Misplaced Pages

Calculus

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The method of exhaustion ( Latin : methodus exhaustionis ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape . If the sequence is correctly constructed, the difference in area between the n th polygon and the containing shape will become arbitrarily small as n becomes large. As this difference becomes arbitrarily small, the possible values for the area of the shape are systematically "exhausted" by the lower bound areas successively established by the sequence members.

#39960

124-405: Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations . Originally called infinitesimal calculus or "the calculus of infinitesimals ", it has two major branches, differential calculus and integral calculus . The former concerns instantaneous rates of change , and

248-591: A set whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra , as established by the influence and works of Emmy Noether . Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include: The study of types of algebraic structures as mathematical objects

372-480: A Leibniz-like development of the usual rules of calculus. There is also smooth infinitesimal analysis , which differs from non-standard analysis in that it mandates neglecting higher-power infinitesimals during derivations. Based on the ideas of F. W. Lawvere and employing the methods of category theory , smooth infinitesimal analysis views all functions as being continuous and incapable of being expressed in terms of discrete entities. One aspect of this formulation

496-508: A broad range of foundational approaches, including a definition of continuity in terms of infinitesimals, and a (somewhat imprecise) prototype of an (ε, δ)-definition of limit in the definition of differentiation. In his work, Weierstrass formalized the concept of limit and eliminated infinitesimals (although his definition can validate nilsquare infinitesimals). Following the work of Weierstrass, it eventually became common to base calculus on limits instead of infinitesimal quantities, though

620-467: A corresponding increase in area. The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr , π being defined as the ratio of the circumference to the diameter (C/d). He also provided the bounds 3 +  / 71  <  π  < 3 +  / 70 , (giving

744-430: A fluctuating velocity over a given period. If f ( x ) represents speed as it varies over time, the distance traveled between the times represented by a and b is the area of the region between f ( x ) and the x -axis, between x = a and x = b . Mathematics Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for

868-669: A fruitful interaction between mathematics and science , to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January ;2006 issue of the Bulletin of the American Mathematical Society , "The number of papers and books included in the Mathematical Reviews (MR) database since 1940 (the first year of operation of MR)

992-404: A mathematical problem. In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that do not change under specific transformations of the space . Today's subareas of geometry include: Algebra is the art of manipulating equations and formulas. Diophantus (3rd century) and al-Khwarizmi (9th century) were

1116-422: A mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a conjecture . Through a series of rigorous arguments employing deductive reasoning , a statement that is proven to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a lemma . A proven instance that forms part of

1240-510: A method that would later be called Cavalieri's principle to find the volume of a sphere . In the Middle East, Hasan Ibn al-Haytham , Latinized as Alhazen ( c.  965  – c.  1040   AD) derived a formula for the sum of fourth powers . He used the results to carry out what would now be called an integration of this function, where the formulae for the sums of integral squares and fourth powers allowed him to calculate

1364-402: A more general finding is termed a corollary . Numerous technical terms used in mathematics are neologisms , such as polynomial and homeomorphism . Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, " or " means "one, the other or both", while, in common language, it

SECTION 10

#1732765384040

1488-434: A more rigorous foundation for calculus, and for this reason, they became the standard approach during the 20th century. However, the infinitesimal concept was revived in the 20th century with the introduction of non-standard analysis and smooth infinitesimal analysis , which provided solid foundations for the manipulation of infinitesimals. Differential calculus is the study of the definition, properties, and applications of

1612-535: A population mean with a given level of confidence. Because of its use of optimization , the mathematical theory of statistics overlaps with other decision sciences , such as operations research , control theory , and mathematical economics . Computational mathematics is the study of mathematical problems that are typically too large for human, numerical capacity. Numerical analysis studies methods for problems in analysis using functional analysis and approximation theory ; numerical analysis broadly includes

1736-411: A separate branch of mathematics until the seventeenth century. At the end of the 19th century, the foundational crisis in mathematics and the resulting systematization of the axiomatic method led to an explosion of new areas of mathematics. The 2020 Mathematics Subject Classification contains no less than sixty-three first-level areas. Some of these areas correspond to the older division, as

1860-424: A single unknown , which were called algebraic equations (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as matrices , modular integers , and geometric transformations ), on which generalizations of arithmetic operations are often valid. The concept of algebraic structure addresses this, consisting of

1984-418: A statistical action, such as using a procedure in, for example, parameter estimation , hypothesis testing , and selecting the best . In these traditional areas of mathematical statistics , a statistical-decision problem is formulated by minimizing an objective function , like expected loss or cost , under specific constraints. For example, designing a survey often involves minimizing the cost of estimating

2108-468: A steady 50 mph for 3 hours results in a total distance of 150 miles. Plotting the velocity as a function of time yields a rectangle with a height equal to the velocity and a width equal to the time elapsed. Therefore, the product of velocity and time also calculates the rectangular area under the (constant) velocity curve. This connection between the area under a curve and the distance traveled can be extended to any irregularly shaped region exhibiting

2232-405: A straight line), then the function can be written as y = mx + b , where x is the independent variable, y is the dependent variable, b is the y -intercept, and: This gives an exact value for the slope of a straight line. If the graph of the function is not a straight line, however, then the change in y divided by the change in x varies. Derivatives give an exact meaning to

2356-477: A wide expansion of mathematical logic, with subareas such as model theory (modeling some logical theories inside other theories), proof theory , type theory , computability theory and computational complexity theory . Although these aspects of mathematical logic were introduced before the rise of computers , their use in compiler design, formal verification , program analysis , proof assistants and other aspects of computer science , contributed in turn to

2480-703: Is Fermat's Last Theorem . This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles , who used tools including scheme theory from algebraic geometry , category theory , and homological algebra . Another example is Goldbach's conjecture , which asserts that every even integer greater than 2 is the sum of two prime numbers . Stated in 1742 by Christian Goldbach , it remains unproven despite considerable effort. Number theory includes several subareas, including analytic number theory , algebraic number theory , geometry of numbers (method oriented), diophantine equations , and transcendence theory (problem oriented). Geometry

2604-410: Is flat " and "a field is always a ring ". Method of exhaustion The method of exhaustion typically required a form of proof by contradiction , known as reductio ad absurdum . This amounts to finding an area of a region by first comparing it to the area of a second region, which can be "exhausted" so that its area becomes arbitrarily close to the true area. The proof involves assuming that

SECTION 20

#1732765384040

2728-417: Is also used to gain a more precise understanding of the nature of space, time, and motion. For centuries, mathematicians and philosophers wrestled with paradoxes involving division by zero or sums of infinitely many numbers. These questions arise in the study of motion and area. The ancient Greek philosopher Zeno of Elea gave several famous examples of such paradoxes . Calculus provides tools, especially

2852-415: Is an abbreviation of both infinitesimal calculus and integral calculus , which denotes courses of elementary mathematical analysis . In Latin , the word calculus means “small pebble”, (the diminutive of calx , meaning "stone"), a meaning which still persists in medicine . Because such pebbles were used for counting out distances, tallying votes, and doing abacus arithmetic, the word came to be

2976-404: Is called a difference quotient . A line through two points on a curve is called a secant line , so m is the slope of the secant line between ( a , f ( a )) and ( a + h , f ( a + h )) . The second line is only an approximation to the behavior of the function at the point a because it does not account for what happens between a and a + h . It is not possible to discover

3100-412: Is common in calculus.) The definite integral inputs a function and outputs a number, which gives the algebraic sum of areas between the graph of the input and the x-axis . The technical definition of the definite integral involves the limit of a sum of areas of rectangles, called a Riemann sum . A motivating example is the distance traveled in a given time. If the speed is constant, only multiplication

3224-403: Is commonly used for advanced parts. Analysis is further subdivided into real analysis , where variables represent real numbers , and complex analysis , where variables represent complex numbers . Analysis includes many subareas shared by other areas of mathematics which include: Discrete mathematics, broadly speaking, is the study of individual, countable mathematical objects. An example

3348-513: Is defined by the set of all similar objects and the properties that these objects must have. For example, in Peano arithmetic , the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning. This mathematical abstraction from reality is embodied in the modern philosophy of formalism , as founded by David Hilbert around 1910. The "nature" of

3472-404: Is developed using limits rather than infinitesimals, it is common to manipulate symbols like dx and dy as if they were real numbers; although it is possible to avoid such manipulations, they are sometimes notationally convenient in expressing operations such as the total derivative . Integral calculus is the study of the definitions, properties, and applications of two related concepts,

3596-646: Is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics, and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking. Applications of differential calculus include computations involving velocity and acceleration , the slope of a curve, and optimization . Applications of integral calculus include computations involving area, volume , arc length , center of mass , work , and pressure . More advanced applications include power series and Fourier series . Calculus

3720-407: Is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called " exclusive or "). Finally, many mathematical terms are common words that are used with a completely different meaning. This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every free module

3844-493: Is in Babylonian mathematics that elementary arithmetic ( addition , subtraction , multiplication , and division ) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a sexagesimal numeral system which is still in use today for measuring angles and time. In the 6th century BC, Greek mathematics began to emerge as a distinct discipline and some Ancient Greeks such as

Calculus - Misplaced Pages Continue

3968-586: Is mostly used for numerical calculations . Number theory dates back to ancient Babylon and probably China . Two prominent early number theorists were Euclid of ancient Greece and Diophantus of Alexandria. The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler . The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss . Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example

4092-416: Is needed: But if the speed changes, a more powerful method of finding the distance is necessary. One such method is to approximate the distance traveled by breaking up the time into many short intervals of time, then multiplying the time elapsed in each interval by one of the speeds in that interval, and then taking the sum (a Riemann sum ) of the approximate distance traveled in each interval. The basic idea

4216-404: Is not sufficient to verify by measurement that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results ( theorems ) and a few basic statements. The basic statements are not subject to proof because they are self-evident ( postulates ), or are part of the definition of the subject of study ( axioms ). This principle, foundational for all mathematics,

4340-1192: Is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs." Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of symbols used for representing operations , unspecified numbers, relations and any other mathematical objects, and then assembling them into expressions and formulas. More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally Latin or Greek letters, and often include subscripts . Operation and relations are generally represented by specific symbols or glyphs , such as + ( plus ), × ( multiplication ), ∫ {\textstyle \int } ( integral ), = ( equal ), and < ( less than ). All these symbols are generally grouped according to specific rules to form expressions and formulas. Normally, expressions and formulas do not appear alone, but are included in sentences of

4464-547: Is often held to be Archimedes ( c.  287  – c.  212 BC ) of Syracuse . He developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series , in a manner not too dissimilar from modern calculus. Other notable achievements of Greek mathematics are conic sections ( Apollonius of Perga , 3rd century BC), trigonometry ( Hipparchus of Nicaea , 2nd century BC), and

4588-433: Is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines , angles and circles , which were developed mainly for the needs of surveying and architecture , but has since blossomed out into many other subfields. A fundamental innovation was the ancient Greeks' introduction of the concept of proofs , which require that every assertion must be proved . For example, it

4712-402: Is proportional to the square of their diameters. Proposition 5 : The volumes of two tetrahedra of the same height are proportional to the areas of their triangular bases. Proposition 10 : The volume of a cone is a third of the volume of the corresponding cylinder which has the same base and height. Proposition 11 : The volume of a cone (or cylinder) of the same height is proportional to

4836-567: Is sometimes mistranslated as a condemnation of mathematicians. The apparent plural form in English goes back to the Latin neuter plural mathematica ( Cicero ), based on the Greek plural ta mathēmatiká ( τὰ μαθηματικά ) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after

4960-445: Is still to some extent an active area of research today. Several mathematicians, including Maclaurin , tried to prove the soundness of using infinitesimals, but it would not be until 150 years later when, due to the work of Cauchy and Weierstrass , a way was finally found to avoid mere "notions" of infinitely small quantities. The foundations of differential and integral calculus had been laid. In Cauchy's Cours d'Analyse , we find

5084-407: Is that if only a short time elapses, then the speed will stay more or less the same. However, a Riemann sum only gives an approximation of the distance traveled. We must take the limit of all such Riemann sums to find the exact distance traveled. When velocity is constant, the total distance traveled over the given time interval can be computed by multiplying velocity and time. For example, traveling

Calculus - Misplaced Pages Continue

5208-419: Is that the law of excluded middle does not hold. The law of excluded middle is also rejected in constructive mathematics , a branch of mathematics that insists that proofs of the existence of a number, function, or other mathematical object should give a construction of the object. Reformulations of calculus in a constructive framework are generally part of the subject of constructive analysis . While many of

5332-406: Is the doubling function. A common notation, introduced by Leibniz, for the derivative in the example above is In an approach based on limits, the symbol ⁠ dy / dx ⁠ is to be interpreted not as the quotient of two numbers but as a shorthand for the limit computed above. Leibniz, however, did intend it to represent the quotient of two infinitesimally small numbers, dy being

5456-418: Is the purpose of universal algebra and category theory . The latter applies to every mathematical structure (not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as topological spaces ; this particular area of application is called algebraic topology . Calculus, formerly called infinitesimal calculus,

5580-405: Is the set of all integers. Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply. Algorithms —especially their implementation and computational complexity —play a major role in discrete mathematics. The four color theorem and optimal sphere packing were two major problems of discrete mathematics solved in the second half of

5704-508: Is true regarding number theory (the modern name for higher arithmetic ) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as mathematical logic and foundations . Number theory began with

5828-586: The Babylonians and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy. The oldest mathematical texts from Mesopotamia and Egypt are from 2000 to 1800 BC. Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It

5952-768: The Golden Age of Islam , especially during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of algebra . Other achievements of the Islamic period include advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system. Many notable mathematicians from this period were Persian, such as Al-Khwarizmi , Omar Khayyam and Sharaf al-Dīn al-Ṭūsī . The Greek and Arabic mathematical texts were in turn translated to Latin during

6076-511: The Pythagoreans appeared to have considered it a subject in its own right. Around 300 BC, Euclid organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof. His book, Elements , is widely considered the most successful and influential textbook of all time. The greatest mathematician of antiquity

6200-536: The Renaissance , mathematics was divided into two main areas: arithmetic , regarding the manipulation of numbers, and geometry , regarding the study of shapes. Some types of pseudoscience , such as numerology and astrology , were not then clearly distinguished from mathematics. During the Renaissance, two more areas appeared. Mathematical notation led to algebra which, roughly speaking, consists of

6324-453: The center of gravity of a solid hemisphere , the center of gravity of a frustum of a circular paraboloid , and the area of a region bounded by a parabola and one of its secant lines . The method of exhaustion was later discovered independently in China by Liu Hui in the 3rd century AD to find the area of a circle. In the 5th century AD, Zu Gengzhi , son of Zu Chongzhi , established

SECTION 50

#1732765384040

6448-446: The controversy over Cantor's set theory . In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring mathematical rigour . This became the foundational crisis of mathematics. It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a formalized set theory . Roughly speaking, each mathematical object

6572-403: The derivative of a function. The process of finding the derivative is called differentiation . Given a function and a point in the domain, the derivative at that point is a way of encoding the small-scale behavior of the function near that point. By finding the derivative of a function at every point in its domain, it is possible to produce a new function, called the derivative function or just

6696-417: The derivative of the original function. In formal terms, the derivative is a linear operator which takes a function as its input and produces a second function as its output. This is more abstract than many of the processes studied in elementary algebra, where functions usually input a number and output another number. For example, if the doubling function is given the input three, then it outputs six, and if

6820-399: The indefinite integral and the definite integral . The process of finding the value of an integral is called integration . The indefinite integral, also known as the antiderivative , is the inverse operation to the derivative. F is an indefinite integral of f when f is a derivative of F . (This use of lower- and upper-case letters for a function and its indefinite integral

6944-403: The limit and the infinite series , that resolve the paradoxes. Calculus is usually developed by working with very small quantities. Historically, the first method of doing so was by infinitesimals . These are objects which can be treated like real numbers but which are, in some sense, "infinitely small". For example, an infinitesimal number could be greater than 0, but less than any number in

7068-512: The method of exhaustion to prove the formulas for cone and pyramid volumes. During the Hellenistic period , this method was further developed by Archimedes ( c.  287  – c.  212   BC), who combined it with a concept of the indivisibles —a precursor to infinitesimals —allowing him to solve several problems now treated by integral calculus. In The Method of Mechanical Theorems he describes, for example, calculating

7192-486: The slopes of curves , while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus . They make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit . It is the "mathematical backbone" for dealing with problems where variables change with time or some other reference variable. Infinitesimal calculus

7316-400: The 17th century, when René Descartes introduced what is now called Cartesian coordinates . This constituted a major change of paradigm : Instead of defining real numbers as lengths of line segments (see number line ), it allowed the representation of points using their coordinates , which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry

7440-405: The 19th century, mathematicians discovered non-Euclidean geometries , which do not follow the parallel postulate . By questioning that postulate's truth, this discovery has been viewed as joining Russell's paradox in revealing the foundational crisis of mathematics . This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not

7564-532: The 20th century. The P versus NP problem , which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems. Discrete mathematics includes: The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century. Before this period, sets were not considered to be mathematical objects, and logic , although used for mathematical proofs, belonged to philosophy and

SECTION 60

#1732765384040

7688-557: The Latin word for calculation . In this sense, it was used in English at least as early as 1672, several years before the publications of Leibniz and Newton, who wrote their mathematical texts in Latin. In addition to differential calculus and integral calculus, the term is also used for naming specific methods of computation or theories that imply some sort of computation. Examples of this usage include propositional calculus , Ricci calculus , calculus of variations , lambda calculus , sequent calculus , and process calculus . Furthermore,

7812-491: The Leibniz notation was not published until 1815. Since the time of Leibniz and Newton, many mathematicians have contributed to the continuing development of calculus. One of the first and most complete works on both infinitesimal and integral calculus was written in 1748 by Maria Gaetana Agnesi . In calculus, foundations refers to the rigorous development of the subject from axioms and definitions. In early calculus,

7936-637: The Middle Ages and made available in Europe. During the early modern period , mathematics began to develop at an accelerating pace in Western Europe , with innovations that revolutionized mathematics, such as the introduction of variables and symbolic notation by François Viète (1540–1603), the introduction of logarithms by John Napier in 1614, which greatly simplified numerical calculations, especially for astronomy and marine navigation ,

8060-556: The Middle East, and still later again in medieval Europe and India. Calculations of volume and area , one goal of integral calculus, can be found in the Egyptian Moscow papyrus ( c.  1820   BC ), but the formulae are simple instructions, with no indication as to how they were obtained. Laying the foundations for integral calculus and foreshadowing the concept of the limit, ancient Greek mathematician Eudoxus of Cnidus ( c.  390–337   BC ) developed

8184-451: The area of the base. Proposition 12: The volume of a cone (or cylinder) that is similar to another is proportional to the cube of the ratio of the diameters of the bases. Proposition 18 : The volume of a sphere is proportional to the cube of its diameter. Archimedes used the method of exhaustion as a way to compute the area inside a circle by filling the circle with a sequence of polygons with an increasing number of sides and

8308-583: The beginnings of algebra (Diophantus, 3rd century AD). The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics . Other notable developments of Indian mathematics include the modern definition and approximation of sine and cosine , and an early form of infinite series . During

8432-403: The behavior at a by setting h to zero because this would require dividing by zero , which is undefined. The derivative is defined by taking the limit as h tends to zero, meaning that it considers the behavior of f for all small values of h and extracts a consistent value for the case when h equals zero: Geometrically, the derivative is the slope of the tangent line to

8556-511: The concept of a proof and its associated mathematical rigour first appeared in Greek mathematics , most notably in Euclid 's Elements . Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions ), until the 16th and 17th centuries, when algebra and infinitesimal calculus were introduced as new fields. Since then,

8680-399: The current language, where expressions play the role of noun phrases and formulas play the role of clauses . Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous definitions that provide a standard foundation for communication. An axiom or postulate is

8804-569: The derived expression mathēmatikḗ tékhnē ( μαθηματικὴ τέχνη ), meaning ' mathematical science ' . It entered the English language during the Late Middle English period through French and Latin. Similarly, one of the two main schools of thought in Pythagoreanism was known as the mathēmatikoi (μαθηματικοί)—which at the time meant "learners" rather than "mathematicians" in the modern sense. The Pythagoreans were likely

8928-556: The description and manipulation of abstract objects that consist of either abstractions from nature or—in modern mathematics—purely abstract entities that are stipulated to have certain properties, called axioms . Mathematics uses pure reason to prove properties of objects, a proof consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems , axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of

9052-482: The detriment of English mathematics. A careful examination of the papers of Leibniz and Newton shows that they arrived at their results independently, with Leibniz starting first with integration and Newton with differentiation. It is Leibniz, however, who gave the new discipline its name. Newton called his calculus " the science of fluxions ", a term that endured in English schools into the 19th century. The first complete treatise on calculus to be written in English and use

9176-463: The discovery that cosine is the derivative of sine . In the 14th century, Indian mathematicians gave a non-rigorous method, resembling differentiation, applicable to some trigonometric functions. Madhava of Sangamagrama and the Kerala School of Astronomy and Mathematics stated components of calculus, but according to Victor J. Katz they were not able to "combine many differing ideas under

9300-428: The expansion of these logical theories. The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially probability theory . Statisticians generate data with random sampling or randomized experiments . Statistical theory studies decision problems such as minimizing the risk ( expected loss ) of

9424-567: The first to constrain the use of the word to just the study of arithmetic and geometry. By the time of Aristotle (384–322 BC) this meaning was fully established. In Latin and English, until around 1700, the term mathematics more commonly meant " astrology " (or sometimes " astronomy ") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, Saint Augustine 's warning that Christians should beware of mathematici , meaning "astrologers",

9548-399: The foundation of calculus. Another way is to use Abraham Robinson 's non-standard analysis . Robinson's approach, developed in the 1960s, uses technical machinery from mathematical logic to augment the real number system with infinitesimal and infinite numbers, as in the original Newton-Leibniz conception. The resulting numbers are called hyperreal numbers , and they can be used to give

9672-405: The function g ( x ) = 2 x , as will turn out. In Lagrange's notation , the symbol for a derivative is an apostrophe -like mark called a prime . Thus, the derivative of a function called f is denoted by f′ , pronounced "f prime" or "f dash". For instance, if f ( x ) = x is the squaring function, then f′ ( x ) = 2 x is its derivative (the doubling function g from above). If

9796-412: The graph of f at a . The tangent line is a limit of secant lines just as the derivative is a limit of difference quotients. For this reason, the derivative is sometimes called the slope of the function f . Here is a particular example, the derivative of the squaring function at the input 3. Let f ( x ) = x be the squaring function. The slope of the tangent line to the squaring function at

9920-457: The ideas of calculus had been developed earlier in Greece , China , India , Iraq, Persia , and Japan , the use of calculus began in Europe, during the 17th century, when Newton and Leibniz built on the work of earlier mathematicians to introduce its basic principles. The Hungarian polymath John von Neumann wrote of this work, The calculus was the first achievement of modern mathematics and it

10044-454: The infinitesimally small change in y caused by an infinitesimally small change dx applied to x . We can also think of ⁠ d / dx ⁠ as a differentiation operator, which takes a function as an input and gives another function, the derivative, as the output. For example: In this usage, the dx in the denominator is read as "with respect to x ". Another example of correct notation could be: Even when calculus

10168-399: The input of the function represents time, then the derivative represents change concerning time. For example, if f is a function that takes time as input and gives the position of a ball at that time as output, then the derivative of f is how the position is changing in time, that is, it is the velocity of the ball. If a function is linear (that is if the graph of the function is

10292-491: The interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both. At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method , which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics. Before

10416-417: The intrinsic structure of the real number system (as a metric space with the least-upper-bound property ). In this treatment, calculus is a collection of techniques for manipulating certain limits. Infinitesimals get replaced by sequences of smaller and smaller numbers, and the infinitely small behavior of a function is found by taking the limiting behavior for these sequences. Limits were thought to provide

10540-400: The introduction of coordinates by René Descartes (1596–1650) for reducing geometry to algebra, and the development of calculus by Isaac Newton (1643–1727) and Gottfried Leibniz (1646–1716). Leonhard Euler (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and

10664-409: The manipulation of numbers , that is, natural numbers ( N ) , {\displaystyle (\mathbb {N} ),} and later expanded to integers ( Z ) {\displaystyle (\mathbb {Z} )} and rational numbers ( Q ) . {\displaystyle (\mathbb {Q} ).} Number theory was once called arithmetic, but nowadays this term

10788-536: The mathematical idiom of the time, replacing calculations with infinitesimals by equivalent geometrical arguments which were considered beyond reproach. He used the methods of calculus to solve the problem of planetary motion, the shape of the surface of a rotating fluid, the oblateness of the earth, the motion of a weight sliding on a cycloid , and many other problems discussed in his Principia Mathematica (1687). In other work, he developed series expansions for functions, including fractional and irrational powers, and it

10912-468: The method of exhaustion so that it is no longer explicitly used to solve problems. An important alternative approach was Cavalieri's principle , also termed the method of indivisibles which eventually evolved into the infinitesimal calculus of Roberval , Torricelli , Wallis , Leibniz , and others. Euclid used the method of exhaustion to prove the following six propositions in the 12th book of his Elements . Proposition 2 : The area of circles

11036-400: The natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system. This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by Brouwer , who promoted intuitionistic logic , which explicitly lacks the law of excluded middle . These problems and debates led to

11160-409: The needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves

11284-413: The notion of change in output concerning change in input. To be concrete, let f be a function, and fix a point a in the domain of f . ( a , f ( a )) is a point on the graph of the function. If h is a number close to zero, then a + h is a number close to a . Therefore, ( a + h , f ( a + h )) is close to ( a , f ( a )) . The slope between these two points is This expression

11408-536: The objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinion—sometimes called "intuition"—to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example, Gödel's incompleteness theorems assert, roughly speaking that, in every consistent formal system that contains

11532-521: The pattern of physics and metaphysics , inherited from Greek. In English, the noun mathematics takes a singular verb. It is often shortened to maths or, in North America, math . In addition to recognizing how to count physical objects, prehistoric peoples may have also known how to count abstract quantities, like time—days, seasons, or years. Evidence for more complex mathematics does not appear until around 3000  BC , when

11656-419: The point (3, 9) is 6, that is to say, it is going up six times as fast as it is going to the right. The limit process just described can be performed for any point in the domain of the squaring function. This defines the derivative function of the squaring function or just the derivative of the squaring function for short. A computation similar to the one above shows that the derivative of the squaring function

11780-658: The proof of numerous theorems. Perhaps the foremost mathematician of the 19th century was the German mathematician Carl Gauss , who made numerous contributions to fields such as algebra, analysis, differential geometry , matrix theory , number theory, and statistics . In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems , which show in part that any consistent axiomatic system—if powerful enough to describe arithmetic—will contain true propositions that cannot be proved. Mathematics has since been greatly extended, and there has been

11904-410: The sequence 1, 1/2, 1/3, ... and thus less than any positive real number . From this point of view, calculus is a collection of techniques for manipulating infinitesimals. The symbols d x {\displaystyle dx} and d y {\displaystyle dy} were taken to be infinitesimal, and the derivative d y / d x {\displaystyle dy/dx}

12028-408: The squaring function is given the input three, then it outputs nine. The derivative, however, can take the squaring function as an input. This means that the derivative takes all the information of the squaring function—such as that two is sent to four, three is sent to nine, four is sent to sixteen, and so on—and uses this information to produce another function. The function produced by differentiating

12152-468: The squaring function turns out to be the doubling function. In more explicit terms the "doubling function" may be denoted by g ( x ) = 2 x and the "squaring function" by f ( x ) = x . The "derivative" now takes the function f ( x ) , defined by the expression " x ", as an input, that is all the information—such as that two is sent to four, three is sent to nine, four is sent to sixteen, and so on—and uses this information to output another function,

12276-657: The study and the manipulation of formulas . Calculus , consisting of the two subfields differential calculus and integral calculus , is the study of continuous functions , which model the typically nonlinear relationships between varying quantities, as represented by variables . This division into four main areas—arithmetic, geometry, algebra, and calculus —endured until the end of the 19th century. Areas such as celestial mechanics and solid mechanics were then studied by mathematicians, but now are considered as belonging to physics. The subject of combinatorics has been studied for much of recorded history, yet did not become

12400-568: The study of approximation and discretization with special focus on rounding errors . Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic- matrix -and- graph theory . Other areas of computational mathematics include computer algebra and symbolic computation . The word mathematics comes from the Ancient Greek word máthēma ( μάθημα ), meaning ' something learned, knowledge, mathematics ' , and

12524-437: The subject is still occasionally called "infinitesimal calculus". Bernhard Riemann used these ideas to give a precise definition of the integral. It was also during this period that the ideas of calculus were generalized to the complex plane with the development of complex analysis . In modern mathematics, the foundations of calculus are included in the field of real analysis , which contains full definitions and proofs of

12648-467: The term "calculus" has variously been applied in ethics and philosophy, for such systems as Bentham's felicific calculus , and the ethical calculus . Modern calculus was developed in 17th-century Europe by Isaac Newton and Gottfried Wilhelm Leibniz (independently of each other, first publishing around the same time) but elements of it first appeared in ancient Egypt and later Greece, then in China and

12772-412: The theorems of calculus. The reach of calculus has also been greatly extended. Henri Lebesgue invented measure theory , based on earlier developments by Émile Borel , and used it to define integrals of all but the most pathological functions. Laurent Schwartz introduced distributions , which can be used to take the derivative of any function whatsoever. Limits are not the only rigorous approach to

12896-672: The theory under consideration. Mathematics is essential in the natural sciences , engineering , medicine , finance , computer science , and the social sciences . Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as statistics and game theory , are developed in close correlation with their applications and are often grouped under applied mathematics . Other areas are developed independently from any application (and are therefore called pure mathematics ) but often later find practical applications. Historically,

13020-487: The title of his main treatise . Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers. Variables allow mathematicians to describe the operations that have to be done on the numbers represented using mathematical formulas . Until the 19th century, algebra consisted mainly of the study of linear equations (presently linear algebra ), and polynomial equations in

13144-406: The true area is greater than the second area, proving that assertion false, assuming it is less than the second area, then proving that assertion false, too. The idea originated in the late 5th century BC with Antiphon , although it is not entirely clear how well he understood it. The theory was made rigorous a few decades later by Eudoxus of Cnidus , who used it to calculate areas and volumes. It

13268-508: The two main precursors of algebra. Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution. Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side. The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in

13392-422: The two unifying themes of the derivative and the integral , show the connection between the two, and turn calculus into the great problem-solving tool we have today". Johannes Kepler 's work Stereometria Doliorum (1615) formed the basis of integral calculus. Kepler developed a method to calculate the area of an ellipse by adding up the lengths of many radii drawn from a focus of the ellipse. Significant work

13516-408: The use of infinitesimal quantities was thought unrigorous and was fiercely criticized by several authors, most notably Michel Rolle and Bishop Berkeley . Berkeley famously described infinitesimals as the ghosts of departed quantities in his book The Analyst in 1734. Working out a rigorous foundation for calculus occupied mathematicians for much of the century following Newton and Leibniz, and

13640-685: The volume of a paraboloid . Bhāskara II ( c.  1114–1185 ) was acquainted with some ideas of differential calculus and suggested that the "differential coefficient" vanishes at an extremum value of the function. In his astronomical work, he gave a procedure that looked like a precursor to infinitesimal methods. Namely, if x ≈ y {\displaystyle x\approx y} then sin ⁡ ( y ) − sin ⁡ ( x ) ≈ ( y − x ) cos ⁡ ( y ) . {\displaystyle \sin(y)-\sin(x)\approx (y-x)\cos(y).} This can be interpreted as

13764-566: Was great controversy over which mathematician (and therefore which country) deserved credit. Newton derived his results first (later to be published in his Method of Fluxions ), but Leibniz published his " Nova Methodus pro Maximis et Minimis " first. Newton claimed Leibniz stole ideas from his unpublished notes, which Newton had shared with a few members of the Royal Society . This controversy divided English-speaking mathematicians from continental European mathematicians for many years, to

13888-513: Was a treatise, the origin being Kepler's methods, written by Bonaventura Cavalieri , who argued that volumes and areas should be computed as the sums of the volumes and areas of infinitesimally thin cross-sections. The ideas were similar to Archimedes' in The Method , but this treatise is believed to have been lost in the 13th century and was only rediscovered in the early 20th century, and so would have been unknown to Cavalieri. Cavalieri's work

14012-456: Was achieved by John Wallis , Isaac Barrow , and James Gregory , the latter two proving predecessors to the second fundamental theorem of calculus around 1670. The product rule and chain rule , the notions of higher derivatives and Taylor series , and of analytic functions were used by Isaac Newton in an idiosyncratic notation which he applied to solve problems of mathematical physics . In his works, Newton rephrased his ideas to suit

14136-486: Was clear that he understood the principles of the Taylor series . He did not publish all these discoveries, and at this time infinitesimal methods were still considered disreputable. These ideas were arranged into a true calculus of infinitesimals by Gottfried Wilhelm Leibniz , who was originally accused of plagiarism by Newton. He is now regarded as an independent inventor of and contributor to calculus. His contribution

14260-462: Was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements . The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane ( plane geometry ) and the three-dimensional Euclidean space . Euclidean geometry was developed without change of methods or scope until

14384-399: Was formulated separately in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz . Later work, including codifying the idea of limits , put these developments on a more solid conceptual footing. Today, calculus is widely used in science , engineering , biology , and even has applications in social science and other branches of math. In mathematics education , calculus

14508-414: Was introduced independently and simultaneously by 17th-century mathematicians Newton and Leibniz . It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results. Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis"

14632-470: Was later reinvented in China by Liu Hui in the 3rd century AD in order to find the area of a circle. The first use of the term was in 1647 by Gregory of Saint Vincent in Opus geometricum quadraturae circuli et sectionum . The method of exhaustion is seen as a precursor to the methods of calculus . The development of analytical geometry and rigorous integral calculus in the 17th-19th centuries subsumed

14756-437: Was not specifically studied by mathematicians. Before Cantor 's study of infinite sets , mathematicians were reluctant to consider actually infinite collections, and considered infinity to be the result of endless enumeration . Cantor's work offended many mathematicians not only by considering actually infinite sets but by showing that this implies different sizes of infinity, per Cantor's diagonal argument . This led to

14880-493: Was not well respected since his methods could lead to erroneous results, and the infinitesimal quantities he introduced were disreputable at first. The formal study of calculus brought together Cavalieri's infinitesimals with the calculus of finite differences developed in Europe at around the same time. Pierre de Fermat , claiming that he borrowed from Diophantus , introduced the concept of adequality , which represented equality up to an infinitesimal error term. The combination

15004-571: Was split into two new subfields: synthetic geometry , which uses purely geometrical methods, and analytic geometry , which uses coordinates systemically. Analytic geometry allows the study of curves unrelated to circles and lines. Such curves can be defined as the graph of functions , the study of which led to differential geometry . They can also be defined as implicit equations , often polynomial equations (which spawned algebraic geometry ). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions. In

15128-443: Was the first to apply calculus to general physics . Leibniz developed much of the notation used in calculus today. The basic insights that both Newton and Leibniz provided were the laws of differentiation and integration, emphasizing that differentiation and integration are inverse processes, second and higher derivatives, and the notion of an approximating polynomial series. When Newton and Leibniz first published their results, there

15252-418: Was their ratio. The infinitesimal approach fell out of favor in the 19th century because it was difficult to make the notion of an infinitesimal precise. In the late 19th century, infinitesimals were replaced within academia by the epsilon, delta approach to limits . Limits describe the behavior of a function at a certain input in terms of its values at nearby inputs. They capture small-scale behavior using

15376-424: Was to provide a clear set of rules for working with infinitesimal quantities, allowing the computation of second and higher derivatives, and providing the product rule and chain rule , in their differential and integral forms. Unlike Newton, Leibniz put painstaking effort into his choices of notation. Today, Leibniz and Newton are usually both given credit for independently inventing and developing calculus. Newton

#39960