phylogenetic tree branching and by consistent characteristics; members belonging to the Coriobacteriales are glucose-fermenting, saccharolytic species while the Eggerthellales order has species that are consistently unable to ferment glucose and are asaccharolytic. CSIs have also been used to resolve

1377-413: The medical fields of histopathology , hematology , and cytopathology that focus on the study and diagnoses of diseases at the microscopic level. Stains may be used to define biological tissues (highlighting, for example, muscle fibers or connective tissue ), cell populations (classifying different blood cells ), or organelles within individual cells. In biochemistry , it involves adding

1428-697: The Maneval's stain is applied Bacteria: Purple capsule, bacterial cell, stands out against dark background Cytoplasm- colorless Cytoplasm: Light pink Cytoplasm: Green Gram staining is used to determine gram status to classifying bacteria broadly based on the composition of their cell wall . Gram staining uses crystal violet to stain cell walls, iodine (as a mordant), and a fuchsin or safranin counterstain to (mark all bacteria). Gram status, helps divide specimens of bacteria into two groups, generally representative of their underlying phylogeny. This characteristic, in combination with other techniques makes it

1479-418: The absence of the outer membrane. In general, the following characteristics are present in gram-positive bacteria: Only some species have a capsule , usually consisting of polysaccharides . Also, only some species are flagellates , and when they do have flagella , have only two basal body rings to support them, whereas gram-negative have four. Both gram-positive and gram-negative bacteria commonly have

1530-409: The aid of a mordant. a.) Ringer's method b.) Dyar's method 0.34% C.P.C a.) Leifson's method b.) Loeffler's method Loeffler's mordant (20%Tannic acid ) a.) Fontana's method b.) Becker's method Fontana's mordant(5%Tannic acid) Permeabilization involves treatment of cells with (usually) a mild surfactant . This treatment dissolves cell membranes , and allows larger dye molecules into

1581-501: The archetypical diderm bacteria where the outer cell membrane contains lipopolysaccharide, and the diderm bacteria where outer cell membrane is made up of mycolic acid . In general, gram-positive bacteria are monoderms and have a single lipid bilayer whereas gram-negative bacteria are diderms and have two bilayers. Exceptions include: Some Bacillota species are not gram-positive. The class Negativicutes, which includes Selenomonas , are diderm and stain gram-negative. Additionally,

Coriobacteriia - Misplaced Pages Continue

1632-445: The cell's interior. Mounting usually involves attaching the samples to a glass microscope slide for observation and analysis. In some cases, cells may be grown directly on a slide. For samples of loose cells (as with a blood smear or a pap smear ) the sample can be directly applied to a slide. For larger pieces of tissue, thin sections (slices) are made using a microtome ; these slices can then be mounted and inspected. Most of

1683-516: The commission's journal Biotechnic & Histochemistry . Many dyes are inconsistent in composition from one supplier to another. The use of BSC-certified stains eliminates a source of unexpected results. Some vendors sell stains "certified" by themselves rather than by the Biological Stain Commission. Such products may or may not be suitable for diagnostic and other applications. A simple staining method for bacteria that

1734-413: The crystal violet stain. Their peptidoglycan layer is much thinner and sandwiched between an inner cell membrane and a bacterial outer membrane , causing them to take up the counterstain ( safranin or fuchsine ) and appear red or pink. Despite their thicker peptidoglycan layer, gram-positive bacteria are more receptive to certain cell wall –targeting antibiotics than gram-negative bacteria, due to

1785-508: The dyes commonly used in microscopy are available as BSC-certified stains . This means that samples of the manufacturer's batch have been tested by an independent body, the Biological Stain Commission ( BSC ), and found to meet or exceed certain standards of purity, dye content and performance in staining techniques ensuring more accurately performed experiments and more reliable results. These standards are published in

1836-939: The form of a single amino acid insert in the enzyme deoxyuridine 59-triphosphate (dUTP) nucleotidohydrolase has been found that is shared by all Coriobacteriia members, as well as several Actinomycetota species, and absent from all other bacteria. This CSI provides unambiguous support for Coriobacteriia' s membership within the Actinomycetota. The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI). Anaerosomataceae Parvivirga Atopobiaceae Raoultibacter Denitrobacterium Coriobacteriaceae Eggerthellaceae Eggerthellaceae Coriobacteriaceae Atopobiaceae Gram-positive The Gram stain

1887-468: The gram-positive bacteria was challenged, with major implications for the therapeutic and general study of these organisms. Based on molecular studies of the 16S sequences, Woese recognised twelve bacterial phyla . Two of these were gram-positive and were divided on the proportion of the guanine and cytosine content in their DNA . The high G + C phylum was made up of the Actinobacteria , and

1938-471: The kingdom Monera was divided into four divisions based primarily on Gram staining: Bacillota (positive in staining), Gracilicutes (negative in staining), Mollicutes (neutral in staining) and Mendocutes (variable in staining). Based on 16S ribosomal RNA phylogenetic studies of the late microbiologist Carl Woese and collaborators and colleagues at the University of Illinois , the monophyly of

1989-435: The living cells but taken up by the already dead cells are called vital stains (e.g. trypan blue or propidium iodide for eukaryotic cells). Those that enter and stain living cells are called supravital stains (e.g. New Methylene Blue and brilliant cresyl blue for reticulocyte staining). However, these stains are eventually toxic to the organism, some more so than others. Partly due to their toxic interaction inside

2040-562: The low G + C phylum contained the Firmicutes . The Actinomycetota include the Corynebacterium , Mycobacterium , Nocardia and Streptomyces genera. The (low G + C) Bacillota, have a 45–60% GC content, but this is lower than that of the Actinomycetota. Although bacteria are traditionally divided into two main groups, gram-positive and gram-negative, based on their Gram stain retention property, this classification system

2091-401: The marked differences in the ultrastructure and chemical composition of the bacterial cell wall, marked by the absence or presence of an outer lipid membrane. All gram-positive bacteria are bounded by a single-unit lipid membrane, and, in general, they contain a thick layer (20–80 nm) of peptidoglycan responsible for retaining the Gram stain. A number of other bacteria—that are bounded by

Coriobacteriia - Misplaced Pages Continue

2142-526: The outer cell membrane in gram-negative bacteria (diderms) has evolved as a protective mechanism against antibiotic selection pressure. Some bacteria, such as Deinococcus , which stain gram-positive due to the presence of a thick peptidoglycan layer and also possess an outer cell membrane are suggested as intermediates in the transition between monoderm (gram-positive) and diderm (gram-negative) bacteria. The diderm bacteria can also be further differentiated between simple diderms lacking lipopolysaccharide,

2193-437: The peptidoglycan. Along with cell shape , Gram staining is a rapid method used to differentiate bacterial species. Such staining, together with growth requirement and antibiotic susceptibility testing, and other macroscopic and physiologic tests, forms a basis for practical classification and subdivision of the bacteria (e.g., see figure and pre-1990 versions of Bergey's Manual of Systematic Bacteriology ). Historically ,

2244-424: The phylogenetic position of the Coriobacteriia among all bacteria where they have been found exclusively for all species within the class, delineating them from other Actinomycetota . The Coriobacteriia are an early branching lineage within the Actinomycetota phylum The deep branching of the class has led to dispute over its membership within the phylum and whether or not it is a true Actinomycetota group. A CSI in

2295-481: The primary stain is not retained. In addition, in contrast to most Gram-positive bacteria, Gram-negative bacteria have only a few layers of peptidoglycan and a secondary cell membrane made primarily of lipopolysaccharide. Endospore staining is used to identify the presence or absence of endospores , which make bacteria very difficult to kill. Bacterial spores have proven to be difficult to stain as they are not permeable to aqueous dye reagents.  Endospore staining

2346-1004: The shape of the cells or tissue involved as much as possible. Sometimes heat fixation is used to kill, adhere, and alter the specimen so it accepts stains. Most chemical fixatives (chemicals causing fixation) generate chemical bonds between proteins and other substances within the sample, increasing their rigidity. Common fixatives include formaldehyde , ethanol , methanol , and/or picric acid . Pieces of tissue may be embedded in paraffin wax to increase their mechanical strength and stability and to make them easier to cut into thin slices. Mordants are chemical agents which have power of making dyes to stain materials which otherwise are unstainable Mordants are classified into two categories: a) Basic mordant: React with acidic dyes e.g. alum, ferrous sulfate, cetylpyridinium chloride etc. b) Acidic mordant : React with basic dyes e.g. picric acid, tannic acid etc. Direct Staining: Carried out without mordant. Indirect Staining: Staining with

2397-427: The specimen against a bright background. While chromophore is used for both negative and positive staining alike, the type of chromophore used in this technique is a positively charged ion instead of a negative one. The negatively charged cell wall of many microorganisms attracts the positively charged chromophore which causes the specimen to absorb the stain giving it the color of the stain being used. Positive staining

2448-571: The stains being used, organisms with different properties will appear different colors allowing for categorization of multiple specimens. Differential staining can also be used to color different organelles within one organism which can be seen in endospore staining . e.g. Methylene blue, Safranin°≤×←→ etc. shapes and arrangements into thin film Gram negative appears pink in color Non acid fast: Blue Vegetative cells: Red A: Hiss method (Positive technique) B: Manevals's technique (Negative) Bacterial suspension smeared along with Congo red and

2499-564: The surname of Hans Christian Gram ; as eponymous adjectives , their initial letter can be either capital G or lower-case g , depending on which style guide (e.g., that of the CDC ), if any, governs the document being written. Stain (biology) Staining is a technique used to enhance contrast in samples, generally at the microscopic level. Stains and dyes are frequently used in histology (microscopic study of biological tissues ), in cytology (microscopic study of cells ), and in

2550-483: The time it takes to create these stains. This revision included substitution of carbol fuchsin with aqueous Safranin paired with a newly diluted 5% formula of malachite green. This new and improved composition of stains was performed in the same way as before with the use of heat fixation, rinsing, and blotting dry for later examination. Upon examination, all endospore forming bacteria will be stained green accompanied by all other cells appearing red. A Ziehl–Neelsen stain

2601-443: The type of analysis planned. Some or all of the following procedures may be required. Wet mounts are used to view live organisms and can be made using water and certain stains. The liquid is added to the slide before the addition of the organism and a coverslip is placed over the specimen in the water and stain to help contain it within the field of view . Fixation , which may itself consist of several steps, aims to preserve

SECTION 50

#1732776246058
#57942