Misplaced Pages

Cerulean Tower

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Cerulean Tower ( セルリアンタワー , Serurian Tawā ) is a skyscraper in Shibuya , Tokyo , Japan . It was completed in March 2001, and opened in April. It was built using empty lots formerly occupied by the headquarters of Tokyu Corporation . It is 184 metres tall and has 41 floors as well as 6 underground floors. The building covers a total ground area of 106,000 m. It was the tallest building in the Shibuya station area until the opening of Shibuya Scramble Square in 2019.

#959040

108-671: The two main materials used in the building's construction were glass and steel . The Tower has both office space and a hotel, the Cerulean Tower Tokyu Hotel. This article about a Japanese building- or structure-related topic is a stub . You can help Misplaced Pages by expanding it . Glass Glass is an amorphous ( non-crystalline ) solid. Because it is often transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window panes, tableware , and optics . Some common objects made of glass are named after

216-438: A crystallizer . Crystallization is therefore related to precipitation , although the result is not amorphous or disordered, but a crystal. The crystallization process consists of two major events, nucleation and crystal growth which are driven by thermodynamic properties as well as chemical properties. Nucleation is the step where the solute molecules or atoms dispersed in the solvent start to gather into clusters, on

324-405: A glass (or vitreous solid) is a non-crystalline solid formed by rapid melt quenching . However, the term "glass" is often defined in a broader sense, to describe any non-crystalline ( amorphous ) solid that exhibits a glass transition when heated towards the liquid state. Glass is an amorphous solid . Although the atomic-scale structure of glass shares characteristics of the structure of

432-436: A supercooled liquid , glass exhibits all the mechanical properties of a solid. As in other amorphous solids , the atomic structure of a glass lacks the long-range periodicity observed in crystalline solids . Due to chemical bonding constraints, glasses do possess a high degree of short-range order with respect to local atomic polyhedra . The notion that glass flows to an appreciable extent over extended periods well below

540-809: A turquoise colour in glass, in contrast to copper(I) oxide (Cu 2 O) which gives a dull red-brown colour. Soda–lime sheet glass is typically used as a transparent glazing material, typically as windows in external walls of buildings. Float or rolled sheet glass products are cut to size either by scoring and snapping the material, laser cutting , water jets , or diamond-bladed saw. The glass may be thermally or chemically tempered (strengthened) for safety and bent or curved during heating. Surface coatings may be added for specific functions such as scratch resistance, blocking specific wavelengths of light (e.g. infrared or ultraviolet ), dirt-repellence (e.g. self-cleaning glass ), or switchable electrochromic coatings. Structural glazing systems represent one of

648-485: A clear "ring" sound when struck. However, lead glass cannot withstand high temperatures well. Lead oxide also facilitates the solubility of other metal oxides and is used in coloured glass. The viscosity decrease of lead glass melt is very significant (roughly 100 times in comparison with soda glass); this allows easier removal of bubbles and working at lower temperatures, hence its frequent use as an additive in vitreous enamels and glass solders . The high ionic radius of

756-423: A crystal at a high speed, sweeping away nuclei that would otherwise be incorporated into a crystal, causing the swept-away nuclei to become new crystals. Contact nucleation has been found to be the most effective and common method for nucleation. The benefits include the following: The following model, although somewhat simplified, is often used to model secondary nucleation: where Once the first small crystal,

864-428: A draft tube while outside the crystallizer there is a settling area in an annulus; in it the exhaust solution moves upwards at a very low velocity, so that large crystals settle – and return to the main circulation – while only the fines, below a given grain size are extracted and eventually destroyed by increasing or decreasing temperature, thus creating additional supersaturation. A quasi-perfect control of all parameters

972-421: A function of operating conditions with a fairly complicated mathematical process called population balance theory (using population balance equations ). Some of the important factors influencing solubility are: So one may identify two main families of crystallization processes: This division is not really clear-cut, since hybrid systems exist, where cooling is performed through evaporation , thus obtaining at

1080-443: A green tint in thick sections. Manganese dioxide (MnO 2 ), which gives glass a purple colour, may be added to remove the green tint given by FeO. FeO and chromium(III) oxide (Cr 2 O 3 ) additives are used in the production of green bottles. Iron (III) oxide , on the other-hand, produces yellow or yellow-brown glass. Low concentrations (0.025 to 0.1%) of cobalt oxide (CoO) produce rich, deep blue cobalt glass . Chromium

1188-408: A human timescale. Silicon dioxide (SiO 2 ) is a common fundamental constituent of glass. Fused quartz is a glass made from chemically pure silica. It has very low thermal expansion and excellent resistance to thermal shock , being able to survive immersion in water while red hot, resists high temperatures (1000–1500 °C) and chemical weathering, and is very hard. It is also transparent to

SECTION 10

#1732790891960

1296-407: A jacket around the trough. Crystals precipitate on the cold surfaces of the screw/discs, from which they are removed by scrapers and settle on the bottom of the trough. The screw, if provided, pushes the slurry towards a discharge port. A common practice is to cool the solutions by flash evaporation: when a liquid at a given T 0 temperature is transferred in a chamber at a pressure P 1 such that

1404-405: A lighter alternative to traditional glass. Molecular liquids, electrolytes , molten salts , and aqueous solutions are mixtures of different molecules or ions that do not form a covalent network but interact only through weak van der Waals forces or transient hydrogen bonds . In a mixture of three or more ionic species of dissimilar size and shape, crystallization can be so difficult that

1512-561: A long period at a temperature just insufficient to cause fusion. In this way, the crystalline, devitrified material, known as Réaumur's glass porcelain is produced. Although generally transparent to visible light, glasses may be opaque to other wavelengths of light . While silicate glasses are generally opaque to infrared wavelengths with a transmission cut-off at 4 μm, heavy-metal fluoride and chalcogenide glasses are transparent to infrared wavelengths of 7 to 18 μm. The addition of metallic oxides results in different coloured glasses as

1620-414: A major impact on the size, number, and shape of crystals produced. As mentioned above, a crystal is formed following a well-defined pattern, or structure, dictated by forces acting at the molecular level. As a consequence, during its formation process the crystal is in an environment where the solute concentration reaches a certain critical value, before changing status. Solid formation, impossible below

1728-482: A mass of hot semi-molten glass, inflating it into a bubble using a hollow blowpipe, and forming it into the required shape by blowing, swinging, rolling, or moulding. While hot, the glass can be worked using hand tools, cut with shears, and additional parts such as handles or feet attached by welding. Flat glass for windows and similar applications is formed by the float glass process, developed between 1953 and 1957 by Sir Alastair Pilkington and Kenneth Bickerstaff of

1836-453: A non-crystalline intergranular phase of grain boundaries . Glass-ceramics exhibit advantageous thermal, chemical, biological, and dielectric properties as compared to metals or organic polymers. The most commercially important property of glass-ceramics is their imperviousness to thermal shock. Thus, glass-ceramics have become extremely useful for countertop cooking and industrial processes. The negative thermal expansion coefficient (CTE) of

1944-401: A plastic resin with glass fibres . It is made by melting glass and stretching the glass into fibres. These fibres are woven together into a cloth and left to set in a plastic resin. Fibreglass has the properties of being lightweight and corrosion resistant and is a good insulator enabling its use as building insulation material and for electronic housing for consumer products. Fibreglass

2052-462: A refractive index of 1.4 to 2.4, and an Abbe number (which characterises dispersion) of 15 to 100. The refractive index may be modified by high-density (refractive index increases) or low-density (refractive index decreases) additives. Glass transparency results from the absence of grain boundaries which diffusely scatter light in polycrystalline materials. Semi-opacity due to crystallization may be induced in many glasses by maintaining them for

2160-419: A relatively variable quality of the product along with the batch. The Swenson-Walker crystallizer is a model, specifically conceived by Swenson Co. around 1920, having a semicylindric horizontal hollow trough in which a hollow screw conveyor or some hollow discs, in which a refrigerating fluid is circulated, plunge during rotation on a longitudinal axis. The refrigerating fluid is sometimes also circulated in

2268-416: A second solvent to reduce the solubility of the solute (technique known as antisolvent or drown-out), solvent layering, sublimation, changing the cation or anion, as well as other methods. The formation of a supersaturated solution does not guarantee crystal formation, and often a seed crystal or scratching the glass is required to form nucleation sites. A typical laboratory technique for crystal formation

SECTION 20

#1732790891960

2376-546: A solution than small crystals. Also, larger crystals have a smaller surface area to volume ratio, leading to a higher purity. This higher purity is due to less retention of mother liquor which contains impurities, and a smaller loss of yield when the crystals are washed to remove the mother liquor. In special cases, for example during drug manufacturing in the pharmaceutical industry, small crystal sizes are often desired to improve drug dissolution rate and bio-availability. The theoretical crystal size distribution can be estimated as

2484-412: A spinning metal disk. Several alloys have been produced in layers with thicknesses exceeding 1 millimetre. These are known as bulk metallic glasses (BMG). Liquidmetal Technologies sells several zirconium -based BMGs. Batches of amorphous steel have also been produced that demonstrate mechanical properties far exceeding those found in conventional steel alloys. Experimental evidence indicates that

2592-435: A structural analogue of silica, fluoride , aluminate , phosphate , borate , and chalcogenide glasses) have physicochemical properties useful for their application in fibre-optic waveguides in communication networks and other specialised technological applications. Silica-free glasses may often have poor glass-forming tendencies. Novel techniques, including containerless processing by aerodynamic levitation (cooling

2700-413: A structurally metastable state with respect to its crystalline form, although in certain circumstances, for example in atactic polymers, there is no crystalline analogue of the amorphous phase. Glass is sometimes considered to be a liquid due to its lack of a first-order phase transition where certain thermodynamic variables such as volume , entropy and enthalpy are discontinuous through

2808-521: A wider spectral range than ordinary glass, extending from the visible further into both the UV and IR ranges, and is sometimes used where transparency to these wavelengths is necessary. Fused quartz is used for high-temperature applications such as furnace tubes, lighting tubes, melting crucibles, etc. However, its high melting temperature (1723 °C) and viscosity make it difficult to work with. Therefore, normally, other substances (fluxes) are added to lower

2916-418: Is 3.25 × 10 /°C as compared to about 9 × 10 /°C for a typical soda–lime glass ). They are, therefore, less subject to stress caused by thermal expansion and thus less vulnerable to cracking from thermal shock . They are commonly used for e.g. labware , household cookware , and sealed beam car head lamps . The addition of lead(II) oxide into silicate glass lowers the melting point and viscosity of

3024-552: Is a common volcanic glass with high silica (SiO 2 ) content formed when felsic lava extruded from a volcano cools rapidly. Impactite is a form of glass formed by the impact of a meteorite , where Moldavite (found in central and eastern Europe), and Libyan desert glass (found in areas in the eastern Sahara , the deserts of eastern Libya and western Egypt ) are notable examples. Vitrification of quartz can also occur when lightning strikes sand , forming hollow, branching rootlike structures called fulgurites . Trinitite

3132-453: Is a consequence of the physical characteristics of the solution, while the others define a difference between a well- and poorly designed crystallizer. The appearance and size range of a crystalline product is extremely important in crystallization. If further processing of the crystals is desired, large crystals with uniform size are important for washing, filtering, transportation, and storage, because large crystals are easier to filter out of

3240-714: Is a glassy residue formed from the desert floor sand at the Trinity nuclear bomb test site. Edeowie glass , found in South Australia , is proposed to originate from Pleistocene grassland fires, lightning strikes, or hypervelocity impact by one or several asteroids or comets . Naturally occurring obsidian glass was used by Stone Age societies as it fractures along very sharp edges, making it ideal for cutting tools and weapons. Glassmaking dates back at least 6000 years, long before humans had discovered how to smelt iron. Archaeological evidence suggests that

3348-418: Is a very powerful colouring agent, yielding dark green. Sulphur combined with carbon and iron salts produces amber glass ranging from yellowish to almost black. A glass melt can also acquire an amber colour from a reducing combustion atmosphere. Cadmium sulfide produces imperial red , and combined with selenium can produce shades of yellow, orange, and red. Addition of copper(II) oxide (CuO) produces

Cerulean Tower - Misplaced Pages Continue

3456-449: Is achieved by homogenizing the raw materials mixture ( glass batch ), stirring the melt, and crushing and re-melting the first melt. The obtained glass is usually annealed to prevent breakage during processing. Colour in glass may be obtained by addition of homogenously distributed electrically charged ions (or colour centres ). While ordinary soda–lime glass appears colourless in thin section, iron(II) oxide (FeO) impurities produce

3564-415: Is clear that sulfate solubility quickly decreases below 32.5 °C. Assuming a saturated solution at 30 °C, by cooling it to 0 °C (note that this is possible thanks to the freezing-point depression ), the precipitation of a mass of sulfate occurs corresponding to the change in solubility from 29% (equilibrium value at 30 °C) to approximately 4.5% (at 0 °C) – actually a larger crystal mass

3672-676: Is extensively used for fibreglass , used for making glass-reinforced plastics (boats, fishing rods, etc.), top-of-stove cookware, and halogen bulb glass. The addition of barium also increases the refractive index. Thorium oxide gives glass a high refractive index and low dispersion and was formerly used in producing high-quality lenses, but due to its radioactivity has been replaced by lanthanum oxide in modern eyeglasses. Iron can be incorporated into glass to absorb infrared radiation, for example in heat-absorbing filters for movie projectors, while cerium(IV) oxide can be used for glass that absorbs ultraviolet wavelengths. Fluorine lowers

3780-449: Is in fact a different thermodynamic solid state and crystal polymorphs of the same compound exhibit different physical properties, such as dissolution rate, shape (angles between facets and facet growth rates), melting point, etc. For this reason, polymorphism is of major importance in industrial manufacture of crystalline products. Additionally, crystal phases can sometimes be interconverted by varying factors such as temperature, such as in

3888-455: Is in widespread use in optical systems due to its ability to refract, reflect, and transmit light following geometrical optics . The most common and oldest applications of glass in optics are as lenses , windows , mirrors , and prisms . The key optical properties refractive index , dispersion , and transmission , of glass are strongly dependent on chemical composition and, to a lesser degree, its thermal history. Optical glass typically has

3996-489: Is incorrect, as once solidified, glass stops flowing. The sags and ripples observed in old glass were already there the day it was made; manufacturing processes used in the past produced sheets with imperfect surfaces and non-uniform thickness (the near-perfect float glass used today only became widespread in the 1960s). A 2017 study computed the rate of flow of the medieval glass used in Westminster Abbey from

4104-423: Is increased using the technique of evaporation . This process is insensitive to change in temperature (as long as hydration state remains unchanged). All considerations on control of crystallization parameters are the same as for the cooling models. Most industrial crystallizers are of the evaporative type, such as the very large sodium chloride and sucrose units, whose production accounts for more than 50% of

4212-542: Is precipitated, since sulfate entrains hydration water, and this has the side effect of increasing the final concentration. There are limitations in the use of cooling crystallization: The simplest cooling crystallizers are tanks provided with a mixer for internal circulation, where temperature decrease is obtained by heat exchange with an intermediate fluid circulating in a jacket. These simple machines are used in batch processes, as in processing of pharmaceuticals and are prone to scaling. Batch processes normally provide

4320-901: Is produced by forcing molten glass through a fine mesh by centripetal force and breaking the extruded glass fibres into short lengths using a stream of high-velocity air. The fibres are bonded with an adhesive spray and the resulting wool mat is cut and packed in rolls or panels. Besides common silica-based glasses many other inorganic and organic materials may also form glasses, including metals , aluminates , phosphates , borates , chalcogenides , fluorides , germanates (glasses based on GeO 2 ), tellurites (glasses based on TeO 2 ), antimonates (glasses based on Sb 2 O 3 ), arsenates (glasses based on As 2 O 3 ), titanates (glasses based on TiO 2 ), tantalates (glasses based on Ta 2 O 5 ), nitrates , carbonates , plastics , acrylic , and many other substances. Some of these glasses (e.g. Germanium dioxide (GeO 2 , Germania), in many respects

4428-461: Is stronger than most metals, with a theoretical tensile strength for pure, flawless glass estimated at 14 to 35 gigapascals (2,000,000 to 5,100,000 psi) due to its ability to undergo reversible compression without fracture. However, the presence of scratches, bubbles, and other microscopic flaws lead to a typical range of 14 to 175 megapascals (2,000 to 25,400 psi) in most commercial glasses. Several processes such as toughening can increase

Cerulean Tower - Misplaced Pages Continue

4536-408: Is sufficiently rapid (relative to the characteristic crystallization time) then crystallization is prevented and instead, the disordered atomic configuration of the supercooled liquid is frozen into the solid state at T g . The tendency for a material to form a glass while quenched is called glass-forming ability. This ability can be predicted by the rigidity theory . Generally, a glass exists in

4644-493: Is the initiation of a phase change in a small region, such as the formation of a solid crystal from a liquid solution. It is a consequence of rapid local fluctuations on a molecular scale in a homogeneous phase that is in a state of metastable equilibrium. Total nucleation is the sum effect of two categories of nucleation – primary and secondary. Primary nucleation is the initial formation of a crystal where there are no other crystals present or where, if there are crystals present in

4752-414: Is to dissolve the solid in a solution in which it is partially soluble, usually at high temperatures to obtain supersaturation. The hot mixture is then filtered to remove any insoluble impurities. The filtrate is allowed to slowly cool. Crystals that form are then filtered and washed with a solvent in which they are not soluble, but is miscible with the mother liquor . The process is then repeated to increase

4860-567: Is to perform a gravity settling to be able to extract (and possibly recycle separately) the (almost) clear liquid, while managing the mass flow around the crystallizer to obtain a precise slurry density elsewhere. A typical example is the DTB ( Draft Tube and Baffle ) crystallizer, an idea of Richard Chisum Bennett (a Swenson engineer and later President of Swenson) at the end of the 1950s. The DTB crystallizer (see images) has an internal circulator, typically an axial flow mixer – yellow – pushing upwards in

4968-436: Is transparent, easily formed, and most suitable for window glass and tableware. However, it has a high thermal expansion and poor resistance to heat. Soda–lime glass is typically used for windows , bottles , light bulbs , and jars . Borosilicate glasses (e.g. Pyrex , Duran ) typically contain 5–13% boron trioxide (B 2 O 3 ). Borosilicate glasses have fairly low coefficients of thermal expansion (7740 Pyrex CTE

5076-524: The Late Bronze Age , there was a rapid growth in glassmaking technology in Egypt and Western Asia . Archaeological finds from this period include coloured glass ingots , vessels, and beads. Much early glass production relied on grinding techniques borrowed from stoneworking , such as grinding and carving glass in a cold state. The term glass has its origins in the late Roman Empire , in

5184-535: The Renaissance period in Europe, the use of large stained glass windows became much less prevalent, although stained glass had a major revival with Gothic Revival architecture in the 19th century. During the 13th century, the island of Murano , Venice , became a centre for glass making, building on medieval techniques to produce colourful ornamental pieces in large quantities. Murano glass makers developed

5292-537: The Roman glass making centre at Trier (located in current-day Germany) where the late-Latin term glesum originated, likely from a Germanic word for a transparent , lustrous substance. Glass objects have been recovered across the Roman Empire in domestic, funerary , and industrial contexts, as well as trade items in marketplaces in distant provinces. Examples of Roman glass have been found outside of

5400-465: The dielectric constant of glass. Fluorine is highly electronegative and lowers the polarizability of the material. Fluoride silicate glasses are used in the manufacture of integrated circuits as an insulator. Glass-ceramic materials contain both non-crystalline glass and crystalline ceramic phases. They are formed by controlled nucleation and partial crystallisation of a base glass by heat treatment. Crystalline grains are often embedded within

5508-419: The entropy ( S ) gain in the system by spatial randomization of the molecules has overcome the enthalpy ( H ) loss due to breaking the crystal packing forces: Regarding crystals, there are no exceptions to this rule. Similarly, when the molten crystal is cooled, the molecules will return to their crystalline form once the temperature falls beyond the turning point. This is because the thermal randomization of

SECTION 50

#1732790891960

5616-436: The glass batch preparation and mixing, the raw materials are transported to the furnace. Soda–lime glass for mass production is melted in glass-melting furnaces . Smaller-scale furnaces for speciality glasses include electric melters, pot furnaces, and day tanks. After melting, homogenization and refining (removal of bubbles), the glass is formed . This may be achieved manually by glassblowing , which involves gathering

5724-401: The solubility threshold at the given temperature and pressure conditions, may then take place at a concentration higher than the theoretical solubility level. The difference between the actual value of the solute concentration at the crystallization limit and the theoretical (static) solubility threshold is called supersaturation and is a fundamental factor in crystallization. Nucleation

5832-510: The 10th century onwards, glass was employed in stained glass windows of churches and cathedrals , with famous examples at Chartres Cathedral and the Basilica of Saint-Denis . By the 14th century, architects were designing buildings with walls of stained glass such as Sainte-Chapelle , Paris, (1203–1248) and the East end of Gloucester Cathedral . With the change in architectural style during

5940-461: The 1930s, which later became known as Depression glass . In the 1950s, Pilkington Bros. , England , developed the float glass process, producing high-quality distortion-free flat sheets of glass by floating on molten tin . Modern multi-story buildings are frequently constructed with curtain walls made almost entirely of glass. Laminated glass has been widely applied to vehicles for windscreens. Optical glass for spectacles has been used since

6048-687: The Middle Ages. The production of lenses has become increasingly proficient, aiding astronomers as well as having other applications in medicine and science. Glass is also employed as the aperture cover in many solar energy collectors. In the 21st century, glass manufacturers have developed different brands of chemically strengthened glass for widespread application in touchscreens for smartphones , tablet computers , and many other types of information appliances . These include Gorilla Glass , developed and manufactured by Corning , AGC Inc. 's Dragontrail and Schott AG 's Xensation. Glass

6156-543: The Pb ion renders it highly immobile and hinders the movement of other ions; lead glasses therefore have high electrical resistance, about two orders of magnitude higher than soda–lime glass (10 vs 10  Ω⋅cm, DC at 250 °C). Aluminosilicate glass typically contains 5–10% alumina (Al 2 O 3 ). Aluminosilicate glass tends to be more difficult to melt and shape compared to borosilicate compositions but has excellent thermal resistance and durability. Aluminosilicate glass

6264-533: The UK's Pilkington Brothers, who created a continuous ribbon of glass using a molten tin bath on which the molten glass flows unhindered under the influence of gravity. The top surface of the glass is subjected to nitrogen under pressure to obtain a polished finish. Container glass for common bottles and jars is formed by blowing and pressing methods. This glass is often slightly modified chemically (with more alumina and calcium oxide) for greater water resistance. Once

6372-719: The action of water, making it an ideal material for the manufacture of containers for foodstuffs and most chemicals. Nevertheless, although usually highly resistant to chemical attack, glass will corrode or dissolve under some conditions. The materials that make up a particular glass composition affect how quickly the glass corrodes. Glasses containing a high proportion of alkali or alkaline earth elements are more susceptible to corrosion than other glass compositions. The density of glass varies with chemical composition with values ranging from 2.2 grams per cubic centimetre (2,200 kg/m ) for fused silica to 7.2 grams per cubic centimetre (7,200 kg/m ) for dense flint glass. Glass

6480-404: The atoms or molecules arrange in a defined and periodic manner that defines the crystal structure – note that "crystal structure" is a special term that refers to the relative arrangement of the atoms or molecules, not the macroscopic properties of the crystal (size and shape), although those are a result of the internal crystal structure. The crystal growth is the subsequent size increase of

6588-431: The case of liquid crystals , time of fluid evaporation . Crystallization occurs in two major steps. The first is nucleation , the appearance of a crystalline phase from either a supercooled liquid or a supersaturated solvent. The second step is known as crystal growth , which is the increase in the size of particles and leads to a crystal state. An important feature of this step is that loose particles form layers at

SECTION 60

#1732790891960

6696-469: The conditions are favorable, crystal formation results from simply cooling the solution. Here cooling is a relative term: austenite crystals in a steel form well above 1000 °C. An example of this crystallization process is the production of Glauber's salt , a crystalline form of sodium sulfate . In the diagram, where equilibrium temperature is on the x-axis and equilibrium concentration (as mass percent of solute in saturated solution) in y-axis , it

6804-411: The cost factor has a low priority. In the laboratory mostly pure chemicals are used. Care must be taken that the raw materials have not reacted with moisture or other chemicals in the environment (such as alkali or alkaline earth metal oxides and hydroxides, or boron oxide ), or that the impurities are quantified (loss on ignition). Evaporation losses during glass melting should be considered during

6912-420: The crystal's surface and lodge themselves into open inconsistencies such as pores, cracks, etc. The majority of minerals and organic molecules crystallize easily, and the resulting crystals are generally of good quality, i.e. without visible defects . However, larger biochemical particles, like proteins , are often difficult to crystallize. The ease with which molecules will crystallize strongly depends on

7020-427: The crystalline ceramic phase can be balanced with the positive CTE of the glassy phase. At a certain point (~70% crystalline) the glass-ceramic has a net CTE near zero. This type of glass-ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 °C. Fibreglass (also called glass fibre reinforced plastic, GRP) is a composite material made by reinforcing

7128-683: The desired form is obtained, glass is usually annealed for the removal of stresses and to increase the glass's hardness and durability. Surface treatments, coatings or lamination may follow to improve the chemical durability ( glass container coatings , glass container internal treatment ), strength ( toughened glass , bulletproof glass , windshields ), or optical properties ( insulated glazing , anti-reflective coating ). New chemical glass compositions or new treatment techniques can be initially investigated in small-scale laboratory experiments. The raw materials for laboratory-scale glass melts are often different from those used in mass production because

7236-466: The exceptionally clear colourless glass cristallo , so called for its resemblance to natural crystal, which was extensively used for windows, mirrors, ships' lanterns, and lenses. In the 13th, 14th, and 15th centuries, enamelling and gilding on glass vessels were perfected in Egypt and Syria. Towards the end of the 17th century, Bohemia became an important region for glass production, remaining so until

7344-459: The exchange surfaces. The Oslo, mentioned above, is a refining of the evaporative forced circulation crystallizer, now equipped with a large crystals settling zone to increase the retention time (usually low in the FC) and to roughly separate heavy slurry zones from clear liquid. Evaporative crystallizers tend to yield larger average crystal size and narrows the crystal size distribution curve. Whichever

7452-459: The first true synthetic glass was made in Lebanon and the coastal north Syria , Mesopotamia or ancient Egypt . The earliest known glass objects, of the mid-third millennium BC, were beads , perhaps initially created as accidental by-products of metalworking ( slags ) or during the production of faience , a pre-glass vitreous material made by a process similar to glazing . Early glass

7560-405: The form of the crystallizer, to achieve an effective process control it is important to control the retention time and the crystal mass, to obtain the optimum conditions in terms of crystal specific surface and the fastest possible growth. This is achieved by a separation – to put it simply – of the crystals from the liquid mass, in order to manage the two flows in a different way. The practical way

7668-754: The former Roman Empire in China , the Baltics , the Middle East , and India . The Romans perfected cameo glass , produced by etching and carving through fused layers of different colours to produce a design in relief on the glass object. In post-classical West Africa, Benin was a manufacturer of glass and glass beads. Glass was used extensively in Europe during the Middle Ages . Anglo-Saxon glass has been found across England during archaeological excavations of both settlement and cemetery sites. From

7776-555: The glass and melt phases. Important polymer glasses include amorphous and glassy pharmaceutical compounds. These are useful because the solubility of the compound is greatly increased when it is amorphous compared to the same crystalline composition. Many emerging pharmaceuticals are practically insoluble in their crystalline forms. Many polymer thermoplastics familiar to everyday use are glasses. For many applications, like glass bottles or eyewear , polymer glasses ( acrylic glass , polycarbonate or polyethylene terephthalate ) are

7884-493: The glass transition range. The glass transition may be described as analogous to a second-order phase transition where the intensive thermodynamic variables such as the thermal expansivity and heat capacity are discontinuous. However, the equilibrium theory of phase transformations does not hold for glass, and hence the glass transition cannot be classed as one of the classical equilibrium phase transformations in solids. Glass can form naturally from volcanic magma. Obsidian

7992-406: The glass transition temperature is not supported by empirical research or theoretical analysis (see viscosity in solids ). Though atomic motion at glass surfaces can be observed, and viscosity on the order of 10 –10 Pa s can be measured in glass, such a high value reinforces the fact that glass would not change shape appreciably over even large periods of time. For melt quenching, if the cooling

8100-457: The growing crystal. The supersaturated solute mass the original nucleus may capture in a time unit is called the growth rate expressed in kg/(m *h), and is a constant specific to the process. Growth rate is influenced by several physical factors, such as surface tension of solution, pressure , temperature , relative crystal velocity in the solution, Reynolds number , and so forth. The main values to control are therefore: The first value

8208-476: The influence of the existing microscopic crystals in the magma. More simply put, secondary nucleation is when crystal growth is initiated with contact of other existing crystals or "seeds". The first type of known secondary crystallization is attributable to fluid shear, the other due to collisions between already existing crystals with either a solid surface of the crystallizer or with other crystals themselves. Fluid-shear nucleation occurs when liquid travels across

8316-417: The intensity of either atomic forces (in the case of mineral substances), intermolecular forces (organic and biochemical substances) or intramolecular forces (biochemical substances). Crystallization is also a chemical solid–liquid separation technique, in which mass transfer of a solute from the liquid solution to a pure solid crystalline phase occurs. In chemical engineering , crystallization occurs in

8424-416: The last crystallization stage downstream of vacuum pans, prior to centrifugation. The massecuite enters the crystallizers at the top, and cooling water is pumped through pipes in counterflow. Another option is to obtain, at an approximately constant temperature, the precipitation of the crystals by increasing the solute concentration above the solubility threshold. To obtain this, the solute/solvent mass ratio

8532-458: The liquid can easily be supercooled into a glass. Examples include LiCl: R H 2 O (a solution of lithium chloride salt and water molecules) in the composition range 4< R <8. sugar glass , or Ca 0.4 K 0.6 (NO 3 ) 1.4 . Glass electrolytes in the form of Ba-doped Li-glass and Ba-doped Na-glass have been proposed as solutions to problems identified with organic liquid electrolytes used in modern lithium-ion battery cells. Following

8640-410: The liquid saturation temperature T 1 at P 1 is lower than T 0 , the liquid will release heat according to the temperature difference and a quantity of solvent, whose total latent heat of vaporization equals the difference in enthalpy . In simple words, the liquid is cooled by evaporating a part of it. In the sugar industry, vertical cooling crystallizers are used to exhaust the molasses in

8748-622: The material, e.g. "glass" , " glasses ", " magnifying glass ". Glass is most often formed by rapid cooling ( quenching ) of the molten form. Some glasses such as volcanic glass are naturally occurring, and obsidian has been used to make arrowheads and knives since the Stone Age . Archaeological evidence suggests glassmaking dates back to at least 3600 BC in Mesopotamia , Egypt , or Syria . The earliest known glass objects were beads , perhaps created accidentally during metalworking or

8856-481: The melt whilst it floats on a gas stream) or splat quenching (pressing the melt between two metal anvils or rollers), may be used to increase the cooling rate or to reduce crystal nucleation triggers. In the past, small batches of amorphous metals with high surface area configurations (ribbons, wires, films, etc.) have been produced through the implementation of extremely rapid rates of cooling. Amorphous metal wires have been produced by sputtering molten metal onto

8964-433: The melt. The high density of lead glass (silica + lead oxide (PbO) + potassium oxide (K 2 O) + soda (Na 2 O) + zinc oxide (ZnO) + alumina) results in a high electron density, and hence high refractive index, making the look of glassware more brilliant and causing noticeably more specular reflection and increased optical dispersion . Lead glass has a high elasticity, making the glassware more workable and giving rise to

9072-619: The melting temperature and simplify glass processing. Sodium carbonate (Na 2 CO 3 , "soda") is a common additive and acts to lower the glass-transition temperature. However, sodium silicate is water-soluble , so lime (CaO, calcium oxide , generally obtained from limestone ), along with magnesium oxide (MgO), and aluminium oxide (Al 2 O 3 ), are commonly added to improve chemical durability. Soda–lime glasses (Na 2 O) + lime (CaO) + magnesia (MgO) + alumina (Al 2 O 3 ) account for over 75% of manufactured glass, containing about 70 to 74% silica by weight. Soda–lime–silicate glass

9180-410: The metallic ions will absorb wavelengths of light corresponding to specific colours. In the manufacturing process, glasses can be poured, formed, extruded and moulded into forms ranging from flat sheets to highly intricate shapes. The finished product is brittle but can be laminated or tempered to enhance durability. Glass is typically inert, resistant to chemical attack, and can mostly withstand

9288-402: The microscopic scale (elevating solute concentration in a small region), that become stable under the current operating conditions. These stable clusters constitute the nuclei. Therefore, the clusters need to reach a critical size in order to become stable nuclei. Such critical size is dictated by many different factors ( temperature , supersaturation , etc.). It is at the stage of nucleation that

9396-409: The most significant architectural innovations of modern times, where glass buildings now often dominate the skylines of many modern cities . These systems use stainless steel fittings countersunk into recesses in the corners of the glass panels allowing strengthened panes to appear unsupported creating a flush exterior. Structural glazing systems have their roots in iron and glass conservatories of

9504-462: The nineteenth century Crystallization Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal . Some ways by which crystals form are precipitating from a solution , freezing , or more rarely deposition directly from a gas . Attributes of the resulting crystal depend largely on factors such as temperature , air pressure , cooling rate, and in

9612-448: The nuclei that succeed in achieving the critical cluster size. Crystal growth is a dynamic process occurring in equilibrium where solute molecules or atoms precipitate out of solution, and dissolve back into solution. Supersaturation is one of the driving forces of crystallization, as the solubility of a species is an equilibrium process quantified by K sp . Depending upon the conditions, either nucleation or growth may be predominant over

9720-427: The nucleus, forms it acts as a convergence point (if unstable due to supersaturation) for molecules of solute touching – or adjacent to – the crystal so that it increases its own dimension in successive layers. The pattern of growth resembles the rings of an onion, as shown in the picture, where each colour indicates the same mass of solute; this mass creates increasingly thin layers due to the increasing surface area of

9828-399: The other, dictating crystal size. Many compounds have the ability to crystallize with some having different crystal structures, a phenomenon called polymorphism . Certain polymorphs may be metastable , meaning that although it is not in thermodynamic equilibrium , it is kinetically stable and requires some input of energy to initiate a transformation to the equilibrium phase. Each polymorph

9936-922: The production of faience , which is a form of pottery using lead glazes. Due to its ease of formability into any shape, glass has been traditionally used for vessels, such as bowls , vases , bottles , jars and drinking glasses. Soda–lime glass , containing around 70% silica , accounts for around 90% of modern manufactured glass. Glass can be coloured by adding metal salts or painted and printed with vitreous enamels , leading to its use in stained glass windows and other glass art objects. The refractive , reflective and transmission properties of glass make glass suitable for manufacturing optical lenses , prisms , and optoelectronics materials. Extruded glass fibres have applications as optical fibres in communications networks, thermal insulating material when matted as glass wool to trap air, or in glass-fibre reinforced plastic ( fibreglass ). The standard definition of

10044-618: The purity in a technique known as recrystallization. For biological molecules in which the solvent channels continue to be present to retain the three dimensional structure intact, microbatch crystallization under oil and vapor diffusion have been the common methods. Equipment for the main industrial processes for crystallization . The crystallization process appears to violate the second principle of thermodynamics . Whereas most processes that yield more orderly results are achieved by applying heat, crystals usually form at lower temperatures – especially by supercooling . However,

10152-421: The rate of nucleation that would otherwise not be seen without the existence of these foreign particles. Homogeneous nucleation rarely occurs in practice due to the high energy necessary to begin nucleation without a solid surface to catalyze the nucleation. Primary nucleation (both homogeneous and heterogeneous) has been modeled as follows: where Secondary nucleation is the formation of nuclei attributable to

10260-426: The release of the heat of fusion during crystallization causes the entropy of the universe to increase, thus this principle remains unaltered. The molecules within a pure, perfect crystal , when heated by an external source, will become liquid. This occurs at a sharply defined temperature (different for each type of crystal). As it liquifies, the complicated architecture of the crystal collapses. Melting occurs because

10368-421: The same time a concentration of the solution. A crystallization process often referred to in chemical engineering is the fractional crystallization . This is not a different process, rather a special application of one (or both) of the above. Most chemical compounds , dissolved in most solvents, show the so-called direct solubility that is, the solubility threshold increases with temperature. So, whenever

10476-424: The selection of the raw materials, e.g., sodium selenite may be preferred over easily evaporating selenium dioxide (SeO 2 ). Also, more readily reacting raw materials may be preferred over relatively inert ones, such as aluminium hydroxide (Al(OH) 3 ) over alumina (Al 2 O 3 ). Usually, the melts are carried out in platinum crucibles to reduce contamination from the crucible material. Glass homogeneity

10584-603: The start of the 20th century. By the 17th century, glass in the Venetian tradition was also being produced in England . In about 1675, George Ravenscroft invented lead crystal glass, with cut glass becoming fashionable in the 18th century. Ornamental glass objects became an important art medium during the Art Nouveau period in the late 19th century. Throughout the 20th century, new mass production techniques led to

10692-469: The strength of glass. Carefully drawn flawless glass fibres can be produced with a strength of up to 11.5 gigapascals (1,670,000 psi). The observation that old windows are sometimes found to be thicker at the bottom than at the top is often offered as supporting evidence for the view that glass flows over a timescale of centuries, the assumption being that the glass has exhibited the liquid property of flowing from one shape to another. This assumption

10800-448: The surroundings compensates for the loss of entropy that results from the reordering of molecules within the system. Such liquids that crystallize on cooling are the exception rather than the rule. The nature of the crystallization process is governed by both thermodynamic and kinetic factors, which can make it highly variable and difficult to control. Factors such as impurity level, mixing regime, vessel design, and cooling profile can have

10908-460: The system Al-Fe-Si may undergo a first-order transition to an amorphous form (dubbed "q-glass") on rapid cooling from the melt. Transmission electron microscopy (TEM) images indicate that q-glass nucleates from the melt as discrete particles with uniform spherical growth in all directions. While x-ray diffraction reveals the isotropic nature of q-glass, a nucleation barrier exists implying an interfacial discontinuity (or internal surface) between

11016-424: The system, they do not have any influence on the process. This can occur in two conditions. The first is homogeneous nucleation, which is nucleation that is not influenced in any way by solids. These solids include the walls of the crystallizer vessel and particles of any foreign substance. The second category, then, is heterogeneous nucleation. This occurs when solid particles of foreign substances cause an increase in

11124-442: The total world production of crystals. The most common type is the forced circulation (FC) model (see evaporator ). A pumping device (a pump or an axial flow mixer ) keeps the crystal slurry in homogeneous suspension throughout the tank, including the exchange surfaces; by controlling pump flow , control of the contact time of the crystal mass with the supersaturated solution is achieved, together with reasonable velocities at

11232-590: The transformation of anatase to rutile phases of titanium dioxide . There are many examples of natural process that involve crystallization. Geological time scale process examples include: Human time scale process examples include: Crystal formation can be divided into two types, where the first type of crystals are composed of a cation and anion, also known as a salt, such as sodium acetate . The second type of crystals are composed of uncharged species, for example menthol . Crystals can be formed by various methods, such as: cooling, evaporation, addition of

11340-451: The widespread availability of glass in much larger amounts, making it practical as a building material and enabling new applications of glass. In the 1920s a mould -etch process was developed, in which art was etched directly into the mould so that each cast piece emerged from the mould with the image already on the surface of the glass. This reduced manufacturing costs and, combined with a wider use of coloured glass, led to cheap glassware in

11448-402: The year 1268. The study found that the room temperature viscosity of this glass was roughly 10   Pa · s which is about 10 times less viscous than a previous estimate made in 1998, which focused on soda-lime silicate glass. Even with this lower viscosity, the study authors calculated that the maximum flow rate of medieval glass is 1 nm per billion years, making it impossible to observe in

11556-517: Was originally used in the United Kingdom and United States during World War II to manufacture radomes . Uses of fibreglass include building and construction materials, boat hulls, car body parts, and aerospace composite materials. Glass-fibre wool is an excellent thermal and sound insulation material, commonly used in buildings (e.g. attic and cavity wall insulation ), and plumbing (e.g. pipe insulation ), and soundproofing . It

11664-556: Was rarely transparent and often contained impurities and imperfections, and is technically faience rather than true glass, which did not appear until the 15th century BC. However, red-orange glass beads excavated from the Indus Valley Civilization dated before 1700 BC (possibly as early as 1900 BC) predate sustained glass production, which appeared around 1600 BC in Mesopotamia and 1500 BC in Egypt. During

#959040