In geography , a plain , commonly known as flatland , is a flat expanse of land that generally does not change much in elevation , and is primarily treeless. Plains occur as lowlands along valleys or at the base of mountains , as coastal plains , and as plateaus or uplands . Plains are one of the major landforms on earth, being present on all continents and covering more than one-third of the world's land area. Plains in many areas are important for agriculture . There are various types of plains and biomes on them.
82-675: Amazonis Planitia ( / ə ˈ m æ z ə n ɪ s p l ə ˈ n ɪ ʃ i ə / , Latin Amāzŏnis ) is one of the smoothest plains on Mars . It is located between the Tharsis and Elysium volcanic provinces, to the west of Olympus Mons , in the Amazonis and Memnonia quadrangles , centered at 24°48′N 196°00′E / 24.8°N 196.0°E / 24.8; 196.0 . The plain's topography exhibits extremely smooth features at several different lengths of scale. A large part of
164-428: A gap ). Coastal plains mostly rise from sea level until they run into elevated features such as mountains or plateaus. Plains can be formed from flowing lava ; from deposition of sediment by water, ice, or wind; or formed by erosion by the agents from hills or mountains. Biomes on plains include grassland ( temperate or subtropical ), steppe ( semi-arid ), savannah ( tropical ) or tundra ( polar ). In
246-478: A "bright dusty volcanic desert crossed by many fresh-looking lava flows." Amazonis has become the primary focus of modern research efforts both because of its geological composition and because of its relative youth compared to other Martian regions, which are often hundreds of millions of years older. Hartman writes that the plain closely resembles Iceland's surface, with its "strange cobweb-like networks of ridges and crags [on both planets, divide] smoother areas into
328-489: A classical albedo feature it contains. In April 2023, The New York Times reported an updated global map of Mars based on images from the Hope spacecraft . A related, but much more detailed, global Mars map was released by NASA on 16 April 2023. The vast upland region Tharsis contains several massive volcanoes, which include the shield volcano Olympus Mons . The edifice is over 600 km (370 mi) wide. Because
410-407: A core of ice. Shadow measurements from HiRISE indicate the ridges are 4–5 meters high. Planitia A plain or flatland is a flat expanse of land with a layer of grass that generally does not change much in elevation , and is primarily treeless. Plains occur as lowlands along valleys or at the base of mountains , as coastal plains , and as plateaus or uplands . Plains are one of
492-538: A few instances, deserts and rainforests may also be considered plains. Plains in many areas are important for agriculture because where the soils were deposited as sediments they may be deep and fertile , and the flatness facilitates mechanization of crop production; or because they support grasslands which provide good grazing for livestock . The types of depositional plains include: Erosional plains have been leveled by various agents of denudation such as running water, rivers, wind and glacier which wear out
574-422: A global magnetic field, the types and distribution of auroras there differ from those on Earth; rather than being mostly restricted to polar regions as is the case on Earth, a Martian aurora can encompass the planet. In September 2017, NASA reported radiation levels on the surface of the planet Mars were temporarily doubled , and were associated with an aurora 25 times brighter than any observed earlier, due to
656-488: A high ratio of deuterium in Gale Crater , though not significantly high enough to suggest the former presence of an ocean. Other scientists caution that these results have not been confirmed, and point out that Martian climate models have not yet shown that the planet was warm enough in the past to support bodies of liquid water. Near the northern polar cap is the 81.4 kilometres (50.6 mi) wide Korolev Crater , which
738-433: A lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind. Since the ridges occur in locations with clay, these formations could serve as
820-490: A low of 30 Pa (0.0044 psi ) on Olympus Mons to over 1,155 Pa (0.1675 psi) in Hellas Planitia , with a mean pressure at the surface level of 600 Pa (0.087 psi). The highest atmospheric density on Mars is equal to that found 35 kilometres (22 mi) above Earth's surface. The resulting mean surface pressure is only 0.6% of Earth's 101.3 kPa (14.69 psi). The scale height of
902-482: A marker for clay which requires water for its formation. Water here could have supported past life in these locations. Clay may also preserve fossils or other traces of past life. When a fluid moves by a feature like a mound, it will become streamlined. Often flowing water makes the shape and later lava flows spread over the region. In the pictures below this has occurred. Many places on Mars show dark streaks on steep slopes , such as crater walls. It seems that
SECTION 10
#1732772425033984-442: A massive, and unexpected, solar storm in the middle of the month. Mars has seasons, alternating between its northern and southern hemispheres, similar to on Earth. Additionally the orbit of Mars has, compared to Earth's, a large eccentricity and approaches perihelion when it is summer in its southern hemisphere and winter in its northern, and aphelion when it is winter in its southern hemisphere and summer in its northern. As
1066-542: A minimum thickness of 6 kilometres (3.7 mi) in Isidis Planitia , and a maximum thickness of 117 kilometres (73 mi) in the southern Tharsis plateau. For comparison, Earth's crust averages 27.3 ± 4.8 km in thickness. The most abundant elements in the Martian crust are silicon , oxygen , iron , magnesium , aluminium , calcium , and potassium . Mars is confirmed to be seismically active; in 2019 it
1148-415: A pattern something like fragments of a broken plate." Both land masses' shapes have been formed by lava flows from volcanic eruptions, causing both surfaces to be covered by a thick layer of hardened lava. Findings from aerial footage of both Amazonis and Iceland have shown nearly identical terrain patterns, signifying the comparative ages of the two regions. The entire contemporary era on Mars has been named
1230-473: A record of erosion caused by the catastrophic release of water from subsurface aquifers, though some of these structures have been hypothesized to result from the action of glaciers or lava. One of the larger examples, Ma'adim Vallis , is 700 kilometres (430 mi) long, much greater than the Grand Canyon, with a width of 20 kilometres (12 mi) and a depth of 2 kilometres (1.2 mi) in places. It
1312-588: A remnant of that ring. The geological history of Mars can be split into many periods, but the following are the three primary periods: Geological activity is still taking place on Mars. The Athabasca Valles is home to sheet-like lava flows created about 200 million years ago. Water flows in the grabens called the Cerberus Fossae occurred less than 20 million years ago, indicating equally recent volcanic intrusions. The Mars Reconnaissance Orbiter has captured images of avalanches. Mars
1394-460: A result, the seasons in its southern hemisphere are more extreme and the seasons in its northern are milder than would otherwise be the case. The summer temperatures in the south can be warmer than the equivalent summer temperatures in the north by up to 30 °C (54 °F). Martian surface temperatures vary from lows of about −110 °C (−166 °F) to highs of up to 35 °C (95 °F) in equatorial summer. The wide range in temperatures
1476-471: A small crater (later called Airy-0 ), located in the Sinus Meridiani ("Middle Bay" or "Meridian Bay"), was chosen by Merton E. Davies , Harold Masursky , and Gérard de Vaucouleurs for the definition of 0.0° longitude to coincide with the original selection. Because Mars has no oceans, and hence no " sea level ", a zero-elevation surface had to be selected as a reference level; this is called
1558-535: A storm over a small area, to gigantic storms that cover the entire planet. They tend to occur when Mars is closest to the Sun, and have been shown to increase global temperature. Seasons also produce dry ice covering polar ice caps . Large areas of the polar regions of Mars While Mars contains water in larger amounts , most of it is dust covered water ice at the Martian polar ice caps . The volume of water ice in
1640-467: A thin layer of dust is removed, the underlying surface appears dark. Much of the Martian surface is covered with dust. Dust storms are frequent, especially when the spring season begins in the southern hemisphere. At that time, Mars is 40% closer to the Sun. The orbit of Mars is much more elliptical than the Earth's. That is, the difference between the farthest point from the Sun and the closest point to
1722-491: A very thick lithosphere compared to Earth. Below this the mantle gradually becomes more ductile, and the seismic wave velocity starts to grow again. The Martian mantle does not appear to have a thermally insulating layer analogous to Earth's lower mantle ; instead, below 1050 km in depth, it becomes mineralogically similar to Earth's transition zone . At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. Mars's iron and nickel core
SECTION 20
#17327724250331804-452: Is Syrtis Major Planum . The permanent northern polar ice cap is named Planum Boreum . The southern cap is called Planum Australe . Mars's equator is defined by its rotation, but the location of its Prime Meridian was specified, as was Earth's (at Greenwich ), by choice of an arbitrary point; Mädler and Beer selected a line for their first maps of Mars in 1830. After the spacecraft Mariner 9 provided extensive imagery of Mars in 1972,
1886-406: Is a light albedo feature clearly visible from Earth. There are other notable impact features, such as Argyre , which is around 1,800 kilometres (1,100 mi) in diameter, and Isidis , which is around 1,500 kilometres (930 mi) in diameter. Due to the smaller mass and size of Mars, the probability of an object colliding with the planet is about half that of Earth. Mars is located closer to
1968-432: Is approximately half the diameter of Earth, with a surface area only slightly less than the total area of Earth's dry land. Mars is less dense than Earth, having about 15% of Earth's volume and 11% of Earth's mass , resulting in about 38% of Earth's surface gravity . Mars is the only presently known example of a desert planet , a rocky planet with a surface akin to that of Earth's hot deserts . The red-orange appearance of
2050-766: Is completely molten, with no solid inner core. It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur , oxygen, carbon , and hydrogen . Mars is a terrestrial planet with a surface that consists of minerals containing silicon and oxygen, metals , and other elements that typically make up rock . The Martian surface is primarily composed of tholeiitic basalt , although parts are more silica -rich than typical basalt and may be similar to andesitic rocks on Earth, or silica glass. Regions of low albedo suggest concentrations of plagioclase feldspar , with northern low albedo regions displaying higher than normal concentrations of sheet silicates and high-silicon glass. Parts of
2132-429: Is divided into two kinds of areas, with differing albedo. The paler plains covered with dust and sand rich in reddish iron oxides were once thought of as Martian "continents" and given names like Arabia Terra ( land of Arabia ) or Amazonis Planitia ( Amazonian plain ). The dark features were thought to be seas, hence their names Mare Erythraeum , Mare Sirenum and Aurorae Sinus . The largest dark feature seen from Earth
2214-487: Is due to the thin atmosphere which cannot store much solar heat, the low atmospheric pressure (about 1% that of the atmosphere of Earth ), and the low thermal inertia of Martian soil. The planet is 1.52 times as far from the Sun as Earth, resulting in just 43% of the amount of sunlight. Mars has the largest dust storms in the Solar System, reaching speeds of over 160 km/h (100 mph). These can vary from
2296-519: Is striking: northern plains flattened by lava flows contrast with the southern highlands, pitted and cratered by ancient impacts. It is possible that, four billion years ago, the Northern Hemisphere of Mars was struck by an object one-tenth to two-thirds the size of Earth's Moon . If this is the case, the Northern Hemisphere of Mars would be the site of an impact crater 10,600 by 8,500 kilometres (6,600 by 5,300 mi) in size, or roughly
2378-494: Is the second smallest of the Solar System 's planets with a diameter of 6,779 km (4,212 mi). In terms of orbital motion, a Martian solar day ( sol ) is equal to 24.6 hours, and a Martian solar year is equal to 1.88 Earth years (687 Earth days). Mars has two natural satellites that are small and irregular in shape: Phobos and Deimos . The relatively flat plains in northern parts of Mars strongly contrast with
2460-657: Is thought to have been carved by flowing water early in Mars's history. The youngest of these channels is thought to have formed only a few million years ago. Elsewhere, particularly on the oldest areas of the Martian surface, finer-scale, dendritic networks of valleys are spread across significant proportions of the landscape. Features of these valleys and their distribution strongly imply that they were carved by runoff resulting from precipitation in early Mars history. Subsurface water flow and groundwater sapping may play important subsidiary roles in some networks, but precipitation
2542-453: The Viking 1 probe in 1976. As of 2023, there are at least 11 active probes orbiting Mars or on the Martian surface. Mars is an attractive target for future human exploration missions , though in the 2020s no such mission is planned. Scientists have theorized that during the Solar System's formation , Mars was created as the result of a random process of run-away accretion of material from
Amazonis Planitia - Misplaced Pages Continue
2624-550: The areoid of Mars, analogous to the terrestrial geoid . Zero altitude was defined by the height at which there is 610.5 Pa (6.105 mbar ) of atmospheric pressure. This pressure corresponds to the triple point of water, and it is about 0.6% of the sea level surface pressure on Earth (0.006 atm). For mapping purposes, the United States Geological Survey divides the surface of Mars into thirty cartographic quadrangles , each named for
2706-484: The Amazonian Epoch because researchers originally (and incorrectly) thought Amazonis Planitia to be representative of all Martian plains. Instead, over the past two decades, researchers have realized that the area's youth and extremely smooth surface actually distinguish the area from its neighbors. It is even possible that the area possessed distinctive characteristics when all of Mars was under water. Although
2788-453: The Martian hemispheric dichotomy , created the smooth Borealis basin that covers 40% of the planet. A 2023 study shows evidence, based on the orbital inclination of Deimos (a small moon of Mars), that Mars may once have had a ring system 3.5 billion years to 4 billion years ago. This ring system may have been formed from a moon, 20 times more massive than Phobos , orbiting Mars billions of years ago; and Phobos would be
2870-737: The Medusae Fossae Formation lies in Amazonis Planitia. Its name derives from one of the classical albedo features observed by early astronomers, which was in turn named after the Amazons , a mythical race of warrior women. Only approximately 100 million years old, these plains provide some of the fewest sedimentary layers impeding viewing of the Martian terrain, and closely resemble the composition of Earth's Iceland . Formed by free-flowing lava across great plains, Amazonis has been described by William Hartmann as
2952-471: The Noachian period (4.5 to 3.5 billion years ago), Mars's surface was marked by meteor impacts , valley formation, erosion, and the possible presence of water oceans . The Hesperian period (3.5 to 3.3–2.9 billion years ago) was dominated by widespread volcanic activity and flooding that carved immense outflow channels . The Amazonian period, which continues to the present, has been marked by
3034-656: The Yellowknife Bay area in the Glenelg terrain. In September 2015, NASA announced that they had found strong evidence of hydrated brine flows in recurring slope lineae , based on spectrometer readings of the darkened areas of slopes. These streaks flow downhill in Martian summer, when the temperature is above −23 °C, and freeze at lower temperatures. These observations supported earlier hypotheses, based on timing of formation and their rate of growth, that these dark streaks resulted from water flowing just below
3116-415: The asteroid belt , so it has an increased chance of being struck by materials from that source. Mars is more likely to be struck by short-period comets , i.e. , those that lie within the orbit of Jupiter . Martian craters can have a morphology that suggests the ground became wet after the meteor impact. The large canyon, Valles Marineris (Latin for " Mariner Valleys", also known as Agathodaemon in
3198-401: The protoplanetary disk that orbited the Sun. Mars has many distinctive chemical features caused by its position in the Solar System. Elements with comparatively low boiling points, such as chlorine , phosphorus , and sulfur , are much more common on Mars than on Earth; these elements were probably pushed outward by the young Sun's energetic solar wind . After the formation of the planets,
3280-505: The wind as a dominant influence on geological processes . Due to Mars's geological history, the possibility of past or present life on Mars remains of great scientific interest. Since the late 20th century, Mars has been explored by uncrewed spacecraft and rovers , with the first flyby by the Mariner 4 probe in 1965, the first orbit by the Mars 2 probe in 1971, and the first landing by
3362-523: The Earth's surface. Mars Mars is the fourth planet from the Sun . The surface of Mars is orange-red because it is covered in iron(III) oxide dust, giving it the nickname " the Red Planet ". Mars is among the brightest objects in Earth's sky , and its high-contrast albedo features have made it a common subject for telescope viewing. It is classified as a terrestrial planet and
Amazonis Planitia - Misplaced Pages Continue
3444-478: The Martian ionosphere , lowering the atmospheric density by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Express have detected ionized atmospheric particles trailing off into space behind Mars, and this atmospheric loss is being studied by the MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied. Atmospheric pressure on the surface today ranges from
3526-538: The Martian sky a tawny color when seen from the surface. It may take on a pink hue due to iron oxide particles suspended in it. The concentration of methane in the Martian atmosphere fluctuates from about 0.24 ppb during the northern winter to about 0.65 ppb during the summer. Estimates of its lifetime range from 0.6 to 4 years, so its presence indicates that an active source of the gas must be present. Methane could be produced by non-biological process such as serpentinization involving water, carbon dioxide, and
3608-415: The Martian surface is caused by ferric oxide , or rust . It can look like butterscotch ; other common surface colors include golden, brown, tan, and greenish, depending on the minerals present. Like Earth, Mars is differentiated into a dense metallic core overlaid by less dense rocky layers. The outermost layer is the crust, which is on average about 42–56 kilometres (26–35 mi) thick, with
3690-593: The Moon, Johann Heinrich von Mädler and Wilhelm Beer were the first areographers. They began by establishing that most of Mars's surface features were permanent and by more precisely determining the planet's rotation period. In 1840, Mädler combined ten years of observations and drew the first map of Mars. Features on Mars are named from a variety of sources. Albedo features are named for classical mythology. Craters larger than roughly 50 km are named for deceased scientists and writers and others who have contributed to
3772-400: The Northern Hemisphere of Mars, spanning 10,600 by 8,500 kilometres (6,600 by 5,300 mi), or roughly four times the size of the Moon's South Pole–Aitken basin , which would be the largest impact basin yet discovered if confirmed. It has been hypothesized that the basin was formed when Mars was struck by a Pluto -sized body about four billion years ago. The event, thought to be the cause of
3854-438: The Sun is very great for Mars, but only slight for the Earth. Also, every few years, the entire planet is engulfed in a global dust storm. When NASA's Mariner 9 craft arrived there, nothing could be seen through the dust storm. Other global dust storms have also been observed, since that time. Brain terrain is common in many places on Mars. It is formed when ice sublimates along cracks. The ridges of brain terrain may contain
3936-462: The area of Europe, Asia, and Australia combined, surpassing Utopia Planitia and the Moon's South Pole–Aitken basin as the largest impact crater in the Solar System. Mars is scarred by a number of impact craters: a total of 43,000 observed craters with a diameter of 5 kilometres (3.1 mi) or greater have been found. The largest exposed crater is Hellas , which is 2,300 kilometres (1,400 mi) wide and 7,000 metres (23,000 ft) deep, and
4018-518: The atmosphere covering everything. We know a lot about this dust because the solar panels of Mars rovers get covered with dust. The power of the Rovers has been saved many times by the wind, in the form of dust devils that have cleared the panels and boosted the power. So we know that dust falls from the atmosphere frequently. It is most generally accepted that the streaks represent avalanches of dust. Streaks appear in areas covered with dust. When
4100-419: The atmosphere is about 10.8 kilometres (6.7 mi), which is higher than Earth's 6 kilometres (3.7 mi), because the surface gravity of Mars is only about 38% of Earth's. The atmosphere of Mars consists of about 96% carbon dioxide , 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. The atmosphere is quite dusty, containing particulates about 1.5 μm in diameter which give
4182-406: The atmosphere is small, but enough to produce larger clouds of water ice and different cases of snow and frost , often mixed with snow of carbon dioxide dry ice . Landforms visible on Mars strongly suggest that liquid water has existed on the planet's surface. Huge linear swathes of scoured ground, known as outflow channels , cut across the surface in about 25 places. These are thought to be
SECTION 50
#17327724250334264-467: The broken fragments of "Tintina" rock and "Sutton Inlier" rock as well as in veins and nodules in other rocks like "Knorr" rock and "Wernicke" rock . Analysis using the rover's DAN instrument provided evidence of subsurface water, amounting to as much as 4% water content, down to a depth of 60 centimetres (24 in), during the rover's traverse from the Bradbury Landing site to
4346-415: The cratered terrain in southern highlands – this terrain observation is known as the Martian dichotomy . Mars hosts many enormous extinct volcanoes (the tallest is Olympus Mons , 21.9 km or 13.6 mi tall) and one of the largest canyons in the Solar System ( Valles Marineris , 4,000 km or 2,500 mi long). Geologically , the planet is fairly active with marsquakes trembling underneath
4428-458: The edges of boulders and other obstacles in their path. The commonly accepted hypotheses include that they are dark underlying layers of soil revealed after avalanches of bright dust or dust devils . Several other explanations have been put forward, including those that involve water or even the growth of organisms. Environmental radiation levels on the surface are on average 0.64 millisieverts of radiation per day, and significantly less than
4510-607: The equator of Mars. The surface of the formation has been eroded by the wind into a series of linear ridges called yardangs. These ridges generally point in direction of the prevailing winds that carved them and demonstrate the erosive power of Martian winds. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, Linear ridge networks are found in various places on Mars in and around craters. Ridges often appear as mostly straight segments that intersect in
4592-429: The flanks of the volcano Arsia Mons . The caves, named after loved ones of their discoverers, are collectively known as the "seven sisters". Cave entrances measure from 100 to 252 metres (328 to 827 ft) wide and they are estimated to be at least 73 to 96 metres (240 to 315 ft) deep. Because light does not reach the floor of most of the caves, they may extend much deeper than these lower estimates and widen below
4674-417: The full implications of Amazonis's youth have not yet been determined, the nature of the area (i.e. lack of sedimentary rock) has at least provided researchers evidence that the areas are the most likely to provide future discoveries, and as such, has been proposed as a future site for most NASA landings. The Medusae Fossae Formation is a soft, easily eroded deposit that extends for nearly 1,000 km along
4756-456: The ground, dust devils sweeping across the landscape, and cirrus clouds . Carbon dioxide is substantially present in Mars's polar ice caps and thin atmosphere . During a year, there are large surface temperature swings on the surface between −78.5 °C (−109.3 °F) to 5.7 °C (42.3 °F) similar to Earth's seasons , as both planets have significant axial tilt . Mars was formed approximately 4.5 billion years ago. During
4838-488: The inner Solar System may have been subjected to the so-called Late Heavy Bombardment . About 60% of the surface of Mars shows a record of impacts from that era, whereas much of the remaining surface is probably underlain by immense impact basins caused by those events. However, more recent modeling has disputed the existence of the Late Heavy Bombardment. There is evidence of an enormous impact basin in
4920-436: The lander showed that the Martian soil has a basic pH of 7.7, and contains 0.6% perchlorate by weight, concentrations that are toxic to humans . Streaks are common across Mars and new ones appear frequently on steep slopes of craters, troughs, and valleys. The streaks are dark at first and get lighter with age. The streaks can start in a tiny area, then spread out for hundreds of metres. They have been seen to follow
5002-402: The major landforms on earth, where they are present on all continents, and cover more than one-third of the world's land area. In a valley, a plain is enclosed on two sides, but in other cases a plain may be delineated by a complete or partial ring of hills, by mountains, or by cliffs . Where a geological region contains more than one plain, they may be connected by a pass (sometimes termed
SECTION 60
#17327724250335084-474: The mineral jarosite . This forms only in the presence of acidic water, showing that water once existed on Mars. The Spirit rover found concentrated deposits of silica in 2007 that indicated wet conditions in the past, and in December 2011, the mineral gypsum , which also forms in the presence of water, was found on the surface by NASA's Mars rover Opportunity. It is estimated that the amount of water in
5166-613: The mineral olivine , which is known to be common on Mars, or by Martian life. Compared to Earth, its higher concentration of atmospheric CO 2 and lower surface pressure may be why sound is attenuated more on Mars, where natural sources are rare apart from the wind. Using acoustic recordings collected by the Perseverance rover, researchers concluded that the speed of sound there is approximately 240 m/s for frequencies below 240 Hz, and 250 m/s for those above. Auroras have been detected on Mars. Because Mars lacks
5248-427: The mountain is so large, with complex structure at its edges, giving a definite height to it is difficult. Its local relief, from the foot of the cliffs which form its northwest margin to its peak, is over 21 km (13 mi), a little over twice the height of Mauna Kea as measured from its base on the ocean floor. The total elevation change from the plains of Amazonis Planitia , over 1,000 km (620 mi) to
5330-431: The movement of dry dust. No partially degraded gullies have formed by weathering and no superimposed impact craters have been observed, indicating that these are young features, possibly still active. Other geological features, such as deltas and alluvial fans preserved in craters, are further evidence for warmer, wetter conditions at an interval or intervals in earlier Mars history. Such conditions necessarily require
5412-514: The northwest, to the summit approaches 26 km (16 mi), roughly three times the height of Mount Everest , which in comparison stands at just over 8.8 kilometres (5.5 mi). Consequently, Olympus Mons is either the tallest or second-tallest mountain in the Solar System ; the only known mountain which might be taller is the Rheasilvia peak on the asteroid Vesta , at 20–25 km (12–16 mi). The dichotomy of Martian topography
5494-468: The old canal maps ), has a length of 4,000 kilometres (2,500 mi) and a depth of up to 7 kilometres (4.3 mi). The length of Valles Marineris is equivalent to the length of Europe and extends across one-fifth the circumference of Mars. By comparison, the Grand Canyon on Earth is only 446 kilometres (277 mi) long and nearly 2 kilometres (1.2 mi) deep. Valles Marineris was formed due to
5576-842: The past. This paleomagnetism of magnetically susceptible minerals is similar to the alternating bands found on Earth's ocean floors . One hypothesis, published in 1999 and re-examined in October ;2005 (with the help of the Mars Global Surveyor ), is that these bands suggest plate tectonic activity on Mars four billion years ago, before the planetary dynamo ceased to function and the planet's magnetic field faded. The Phoenix lander returned data showing Martian soil to be slightly alkaline and containing elements such as magnesium , sodium , potassium and chlorine . These nutrients are found in soils on Earth. They are necessary for growth of plants. Experiments performed by
5658-566: The radiation of 1.84 millisieverts per day or 22 millirads per day during the flight to and from Mars. For comparison the radiation levels in low Earth orbit , where Earth's space stations orbit, are around 0.5 millisieverts of radiation per day. Hellas Planitia has the lowest surface radiation at about 0.342 millisieverts per day, featuring lava tubes southwest of Hadriacus Mons with potentially levels as low as 0.064 millisieverts per day, comparable to radiation levels during flights on Earth. Although better remembered for mapping
5740-400: The rugged surface and smoothens them. Plain resulting from the action of these agents of denudation are called peneplains (almost plain) while plains formed from wind action are called pediplains . Structural plains are relatively undisturbed horizontal surfaces of the Earth. They are structurally depressed areas of the world that make up some of the most extensive natural lowlands on
5822-467: The size of Earth's Arctic Ocean . This finding was derived from the ratio of protium to deuterium in the modern Martian atmosphere compared to that ratio on Earth. The amount of Martian deuterium (D/H = 9.3 ± 1.7 10 ) is five to seven times the amount on Earth (D/H = 1.56 10 ), suggesting that ancient Mars had significantly higher levels of water. Results from the Curiosity rover had previously found
5904-422: The south polar ice cap, if melted, would be enough to cover most of the surface of the planet with a depth of 11 metres (36 ft). Water in its liquid form cannot prevail on the surface of Mars due to the low atmospheric pressure on Mars, which is less than 1% that of Earth, only at the lowest of elevations pressure and temperature is high enough for water being able to be liquid for short periods. Water in
5986-461: The southern highlands include detectable amounts of high-calcium pyroxenes . Localized concentrations of hematite and olivine have been found. Much of the surface is deeply covered by finely grained iron(III) oxide dust. Although Mars has no evidence of a structured global magnetic field , observations show that parts of the planet's crust have been magnetized, suggesting that alternating polarity reversals of its dipole field have occurred in
6068-505: The study of Mars. Smaller craters are named for towns and villages of the world with populations of less than 100,000. Large valleys are named for the word "Mars" or "star" in various languages; smaller valleys are named for rivers. Large albedo features retain many of the older names but are often updated to reflect new knowledge of the nature of the features. For example, Nix Olympica (the snows of Olympus) has become Olympus Mons (Mount Olympus). The surface of Mars as seen from Earth
6150-513: The surface. However, later work suggested that the lineae may be dry, granular flows instead, with at most a limited role for water in initiating the process. A definitive conclusion about the presence, extent, and role of liquid water on the Martian surface remains elusive. Researchers suspect much of the low northern plains of the planet were covered with an ocean hundreds of meters deep, though this theory remains controversial. In March 2015, scientists stated that such an ocean might have been
6232-430: The surface. "Dena" is the only exception; its floor is visible and was measured to be 130 metres (430 ft) deep. The interiors of these caverns may be protected from micrometeoroids, UV radiation, solar flares and high energy particles that bombard the planet's surface. Mars lost its magnetosphere 4 billion years ago, possibly because of numerous asteroid strikes, so the solar wind interacts directly with
6314-625: The swelling of the Tharsis area, which caused the crust in the area of Valles Marineris to collapse. In 2012, it was proposed that Valles Marineris is not just a graben , but a plate boundary where 150 kilometres (93 mi) of transverse motion has occurred, making Mars a planet with possibly a two- tectonic plate arrangement. Images from the Thermal Emission Imaging System (THEMIS) aboard NASA's Mars Odyssey orbiter have revealed seven possible cave entrances on
6396-507: The upper mantle of Mars, represented by hydroxyl ions contained within Martian minerals, is equal to or greater than that of Earth at 50–300 parts per million of water, which is enough to cover the entire planet to a depth of 200–1,000 metres (660–3,280 ft). On 18 March 2013, NASA reported evidence from instruments on the Curiosity rover of mineral hydration , likely hydrated calcium sulfate , in several rock samples including
6478-420: The widespread presence of crater lakes across a large proportion of the surface, for which there is independent mineralogical, sedimentological and geomorphological evidence. Further evidence that liquid water once existed on the surface of Mars comes from the detection of specific minerals such as hematite and goethite , both of which sometimes form in the presence of water. In 2004, Opportunity detected
6560-434: The youngest streaks are dark and they become lighter with age. Often they begin as a small narrow spot then widen and extend downhill for hundreds of meters. Several ideas have been advanced to explain the streaks. Some involve water , or even the growth of organisms . The streaks appear in areas covered with dust. Much of the Martian surface is covered with dust because at more or less regular intervals dust settles out of
6642-629: Was probably the root cause of the incision in almost all cases. Along craters and canyon walls, there are thousands of features that appear similar to terrestrial gullies . The gullies tend to be in the highlands of the Southern Hemisphere and face the Equator; all are poleward of 30° latitude. A number of authors have suggested that their formation process involves liquid water, probably from melting ice, although others have argued for formation mechanisms involving carbon dioxide frost or
6724-437: Was reported that InSight had detected and recorded over 450 marsquakes and related events. Beneath the crust is a silicate mantle responsible for many of the tectonic and volcanic features on the planet's surface. The upper Martian mantle is a low-velocity zone , where the velocity of seismic waves is lower than surrounding depth intervals. The mantle appears to be rigid down to the depth of about 250 km, giving Mars
#32967