Classical conditioning (also respondent conditioning and Pavlovian conditioning ) is a behavioral procedure in which a biologically potent stimulus (e.g. food, a puff of air on the eye, a potential rival) is paired with a neutral stimulus (e.g. the sound of a musical triangle ). The term classical conditioning refers to the process of an automatic, conditioned response that is paired with a specific stimulus.
60-526: (Redirected from Cs ) [REDACTED] Look up CS , Cs , cS , cs , or cs. in Wiktionary, the free dictionary. CS , C-S , C.S. , Cs , cs , or cs. may refer to: Job titles [ edit ] Chief Secretary (Hong Kong) Chief superintendent , a rank in the British and several other police forces Company secretary ,
120-414: A CS than it does for a novel stimulus to become a CS, when the stimulus is paired with an effective US. This is one of the most common ways to measure the strength of learning in classical conditioning. A typical example of this procedure is as follows: a rat first learns to press a lever through operant conditioning . Then, in a series of trials, the rat is exposed to a CS, a light or a noise, followed by
180-479: A South Korea-based manufacturer of wind turbine towers Places [ edit ] Cannon Street station , London, UK, abbreviated CS in UK railway slang Czechoslovakia (former ISO 3166-1 country code) Serbia and Montenegro (former ISO 3166-1 country code) Circuito Sur , national highway of Cuba Science and technology [ edit ] Biology and medicine [ edit ] Caesarean section ,
240-555: A US through forward conditioning. Then a second neutral stimulus ("CS2") is paired with the first (CS1) and comes to yield its own conditioned response. For example: A bell might be paired with food until the bell elicits salivation. If a light is then paired with the bell, then the light may come to elicit salivation as well. The bell is the CS1 and the food is the US. The light becomes the CS2 once it
300-498: A US. A compound CS (CS1+CS2) is paired with a US. A separate test for each CS (CS1 and CS2) is performed. The blocking effect is observed in a lack of conditional response to CS2, suggesting that the first phase of training blocked the acquisition of the second CS. [REDACTED] Experiments on theoretical issues in conditioning have mostly been done on vertebrates , especially rats and pigeons. However, conditioning has also been studied in invertebrates , and very important data on
360-426: A class of hormones produced in vertebrates, and their synthetic analogues Cowden syndrome , a rare autosomal dominant inherited disorder (-)-camphene synthase , an enzyme CS (gene) , which encodes the enzyme citrate synthase Chemistry [ edit ] Caesium or Cesium, symbol Cs, a chemical symbol Carbon monosulfide , chemical formula CS Computing [ edit ] Computer science ,
420-421: A design and development software suite by Adobe Systems C# , a general-purpose, multi-paradigm programming language . Mathematics [ edit ] cs (elliptic function) , one of Jacobi's elliptic functions Other uses in science and technology [ edit ] Carbon steel Cirrostratus cloud Citizen science Compressed sensing , a signal processing technique for reconstructing
480-465: A dog's saliva produced as a CR differed in composition from that produced as a UR. The CR is sometimes even the opposite of the UR. For example: the unconditional response to electric shock is an increase in heart rate, whereas a CS that has been paired with the electric shock elicits a decrease in heart rate. (However, it has been proposed that only when the UR does not involve the central nervous system are
540-568: A drug or chemical whose manufacture, possession, or use is regulated by a government Cable Ship , in civilian ship names Calgary Stampede , a rodeo Caught stealing , a statistic in baseball Chhatrapati Shivaji , c. 1627/1630 – 1680), Indian warrior king and member of the Bhonsle Maratha clan Christian Science , a religion Cities: Skylines , 2015 city-building simulation video game Coke Studio (disambiguation) , several musical television shows Counter-Strike ,
600-499: A negative associate strength) then R-W predicts that the CS will not undergo extinction (its V will not decrease in size). The most important and novel contribution of the R–W model is its assumption that the conditioning of a CS depends not just on that CS alone, and its relationship to the US, but also on all other stimuli present in the conditioning situation. In particular, the model states that
660-404: A piece of cardboard. A key idea behind the R–W model is that a CS signals or predicts the US. One might say that before conditioning, the subject is surprised by the US. However, after conditioning, the subject is no longer surprised, because the CS predicts the coming of the US. (The model can be described mathematically and that words like predict, surprise, and expect are only used to help explain
SECTION 10
#1732765784255720-501: A procedure that enabled him to study the digestive processes of animals over long periods of time. He redirected the animals' digestive fluids outside the body, where they could be measured. Pavlov noticed that his dogs began to salivate in the presence of the technician who normally fed them, rather than simply salivating in the presence of food. Pavlov called the dogs' anticipatory salivation "psychic secretion". Putting these informal observations to an experimental test, Pavlov presented
780-515: A puff of air directed at a person's eye could be followed by the sound of a buzzer. In temporal conditioning, a US is presented at regular intervals, for instance every 10 minutes. Conditioning is said to have occurred when the CR tends to occur shortly before each US. This suggests that animals have a biological clock that can serve as a CS. This method has also been used to study timing ability in animals (see Animal cognition ). The example below shows
840-569: A railroad company in the western United States Comlux Aruba NV ( IATA airline code: CS) Connecting Stockholm , future train operator in Sweden Copenhagen Suborbitals , a Danish non-profit rocket group working on the HEAT1X-TYCHO BRAHE rocket CouchSurfing , a hospitality service Credit Suisse , a Swiss financial services company Comp-Sultants , a defunct microcomputer company CS Wind ,
900-419: A replica of the unconditioned response, but Pavlov noted that saliva produced by the CS differs in composition from that produced by the US. In fact, the CR may be any new response to the previously neutral CS that can be clearly linked to experience with the conditional relationship of CS and US. It was also thought that repeated pairings are necessary for conditioning to emerge, but many CRs can be learned with
960-551: A senior position in a private sector company or public sector organisation Culinary Specialist , a US Navy occupational rating Language [ edit ] Czech language (ISO 639-1 language code) Hungarian cs , a digraph in the Hungarian alphabet Organizations [ edit ] Christian Social Party (Austria) , a major conservative political party in the Cisleithania , part of Austria-Hungary, and in
1020-425: A series of video game first released as a 1999 modification for Half-Life Cum Suis (Latin: "and associates"); see List of Latin phrases Customer service , the provision of service to customers before, during and after a purchase and sale Bombardier-Airbus C-Series , small jetliner Ferrari 360 Challenge Stradale A US Navy hull classification symbol: Scout cruiser (CS) Post-nominal letters for
1080-520: A signal using underdetermined linear systems Control segment, part of the structure of the Global Positioning System Counter-scanning , a scanning method that allows correcting raster distortions cS, another form for cSt, for centistokes , a unit of viscosity Law enforcement [ edit ] CS gas , a riot control agent Other uses [ edit ] Controlled substance , generally
1140-428: A single trial, especially in fear conditioning and taste aversion learning. Learning is fastest in forward conditioning. During forward conditioning, the onset of the CS precedes the onset of the US in order to signal that the US will follow. Two common forms of forward conditioning are delay and trace conditioning. [REDACTED] During simultaneous conditioning, the CS and US are presented and terminated at
1200-413: A stimulus (e.g. the sound of a metronome ) and then gave the dog food; after a few repetitions, the dogs started to salivate in response to the stimulus. Pavlov concluded that if a particular stimulus in the dog's surroundings was present when the dog was given food then that stimulus could become associated with food and cause salivation on its own. In Pavlov's experiments the unconditioned stimulus (US)
1260-447: A surgical procedure to deliver one or more babies, or, rarely, to remove a dead fetus Cardiogenic shock , a medical emergency where heart fails to pump properly to push blood forward. Carotid sinus , a dilated area at the base of the internal carotid artery . Cockayne syndrome , a rare autosomal recessive, congenital disorder Conditioned stimulus , in the psychological procedure of classical conditioning Corticosteroids ,
SECTION 20
#17327657842551320-444: A weak stimulus is presented. During acquisition, the CS and US are paired as described above. The extent of conditioning may be tracked by test trials. In these test trials, the CS is presented alone and the CR is measured. A single CS-US pairing may suffice to yield a CR on a test, but usually a number of pairings are necessary and there is a gradual increase in the conditioned response to the CS. This repeated number of trials increase
1380-434: Is a basic behavioral mechanism, and its neural substrates are now beginning to be understood. Though it is sometimes hard to distinguish classical conditioning from other forms of associative learning (e.g. instrumental learning and human associative memory ), a number of observations differentiate them, especially the contingencies whereby learning occurs. Together with operant conditioning , classical conditioning became
1440-499: Is paired with a US until asymptotic CR levels are reached. CS+/US trials are continued, but these are interspersed with trials on which the CS+ is paired with a second CS, (the CS-) but not with the US (i.e. CS+/CS- trials). Typically, organisms show CRs on CS+/US trials, but stop responding on CS+/CS− trials. This form of classical conditioning involves two phases. A CS (CS1) is paired with
1500-401: Is paired with the CS1. [REDACTED] Backward conditioning occurs when a CS immediately follows a US. Unlike the usual conditioning procedure, in which the CS precedes the US, the conditioned response given to the CS tends to be inhibitory. This presumably happens because the CS serves as a signal that the US has ended, rather than as a signal that the US is about to appear. For example,
1560-481: Is repeated the organism exhibits a conditioned response (CR) to the conditioned stimulus when the conditioned stimulus is presented alone. (A conditioned response may occur after only one pairing.) Thus, unlike the UR, the CR is acquired through experience, and it is also less permanent than the UR. Usually the conditioned response is similar to the unconditioned response, but sometimes it is quite different. For this and other reasons, most learning theorists suggest that
1620-400: Is the response to the conditioned stimulus, whereas the unconditioned response (UR) corresponds to the unconditioned stimulus. Pavlov reported many basic facts about conditioning; for example, he found that learning occurred most rapidly when the interval between the CS and the appearance of the US was relatively short. As noted earlier, it is often thought that the conditioned response is
1680-461: The Missionaries of St. Charles Borromeo (Scalabrinians), a Catholic religious congregation See also [ edit ] C's (disambiguation) C/s (disambiguation) Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title CS . If an internal link led you here, you may wish to change the link to point directly to
1740-446: The false consensus effect . Classical conditioning occurs when a conditioned stimulus (CS) is paired with an unconditioned stimulus (US). Usually, the conditioned stimulus is a neutral stimulus (e.g., the sound of a tuning fork ), the unconditioned stimulus is biologically potent (e.g., the taste of food) and the unconditioned response (UR) to the unconditioned stimulus is an unlearned reflex response (e.g., salivation). After pairing
1800-420: The CR and the UR opposites.) The Rescorla–Wagner (R–W) model is a relatively simple yet powerful model of conditioning. The model predicts a number of important phenomena, but it also fails in important ways, thus leading to a number of modifications and alternative models. However, because much of the theoretical research on conditioning in the past 40 years has been instigated by this model or reactions to it,
1860-424: The CR is said to be "extinguished." [REDACTED] External inhibition may be observed if a strong or unfamiliar stimulus is presented just before, or at the same time as, the CS. This causes a reduction in the conditioned response to the CS. Several procedures lead to the recovery of a CR that had been first conditioned and then extinguished. This illustrates that the extinction procedure does not eliminate
CS - Misplaced Pages Continue
1920-415: The CS and the US causes a gradual increase in the associative strength of the CS. This increase is determined by the nature of the US (e.g. its intensity). The amount of learning that happens during any single CS-US pairing depends on the difference between the total associative strengths of CS and other stimuli present in the situation (ΣV in the equation), and a maximum set by the US (λ in the equation). On
1980-459: The CS. As a result of this "surprising" outcome, the associative strength of the CS takes a step down. Extinction is complete when the strength of the CS reaches zero; no US is predicted, and no US occurs. However, if that same CS is presented without the US but accompanied by a well-established conditioned inhibitor (CI), that is, a stimulus that predicts the absence of a US (in R-W terms, a stimulus with
2040-416: The CS. In the equation, V represents the current associative strength of the CS, and ∆V is the change in this strength that happens on a given trial. ΣV is the sum of the strengths of all stimuli present in the situation. λ is the maximum associative strength that a given US will support; its value is usually set to 1 on trials when the US is present, and 0 when the US is absent. α and β are constants related to
2100-634: The First Republic of Austria Citizens (Spanish political party) , a post-nationalist political party in Spain Congregation of the Missionaries of St. Charles , a Catholic religious congregation, also called Scalabrinians Confederate States of America , an unrecognized confederation of secessionist North American slave states existing from 1861 to 1865 Companies [ edit ] Colorado & Southern Railway ,
2160-468: The Rescorla-Wagner equation. It specifies the amount of learning that will occur on a single pairing of a conditioning stimulus (CS) with an unconditioned stimulus (US). The above equation is solved repeatedly to predict the course of learning over many such trials. In this model, the degree of learning is measured by how well the CS predicts the US, which is given by the "associative strength" of
2220-416: The R–W model deserves a brief description here. The Rescorla-Wagner model argues that there is a limit to the amount of conditioning that can occur in the pairing of two stimuli. One determinant of this limit is the nature of the US. For example: pairing a bell with a juicy steak is more likely to produce salivation than pairing the bell with a piece of dry bread, and dry bread is likely to work better than
2280-402: The US is fully predicted, the associative strength of the CS stops growing, and conditioning is complete. The associative process described by the R–W model also accounts for extinction (see "procedures" above). The extinction procedure starts with a positive associative strength of the CS, which means that the CS predicts that the US will occur. On an extinction trial the US fails to occur after
2340-411: The US is predicted by the sum of the associative strengths of all stimuli present in the conditioning situation. Learning is controlled by the difference between this total associative strength and the strength supported by the US. When this sum of strengths reaches a maximum set by the US, conditioning ends as just described. The R–W explanation of the blocking phenomenon illustrates one consequence of
2400-516: The US, a mild electric shock. An association between the CS and US develops, and the rat slows or stops its lever pressing when the CS comes on. The rate of pressing during the CS measures the strength of classical conditioning; that is, the slower the rat presses, the stronger the association of the CS and the US. (Slow pressing indicates a "fear" conditioned response, and it is an example of a conditioned emotional response; see section below.) Typically, three phases of conditioning are used. A CS (CS+)
2460-418: The US, but the US also occurs at other times. If this occurs, it is predicted that the US is likely to happen in the absence of the CS. In other words, the CS does not "predict" the US. In this case, conditioning fails and the CS does not come to elicit a CR. This finding – that prediction rather than CS-US pairing is the key to conditioning – greatly influenced subsequent conditioning research and theory. In
CS - Misplaced Pages Continue
2520-406: The acquisition of any new behavior, but rather the tendency to respond in old ways to new stimuli. Thus, he theorized that the CS merely substitutes for the US in evoking the reflex response. This explanation is called the stimulus-substitution theory of conditioning. A critical problem with the stimulus-substitution theory is that the CR and UR are not always the same. Pavlov himself observed that
2580-470: The association of stimuli as described above, whereas in operant conditioning behaviors are modified by the effect they produce (i.e., reward or punishment). The best-known and most thorough early work on classical conditioning was done by Ivan Pavlov , although Edwin Twitmyer published some related findings a year earlier. During his research on the physiology of digestion in dogs, Pavlov developed
2640-423: The assumption just stated. In blocking (see "phenomena" above), CS1 is paired with a US until conditioning is complete. Then on additional conditioning trials a second stimulus (CS2) appears together with CS1, and both are followed by the US. Finally CS2 is tested and shown to produce no response because learning about CS2 was "blocked" by the initial learning about CS1. The R–W model explains this by saying that after
2700-526: The conditioned stimulus comes to signal or predict the unconditioned stimulus, and go on to analyse the consequences of this signal. Robert A. Rescorla provided a clear summary of this change in thinking, and its implications, in his 1988 article "Pavlovian conditioning: It's not what you think it is". Despite its widespread acceptance, Rescorla's thesis may not be defensible. Classical conditioning differs from operant or instrumental conditioning : in classical conditioning, behaviors are modified through
2760-413: The effect of conditioning. These procedures are the following: Stimulus generalization is said to occur if, after a particular CS has come to elicit a CR, a similar test stimulus is found to elicit the same CR. Usually the more similar the test stimulus is to the CS the stronger the CR will be to the test stimulus. Conversely, the more the test stimulus differs from the CS, the weaker the CR will be, or
2820-490: The experimental results in 1897. In the study of digestion , Pavlov observed that the experimental dogs salivated when fed red meat. Pavlovian conditioning is distinct from operant conditioning (instrumental conditioning), through which the strength of a voluntary behavior is modified, either by reinforcement or by punishment . However, classical conditioning can affect operant conditioning; classically conditioned stimuli can reinforce operant responses. Classical conditioning
2880-580: The extinction procedure, the CS is presented repeatedly in the absence of a US. This is done after a CS has been conditioned by one of the methods above. When this is done, the CR frequency eventually returns to pre-training levels. However, extinction does not eliminate the effects of the prior conditioning. This is demonstrated by spontaneous recovery – when there is a sudden appearance of the (CR) after extinction occurs – and other related phenomena (see "Recovery from extinction" below). These phenomena can be explained by postulating accumulation of inhibition when
2940-426: The first pairing of the CS and US, this difference is large and the associative strength of the CS takes a big step up. As CS-US pairings accumulate, the US becomes more predictable, and the increase in associative strength on each trial becomes smaller and smaller. Finally, the difference between the associative strength of the CS (plus any that may accrue to other stimuli) and the maximum strength reaches zero. That is,
3000-468: The foundation of behaviorism , a school of psychology which was dominant in the mid-20th century and is still an important influence on the practice of psychological therapy and the study of animal behavior. Classical conditioning has been applied in other areas as well. For example, it may affect the body's response to psychoactive drugs , the regulation of hunger, research on the neural basis of learning and memory, and in certain social phenomena such as
3060-622: The intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=CS&oldid=1245793753 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages CS">CS The requested page title contains unsupported characters : ">". Return to Main Page . Conditioned stimulus The Russian physiologist Ivan Pavlov studied classical conditioning with detailed experiments with dogs, and published
SECTION 50
#17327657842553120-400: The model.) Here the workings of the model are illustrated with brief accounts of acquisition, extinction, and blocking. The model also predicts a number of other phenomena, see main article on the model. Δ V = α β ( λ − Σ V ) {\displaystyle \Delta V=\alpha \beta (\lambda -\Sigma V)} This is
3180-417: The more it will differ from that previously observed. One observes stimulus discrimination when one stimulus ("CS1") elicits one CR and another stimulus ("CS2") elicits either another CR or no CR at all. This can be brought about by, for example, pairing CS1 with an effective US and presenting CS2 with no US. Latent inhibition refers to the observation that it takes longer for a familiar stimulus to become
3240-467: The neural basis of conditioning has come from experiments on the sea slug, Aplysia . Most relevant experiments have used the classical conditioning procedure, although instrumental (operant) conditioning experiments have also been used, and the strength of classical conditioning is often measured through its operant effects, as in conditioned suppression (see Phenomena section above) and autoshaping . According to Pavlov, conditioning does not involve
3300-400: The salience of the CS and the speed of learning for a given US. How the equation predicts various experimental results is explained in following sections. For further details, see the main article on the model. The R–W model measures conditioning by assigning an "associative strength" to the CS and other local stimuli. Before a CS is conditioned it has an associative strength of zero. Pairing
3360-429: The same time. For example: If a person hears a bell and has air puffed into their eye at the same time, and repeated pairings like this led to the person blinking when they hear the bell despite the puff of air being absent, this demonstrates that simultaneous conditioning has occurred. [REDACTED] Second-order or higher-order conditioning follow a two-step procedure. First a neutral stimulus ("CS1") comes to signal
3420-558: The scientific and practical approach to computation and its applications CS register , or code segment register, in X86 computer architecture Cable select, an ATA device setting for automatic master/slave configuration Checkstyle , a Java static code analysis tool Chip select , a control line in digital electronics ChanServ , an IRC network service Construction Set, a program for creating or editing PC games (i.e. The Elder Scrolls Construction Set ) Adobe Creative Suite ,
3480-418: The strength and/or frequency of the CR gradually. The speed of conditioning depends on a number of factors, such as the nature and strength of both the CS and the US, previous experience and the animal's motivational state. The process slows down as it nears completion. If the CS is presented without the US, and this process is repeated often enough, the CS will eventually stop eliciting a CR. At this point
3540-403: The temporal conditioning, as US such as food to a hungry mouse is simply delivered on a regular time schedule such as every thirty seconds. After sufficient exposure the mouse will begin to salivate just before the food delivery. This then makes it temporal conditioning as it would appear that the mouse is conditioned to the passage of time. [REDACTED] In this procedure, the CS is paired with
3600-477: Was the food because its effects did not depend on previous experience. The metronome's sound is originally a neutral stimulus (NS) because it does not elicit salivation in the dogs. After conditioning, the metronome's sound becomes the conditioned stimulus (CS) or conditional stimulus; because its effects depend on its association with food. Likewise, the responses of the dog follow the same conditioned-versus-unconditioned arrangement. The conditioned response (CR)
#254745