Misplaced Pages

Chemical oxygen demand

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In environmental chemistry , the chemical oxygen demand ( COD ) is an indicative measure of the amount of oxygen that can be consumed by reactions in a measured solution . It is commonly expressed in mass of oxygen consumed over volume of solution, which in SI units is milligrams per liter ( mg / L ). A COD test can be used to quickly quantify the amount of organics in water . The most common application of COD is in quantifying the amount of oxidizable pollutants found in surface water (e.g. lakes and rivers ) or wastewater . COD is useful in terms of water quality by providing a metric to determine the effect an effluent will have on the receiving body, much like biochemical oxygen demand (BOD) .

#563436

58-466: The basis for the COD test is that nearly all organic compounds can be fully oxidized to carbon dioxide with a strong oxidizing agent under acidic conditions. The amount of oxygen required to oxidize an organic compound to carbon dioxide, ammonia , and water is given by: This expression does not include the oxygen demand caused by nitrification , the oxidation of ammonia into nitrate : Dichromate ,

116-516: A decline in basic activity level and information usage at 1000 ppm, when compared to 500 ppm. However a review of the literature found that a reliable subset of studies on the phenomenon of carbon dioxide induced cognitive impairment to only show a small effect on high-level decision making (for concentrations below 5000 ppm). Most of the studies were confounded by inadequate study designs, environmental comfort, uncertainties in exposure doses and differing cognitive assessments used. Similarly

174-446: A fixed structure. However, in a Coulomb explosion imaging experiment, an instantaneous image of the molecular structure can be deduced. Such an experiment has been performed for carbon dioxide. The result of this experiment, and the conclusion of theoretical calculations based on an ab initio potential energy surface of the molecule, is that none of the molecules in the gas phase are ever exactly linear. This counter-intuitive result

232-452: A fixed volume with a known excess amount of the oxidant is added to a sample of the solution being analyzed. After a refluxing digestion step, the initial concentration of organic substances in the sample is calculated from a titrimetric or spectrophotometric determination of the oxidant remaining in the sample. As with all colorimetric methods, blanks are used to control for contamination by outside material. Potassium hydrogen phtalate (KHP)

290-611: A glass state similar to other members of its elemental family, like silicon dioxide (silica glass) and germanium dioxide . Unlike silica and germania glasses, however, carbonia glass is not stable at normal pressures and reverts to gas when pressure is released. At temperatures and pressures above the critical point, carbon dioxide behaves as a supercritical fluid known as supercritical carbon dioxide . Table of thermal and physical properties of saturated liquid carbon dioxide: Table of thermal and physical properties of carbon dioxide (CO 2 ) at atmospheric pressure: Carbon dioxide

348-467: A green hue to a bright blue hue and then to a reddish brown upon reaching the endpoint. Ferroin indicator changes from red to pale blue when oxidized. Another indicator that can be used is diphenylamine . It is prepared by dissolving 0.1g in 100ml concentrated sulfuric acid . The color change is from dark blue to light blue . A solution of 1.485 g 1,10- phenanthroline monohydrate is added to a solution of 695 mg FeSO 4 ·7H 2 O in distilled water, and

406-557: A lower concentration of potassium dichromate is preferred. In the process of oxidizing the organic substances found in the water sample, potassium dichromate is reduced (since in all redox reactions, one reagent is oxidized and the other is reduced), forming Cr. The amount of Cr is determined after oxidization is complete and is used as an indirect measure of the organic contents of the water sample. An excess amount of potassium dichromate (or any oxidizing agent) must be present for all organic matter to be completely oxidized. Once oxidation

464-491: A mature forest will produce as much CO 2 from respiration and decomposition of dead specimens (e.g., fallen branches) as is used in photosynthesis in growing plants. Contrary to the long-standing view that they are carbon neutral, mature forests can continue to accumulate carbon and remain valuable carbon sinks , helping to maintain the carbon balance of Earth's atmosphere. Additionally, and crucially to life on earth, photosynthesis by phytoplankton consumes dissolved CO 2 in

522-428: A much larger denominator and a much smaller value than the true K a1 . The bicarbonate ion is an amphoteric species that can act as an acid or as a base, depending on pH of the solution. At high pH, it dissociates significantly into the carbonate ion ( CO 2− 3 ): In organisms, carbonic acid production is catalysed by the enzyme known as carbonic anhydrase . In addition to altering its acidity,

580-401: A relatively poor oxidizing agent for determining COD. Since then, other oxidizing agents such as ceric sulphate , potassium iodate , and potassium dichromate have been used to determine COD. Of these, potassium dichromate ( K 2 Cr 2 O 7 ) is the most effective: it is relatively cheap, easy to purify , and can nearly completely oxidize almost all organic compounds. In these methods,

638-416: A study on the effects of the concentration of CO 2 in motorcycle helmets has been criticized for having dubious methodology in not noting the self-reports of motorcycle riders and taking measurements using mannequins. Further when normal motorcycle conditions were achieved (such as highway or city speeds) or the visor was raised the concentration of CO 2 declined to safe levels (0.2%). Poor ventilation

SECTION 10

#1732772038564

696-467: A typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls . Since it is centrosymmetric, the molecule has no electric dipole moment . As a linear triatomic molecule, CO 2 has four vibrational modes as shown in the diagram. In the symmetric and the antisymmetric stretching modes, the atoms move along the axis of the molecule. There are two bending modes, which are degenerate , meaning that they have

754-413: A variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff / storm water, and any sewer inflow or sewer infiltration ". In everyday usage, wastewater is commonly a synonym for sewage (also called domestic wastewater or municipal wastewater), which is wastewater that

812-485: A waste product. In turn, oxygen is consumed and CO 2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration . CO 2 is released from organic materials when they decay or combust, such as in forest fires. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate ( HCO − 3 ), which causes ocean acidification as atmospheric CO 2 levels increase. Carbon dioxide

870-469: Is Emiliania huxleyi whose calcite scales have formed the basis of many sedimentary rocks such as limestone , where what was previously atmospheric carbon can remain fixed for geological timescales. Plants can grow as much as 50% faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients. Elevated CO 2 levels cause increased growth reflected in

928-419: Is 304.128(15) K (30.978(15) °C) at 7.3773(30) MPa (72.808(30) atm). Another form of solid carbon dioxide observed at high pressure is an amorphous glass-like solid. This form of glass, called carbonia , is produced by supercooling heated CO 2 at extreme pressures (40–48  GPa , or about 400,000 atmospheres) in a diamond anvil . This discovery confirmed the theory that carbon dioxide could exist in

986-569: Is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO 2 emissions to the atmosphere are absorbed by land and ocean carbon sinks . These sinks can become saturated and are volatile, as decay and wildfires result in the CO 2 being released back into the atmosphere. CO 2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal , petroleum and natural gas . Nearly all CO2 produced by humans goes into

1044-406: Is a chemical compound with the chemical formula CO 2 . It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature and at normally-encountered concentrations it is odorless. As the source of carbon in the carbon cycle , atmospheric CO 2 is the primary carbon source for life on Earth. In

1102-415: Is an end product of cellular respiration in organisms that obtain energy by breaking down sugars, fats and amino acids with oxygen as part of their metabolism . This includes all plants, algae and animals and aerobic fungi and bacteria. In vertebrates , the carbon dioxide travels in the blood from the body's tissues to the skin (e.g., amphibians ) or the gills (e.g., fish ), from where it dissolves in

1160-402: Is commercially used in its solid form, commonly known as " dry ice ". The solid-to-gas phase transition occurs at 194.7 Kelvin and is called sublimation . The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3  pm , noticeably shorter than the roughly 140 pm length of

1218-432: Is complete, the amount of excess potassium dichromate must be measured to ensure that the amount of Cr can be accurately determined. To do so, the excess potassium dichromate is titrated with ferrous ammonium sulfate (FAS) until all of the excess oxidizing agent has been reduced to Cr. Typically, the oxidation-reduction indicator ferroin is added during this titration step. Once all the excess dichromate has been reduced,

SECTION 20

#1732772038564

1276-632: Is one of the main causes of excessive CO 2 concentrations in closed spaces, leading to poor indoor air quality . Carbon dioxide differential above outdoor concentrations at steady state conditions (when the occupancy and ventilation system operation are sufficiently long that CO 2 concentration has stabilized) are sometimes used to estimate ventilation rates per person. Higher CO 2 concentrations are associated with occupant health, comfort and performance degradation. ASHRAE Standard 62.1–2007 ventilation rates may result in indoor concentrations up to 2,100 ppm above ambient outdoor conditions. Thus if

1334-410: Is ordinarily a difficult and slow reaction: The redox potential for this reaction near pH 7 is about −0.53 V versus the standard hydrogen electrode . The nickel-containing enzyme carbon monoxide dehydrogenase catalyses this process. Photoautotrophs (i.e. plants and cyanobacteria ) use the energy contained in sunlight to photosynthesize simple sugars from CO 2 absorbed from

1392-405: Is produced as a by-product. Ribulose-1,5-bisphosphate carboxylase oxygenase , commonly abbreviated to RuBisCO, is the enzyme involved in the first major step of carbon fixation, the production of two molecules of 3-phosphoglycerate from CO 2 and ribulose bisphosphate , as shown in the diagram at left. RuBisCO is thought to be the single most abundant protein on Earth. Phototrophs use

1450-472: Is the true first acid dissociation constant, defined as where the denominator includes only covalently bound H 2 CO 3 and does not include hydrated CO 2 (aq). The much smaller and often-quoted value near 4.16 × 10 (or pK a1 = 6.38) is an apparent value calculated on the (incorrect) assumption that all dissolved CO 2 is present as carbonic acid, so that Since most of the dissolved CO 2 remains as CO 2 molecules, K a1 (apparent) has

1508-555: Is the main cause of these increased CO 2 concentrations, which are the primary cause of climate change . Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian was regulated by organisms and geological features. Plants , algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis , which produces oxygen as

1566-518: Is the most used substance for preparation of standards for COD. The theoretical oxygen demand for KHP is 1.175 mg O2 per mg KHP , therefore solution which contains 851 mg KHP in 1L water has COD 1000 mgO2/L. This solution has two disadvantages. Because water always contains dissolved oxygen , it reacts with KHP during the storage and lowers the COD. Second, if the solution is not sterile a microorganisms develop and this affects to COD . This disadvantages are most pronounced at lower concentrations of KHP. That

1624-419: Is trivially due to the fact that the nuclear motion volume element vanishes for linear geometries. This is so for all molecules except diatomic molecules . Carbon dioxide is soluble in water, in which it reversibly forms H 2 CO 3 (carbonic acid), which is a weak acid , because its ionization in water is incomplete. The hydration equilibrium constant of carbonic acid is, at 25 °C: Hence,

1682-465: Is used in CO 2 scrubbers and has been suggested as a possible starting point for carbon capture and storage by amine gas treating . Only very strong nucleophiles, like the carbanions provided by Grignard reagents and organolithium compounds react with CO 2 to give carboxylates : In metal carbon dioxide complexes , CO 2 serves as a ligand , which can facilitate the conversion of CO 2 to other chemicals. The reduction of CO 2 to CO

1740-457: Is usually achieved by the addition of sulfuric acid . The reaction of potassium dichromate with organic compounds is given by: where d = 2 n / 3 + a / 6 − b / 3 − c / 2 {\displaystyle d=2n/3+a/6-b/3-c/2} . Most commonly, a 0.25 N solution of potassium dichromate is used for COD determination, although for samples with COD below 50 mg/L,

1798-598: Is why а standards for COD are always prepared at high concentrations and diluted at low concentrations immеdiately before use. And need refrigeration to store. A method developed in Bulgarian company ,, ОГИ-КЕМ ,, allows to avoid this problems. It consist of passing nitrogen gas through the solution of KHP for 30 min. and sterilization in thermostat for 24 h. at 70 C . Solutions prepared in this way are stable for several months even at COD 10 mgO2/l . "General Chemistry Online" . Carbon dioxide Carbon dioxide

Chemical oxygen demand - Misplaced Pages Continue

1856-439: The air and water: Carbon dioxide is colorless. At low concentrations, the gas is odorless; however, at sufficiently high concentrations, it has a sharp, acidic odor. At standard temperature and pressure , the density of carbon dioxide is around 1.98 kg/m , about 1.53 times that of air . Carbon dioxide has no liquid state at pressures below 0.51795(10) MPa (5.11177(99) atm ). At a pressure of 1 atm (0.101325 MPa),

1914-444: The air, carbon dioxide is transparent to visible light but absorbs infrared radiation , acting as a greenhouse gas . Carbon dioxide is soluble in water and is found in groundwater , lakes , ice caps , and seawater . It is a trace gas in Earth's atmosphere at 421  parts per million (ppm) , or about 0.042% (as of May 2022) having risen from pre-industrial levels of 280 ppm or about 0.028%. Burning fossil fuels

1972-430: The atmosphere. Less than 1% of CO2 produced annually is put to commercial use, mostly in the fertilizer industry and in the oil and gas industry for enhanced oil recovery . Other commercial applications include food and beverage production, metal fabrication, cooling, fire suppression and stimulating plant growth in greenhouses. Carbon dioxide cannot be liquefied at atmospheric pressure. Low-temperature carbon dioxide

2030-482: The compounds formed when the inorganic molecule is eliminated. Many governments impose strict regulations regarding the maximum chemical oxygen demand allowed in wastewater before it can be returned to the environment. For example, in Switzerland , a maximum oxygen demand between 200 and 1000 mg/L must be reached before wastewater or industrial water can be returned to the environment [2] . For many years,

2088-869: The condition. There are few studies of the health effects of long-term continuous CO 2 exposure on humans and animals at levels below 1%. Occupational CO 2 exposure limits have been set in the United States at 0.5% (5000 ppm) for an eight-hour period. At this CO 2 concentration, International Space Station crew experienced headaches, lethargy, mental slowness, emotional irritation, and sleep disruption. Studies in animals at 0.5% CO 2 have demonstrated kidney calcification and bone loss after eight weeks of exposure. A study of humans exposed in 2.5 hour sessions demonstrated significant negative effects on cognitive abilities at concentrations as low as 0.1% (1000   ppm) CO 2 likely due to CO 2 induced increases in cerebral blood flow. Another study observed

2146-517: The degenerate pair of bending modes at 667 cm (wavelength 15.0 μm). The symmetric stretching mode does not create an electric dipole so is not observed in IR spectroscopy, but it is detected in Raman spectroscopy at 1388 cm (wavelength 7.20 μm), with a Fermi resonance doublet at 1285 cm . In the gas phase, carbon dioxide molecules undergo significant vibrational motions and do not keep

2204-496: The determination of COD. Because of its high concentration in most wastewater , chloride is often the most serious source of interference. Its reaction with potassium dichromate follows the equation: To eliminate chloride interference, mercuric sulfate can be added to the sample prior to the addition of other reagents. The following table lists several other inorganic substances that may cause interference. It also lists chemicals that may be used to eliminate such interference and

2262-566: The dispersing effects of wind, it can collect in sheltered/pocketed locations below average ground level, causing animals located therein to be suffocated. Carrion feeders attracted to the carcasses are then also killed. Children have been killed in the same way near the city of Goma by CO 2 emissions from the nearby volcano Mount Nyiragongo . The Swahili term for this phenomenon is mazuku . Adaptation to increased concentrations of CO 2 occurs in humans, including modified breathing and kidney bicarbonate production, in order to balance

2320-541: The effects of blood acidification ( acidosis ). Several studies suggested that 2.0 percent inspired concentrations could be used for closed air spaces (e.g. a submarine ) since the adaptation is physiological and reversible, as deterioration in performance or in normal physical activity does not happen at this level of exposure for five days. Yet, other studies show a decrease in cognitive function even at much lower levels. Also, with ongoing respiratory acidosis , adaptation or compensatory mechanisms will be unable to reverse

2378-551: The electrical conductivity of fully deionized water without CO 2 saturation is comparably low in relation to these data. CO 2 is a potent electrophile having an electrophilic reactivity that is comparable to benzaldehyde or strongly electrophilic α,β-unsaturated carbonyl compounds . However, unlike electrophiles of similar reactivity, the reactions of nucleophiles with CO 2 are thermodynamically less favored and are often found to be highly reversible. The reversible reaction of carbon dioxide with amines to make carbamates

Chemical oxygen demand - Misplaced Pages Continue

2436-416: The ferroin indicator changes from blue-green to a reddish brown. The amount of ferrous ammonium sulfate added is equivalent to excess potassium dichromate added to the original sample. Note: Ferroin indicator is bright red from commercially prepared sources, but it exhibits a green hue when added to a digested sample containing potassium dichromate. During the titration, the color of the indicator changes from

2494-469: The gas deposits directly to a solid at temperatures below 194.6855(30) K (−78.4645(30) °C) and the solid sublimes directly to a gas above this temperature. In its solid state, carbon dioxide is commonly called dry ice . Liquid carbon dioxide forms only at pressures above 0.51795(10) MPa (5.11177(99) atm); the triple point of carbon dioxide is 216.592(3) K (−56.558(3) °C) at 0.51795(10) MPa (5.11177(99) atm) (see phase diagram). The critical point

2552-601: The harvestable yield of crops, with wheat, rice and soybean all showing increases in yield of 12–14% under elevated CO 2 in FACE experiments. Increased atmospheric CO 2 concentrations result in fewer stomata developing on plants which leads to reduced water usage and increased water-use efficiency . Studies using FACE have shown that CO 2 enrichment leads to decreased concentrations of micronutrients in crop plants. This may have knock-on effects on other parts of ecosystems as herbivores will need to eat more food to gain

2610-444: The majority of the carbon dioxide is not converted into carbonic acid, but remains as CO 2 molecules, not affecting the pH. The relative concentrations of CO 2 , H 2 CO 3 , and the deprotonated forms HCO − 3 ( bicarbonate ) and CO 2− 3 ( carbonate ) depend on the pH . As shown in a Bjerrum plot , in neutral or slightly alkaline water (pH > 6.5), the bicarbonate form predominates (>50%) becoming

2668-443: The most prevalent (>95%) at the pH of seawater. In very alkaline water (pH > 10.4), the predominant (>50%) form is carbonate. The oceans, being mildly alkaline with typical pH = 8.2–8.5, contain about 120 mg of bicarbonate per liter. Being diprotic , carbonic acid has two acid dissociation constants , the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion ( HCO − 3 ): This

2726-425: The outdoor concentration is 400 ppm, indoor concentrations may reach 2,500 ppm with ventilation rates that meet this industry consensus standard. Concentrations in poorly ventilated spaces can be found even higher than this (range of 3,000 or 4,000 ppm). Wastewater Wastewater (or waste water ) is water generated after the use of freshwater , raw water , drinking water or saline water in

2784-464: The oxidizing agent for COD determination, does not oxidize ammonia into nitrate, so nitrification is not included in the standard COD test. The International Organization for Standardization describes a standard method for measuring chemical oxygen demand in ISO 6060 [1] . However, this ISO standard was withdrawn in 2024. Potassium dichromate is a strong oxidizing agent under acidic conditions. Acidity

2842-495: The presence of carbon dioxide in water also affects its electrical properties. When carbon dioxide dissolves in desalinated water, the electrical conductivity increases significantly from below 1 μS/cm to nearly 30 μS/cm. When heated, the water begins to gradually lose the conductivity induced by the presence of C O 2 {\displaystyle \mathrm {CO_{2}} } , especially noticeable as temperatures exceed 30 °C. The temperature dependence of

2900-499: The presence of sufficient oxygen, manifesting as dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour. Concentrations of more than 10% may cause convulsions, coma, and death. CO 2 levels of more than 30% act rapidly leading to loss of consciousness in seconds. Because it is heavier than air, in locations where the gas seeps from the ground (due to sub-surface volcanic or geothermal activity) in relatively high concentrations, without

2958-496: The products of their photosynthesis as internal food sources and as raw material for the biosynthesis of more complex organic molecules, such as polysaccharides , nucleic acids , and proteins. These are used for their own growth, and also as the basis of the food chains and webs that feed other organisms, including animals such as ourselves. Some important phototrophs, the coccolithophores synthesise hard calcium carbonate scales. A globally significant species of coccolithophore

SECTION 50

#1732772038564

3016-434: The resulting red solution is diluted to 100 mL. The following formula is used to calculate COD: where b is the volume of FAS used in the blank sample, s is the volume of FAS in the original sample, and n is the normality of FAS. If milliliters are used consistently for volume measurements, the result of the COD calculation is given in mg/L. The COD can also be estimated from the concentration of oxidizable compound in

3074-420: The same amount of protein. The concentration of secondary metabolites such as phenylpropanoids and flavonoids can also be altered in plants exposed to high concentrations of CO 2 . Plants also emit CO 2 during respiration, and so the majority of plants and algae, which use C3 photosynthesis , are only net absorbers during the day. Though a growing forest will absorb many tons of CO 2 each year,

3132-411: The same frequency and same energy, because of the symmetry of the molecule. When a molecule touches a surface or touches another molecule, the two bending modes can differ in frequency because the interaction is different for the two modes. Some of the vibrational modes are observed in the infrared (IR) spectrum : the antisymmetric stretching mode at wavenumber 2349 cm (wavelength 4.25 μm) and

3190-412: The sample, based on its stoichiometric reaction with oxygen to yield CO 2 (assume all C goes to CO 2 ), H 2 O (assume all H goes to H 2 O), and NH 3 (assume all N goes to NH 3 ), using the following formula: Where For example, if a sample has 500 Wppm (Weight Parts per Million) of phenol: Some samples of water contain high levels of oxidizable inorganic materials which may interfere with

3248-557: The strong oxidizing agent potassium permanganate ( K Mn O 4 ) was used for measuring chemical oxygen demand. Measurements were called oxygen consumed from permanganate rather than organic substances' oxygen demand . Potassium permanganate's effectiveness at oxidizing organic compounds varied widely, and in many cases, biochemical oxygen demand (BOD) measurements were often much greater than results from COD measurements. This indicated that potassium permanganate could not effectively oxidize all organic compounds in water, rendering it

3306-535: The upper ocean and thereby promotes the absorption of CO 2 from the atmosphere. Carbon dioxide content in fresh air (averaged between sea-level and 10 kPa level, i.e., about 30 km (19 mi) altitude) varies between 0.036% (360 ppm) and 0.041% (412 ppm), depending on the location. In humans, exposure to CO 2 at concentrations greater than 5% causes the development of hypercapnia and respiratory acidosis . Concentrations of 7% to 10% (70,000 to 100,000 ppm) may cause suffocation, even in

3364-546: The water, or to the lungs from where it is exhaled. During active photosynthesis, plants can absorb more carbon dioxide from the atmosphere than they release in respiration. Carbon fixation is a biochemical process by which atmospheric carbon dioxide is incorporated by plants, algae and cyanobacteria into energy-rich organic molecules such as glucose , thus creating their own food by photosynthesis. Photosynthesis uses carbon dioxide and water to produce sugars from which other organic compounds can be constructed, and oxygen

#563436