Misplaced Pages

Anas

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Genus ( / ˈ dʒ iː n ə s / ; pl. : genera / ˈ dʒ ɛ n ər ə / ) is a taxonomic rank above species and below family as used in the biological classification of living and fossil organisms as well as viruses . In binomial nomenclature , the genus name forms the first part of the binomial species name for each species within the genus.

#64935

42-462: 31 extant, see text Anas is a genus of dabbling ducks . It includes the pintails, most teals, and the mallard and its close relatives. It formerly included additional species but following the publication of a molecular phylogenetic study in 2009 the genus was split into four separate genera. The genus now contains 31 living species. The name Anas is the Latin for "duck". The genus Anas

84-557: A species : see Botanical name and Specific name (zoology) . The rules for the scientific names of organisms are laid down in the nomenclature codes , which allow each species a single unique name that, for animals (including protists ), plants (also including algae and fungi ) and prokaryotes ( bacteria and archaea ), is Latin and binomial in form; this contrasts with common or vernacular names , which are non-standardized, can be non-unique, and typically also vary by country and language of usage. Except for viruses ,

126-578: A "blueprint" encompassing aspects such as symmetry , layers , segmentation , nerve , limb , and gut disposition. Evolutionary developmental biology seeks to explain the origins of diverse body plans. Body plans have historically been considered to have evolved in a flash in the Ediacaran biota ; filling the Cambrian explosion with the results, and a more nuanced understanding of animal evolution suggests gradual development of body plans throughout

168-651: A later homonym of a validly published name is a nomen illegitimum or nom. illeg. ; for a full list refer to the International Code of Nomenclature for algae, fungi, and plants and the work cited above by Hawksworth, 2010. In place of the "valid taxon" in zoology, the nearest equivalent in botany is " correct name " or "current name" which can, again, differ or change with alternative taxonomic treatments or new information that results in previously accepted genera being combined or split. Prokaryote and virus codes of nomenclature also exist which serve as

210-628: A long time and redescribed as new by a range of subsequent workers, or if a range of genera previously considered separate taxa have subsequently been consolidated into one. For example, the World Register of Marine Species presently lists 8 genus-level synonyms for the sperm whale genus Physeter Linnaeus, 1758, and 13 for the bivalve genus Pecten O.F. Müller, 1776. Within the same kingdom, one generic name can apply to one genus only. However, many names have been assigned (usually unintentionally) to two or more different genera. For example,

252-409: A reference for designating currently accepted genus names as opposed to others which may be either reduced to synonymy, or, in the case of prokaryotes, relegated to a status of "names without standing in prokaryotic nomenclature". An available (zoological) or validly published (botanical) name that has been historically applied to a genus but is not regarded as the accepted (current/valid) name for

294-447: A single evolutionary origin), being divided into plants, protista, and animals. His protista were divided into moneres, protoplasts, flagellates, diatoms, myxomycetes, myxocystodes, rhizopods, and sponges. His animals were divided into groups with distinct body plans: he named these phyla . Haeckel's animal phyla were coelenterates , echinoderms , and (following Cuvier) articulates, molluscs, and vertebrates. Stephen J. Gould explored

336-427: A taxon; however, the names published in suppressed works are made unavailable via the relevant Opinion dealing with the work in question. In botany, similar concepts exist but with different labels. The botanical equivalent of zoology's "available name" is a validly published name . An invalidly published name is a nomen invalidum or nom. inval. ; a rejected name is a nomen rejiciendum or nom. rej. ;

378-455: A total of c. 520,000 published names (including synonyms) as at end 2019, increasing at some 2,500 published generic names per year. "Official" registers of taxon names at all ranks, including genera, exist for a few groups only such as viruses and prokaryotes, while for others there are compendia with no "official" standing such as Index Fungorum for fungi, Index Nominum Algarum and AlgaeBase for algae, Index Nominum Genericorum and

420-612: Is discouraged by both the International Code of Zoological Nomenclature and the International Code of Nomenclature for algae, fungi, and plants , there are some five thousand such names in use in more than one kingdom. For instance, A list of generic homonyms (with their authorities), including both available (validly published) and selected unavailable names, has been compiled by the Interim Register of Marine and Nonmarine Genera (IRMNG). The type genus forms

462-546: Is far from exhaustive of the possible patterns for life: the Precambrian Ediacaran biota includes body plans that differ from any found in currently living organisms, even though the overall arrangement of unrelated modern taxa is quite similar. Thus the Cambrian explosion appears to have more or less completely replaced the earlier range of body plans. Genes , embryos and development together determine

SECTION 10

#1732765166065

504-460: Is somewhat arbitrary. Although all species within a genus are supposed to be "similar", there are no objective criteria for grouping species into genera. There is much debate among zoologists about whether enormous, species-rich genera should be maintained, as it is extremely difficult to come up with identification keys or even character sets that distinguish all species. Hence, many taxonomists argue in favor of breaking down large genera. For instance,

546-474: Is the type species , and the generic name is permanently associated with the type specimen of its type species. Should the specimen turn out to be assignable to another genus, the generic name linked to it becomes a junior synonym and the remaining taxa in the former genus need to be reassessed. In zoological usage, taxonomic names, including those of genera, are classified as "available" or "unavailable". Available names are those published in accordance with

588-601: The Anas assemblage are nowadays not placed in this genus anymore, at least not with certainty: Highly problematic, albeit in a theoretical sense, is the placement of the moa-nalos . These may be descended from a common ancestor of dabbling ducks such as the Pacific black duck , Laysan duck , and mallard . Phylogenetically, they may even form a clade within the traditional genus Anas . However, when compared to these species – which are representative of dabbling ducks in general –

630-621: The International Code of Zoological Nomenclature ; the earliest such name for any taxon (for example, a genus) should then be selected as the " valid " (i.e., current or accepted) name for the taxon in question. Consequently, there will be more available names than valid names at any point in time; which names are currently in use depending on the judgement of taxonomists in either combining taxa described under multiple names, or splitting taxa which may bring available names previously treated as synonyms back into use. "Unavailable" names in zoology comprise names that either were not published according to

672-824: The International Plant Names Index for plants in general, and ferns through angiosperms, respectively, and Nomenclator Zoologicus and the Index to Organism Names for zoological names. Totals for both "all names" and estimates for "accepted names" as held in the Interim Register of Marine and Nonmarine Genera (IRMNG) are broken down further in the publication by Rees et al., 2020 cited above. The accepted names estimates are as follows, broken down by kingdom: The cited ranges of uncertainty arise because IRMNG lists "uncertain" names (not researched therein) in addition to known "accepted" names;

714-404: The platypus belongs to the genus Ornithorhynchus although George Shaw named it Platypus in 1799 (these two names are thus synonyms ) . However, the name Platypus had already been given to a group of ambrosia beetles by Johann Friedrich Wilhelm Herbst in 1793. A name that means two different things is a homonym . Since beetles and platypuses are both members of the kingdom Animalia,

756-473: The French botanist Joseph Pitton de Tournefort (1656–1708) is considered "the founder of the modern concept of genera". The scientific name (or the scientific epithet) of a genus is also called the generic name ; in modern style guides and science, it is always capitalised. It plays a fundamental role in binomial nomenclature , the system of naming organisms , where it is combined with the scientific name of

798-839: The Protista with eight more, for a total of twelve. For comparison, the number of phyla recognised by modern zoologists has risen to 36. In his 1735 book Systema Naturæ , Swedish botanist Linnaeus grouped the animals into quadrupeds , birds , "amphibians" (including tortoises , lizards and snakes ), fish , "insects" (Insecta, in which he included arachnids , crustaceans and centipedes ) and "worms" (Vermes). Linnaeus's Vermes included effectively all other groups of animals, not only tapeworms , earthworms and leeches but molluscs , sea urchins and starfish , jellyfish , squid and cuttlefish . In his 1817 work, Le Règne Animal , French zoologist Georges Cuvier combined evidence from comparative anatomy and palaeontology to divide

840-541: The animal kingdom into four body plans. Taking the central nervous system as the main organ system which controlled all the others, such as the circulatory and digestive systems, Cuvier distinguished four body plans or embranchements : Grouping animals with these body plans resulted in four branches: vertebrates , molluscs , articulata (including insects and annelids ) and zoophytes or Radiata . Ernst Haeckel , in his 1866 Generelle Morphologie der Organismen , asserted that all living things were monophyletic (had

882-442: The base for higher taxonomic ranks, such as the family name Canidae ("Canids") based on Canis . However, this does not typically ascend more than one or two levels: the order to which dogs and wolves belong is Carnivora ("Carnivores"). The numbers of either accepted, or all published genus names is not known precisely; Rees et al., 2020 estimate that approximately 310,000 accepted names (valid taxa) may exist, out of

SECTION 20

#1732765166065

924-434: The early Palaeozoic . Recent studies in animals and plants started to investigate whether evolutionary constraints on body plan structures can explain the presence of developmental constraints during embryogenesis such as the phenomenon referred to as phylotypic stage . Among the pioneering zoologists , Linnaeus identified two body plans outside the vertebrates; Cuvier identified three; and Haeckel had four, as well as

966-446: The form "author, year" in zoology, and "standard abbreviated author name" in botany. Thus in the examples above, the genus Canis would be cited in full as " Canis Linnaeus, 1758" (zoological usage), while Hibiscus , also first established by Linnaeus but in 1753, is simply " Hibiscus L." (botanical usage). Each genus should have a designated type , although in practice there is a backlog of older names without one. In zoology, this

1008-476: The form of an adult organism's body, through the complex switching processes involved in morphogenesis . Developmental biologists seek to understand how genes control the development of structural features through a cascade of processes in which key genes produce morphogens , chemicals that diffuse through the body to produce a gradient that acts as a position indicator for cells, turning on other genes, some of which in turn produce other morphogens. A key discovery

1050-737: The generic name (or its abbreviated form) still forms the leading portion of the scientific name, for example, Canis lupus lupus for the Eurasian wolf subspecies, or as a botanical example, Hibiscus arnottianus ssp. immaculatus . Also, as visible in the above examples, the Latinised portions of the scientific names of genera and their included species (and infraspecies, where applicable) are, by convention, written in italics . The scientific names of virus species are descriptive, not binomial in form, and may or may not incorporate an indication of their containing genus; for example,

1092-498: The genus as then defined was non-monophyletic . Based on the results of this study, Anas was split into four proposed monophyletic genera with five species including the wigeons transferred to the resurrected genus Mareca , ten species including the shovelers and some teals transferred to the resurrected genus Spatula and the Baikal teal placed in the monotypic genus Sibirionetta . There are 31 extant species recognised in

1134-1190: The genus: Extinct Species Formerly placed in Anas : Cladogram based on the analysis of Gonzalez and colleagues published in 2009. Auckland teal ( A. aucklandica ) Brown teal ( A. chlorotis ) Bernier's teal ( A. bernieri ) Chestnut teal ( A. castanea ) Sunda teal ( A. gibberifrons ) Yellow-billed teal ( A. flavirostris ) Green-winged teal ( A. carolinensis ) Eurasian teal ( A. crecca ) Northern pintail ( A. acuta ) Yellow-billed pintail ( A. georgica ) Red-billed teal ( A. erythrorhyncha ) White-cheeked pintail ( A. bahamensis ) Cape teal ( A. capensis ) Mexican duck ( A. diazi ) American black duck ( A. rubripes ) Mottled duck ( A. fulvigula ) Mallard ( A. platyrhynchos ) Indian spot-billed duck ( A. poecilorhyncha ) Philippine duck ( A. luzonica ) Laysan duck ( A. laysanensis ) Pacific black duck ( A. superciliosa ) Meller's duck ( A. melleri ) Yellow-billed duck ( A. undulata ) African black duck ( A. sparsa ) A number of fossil species of Anas have been described. Their relationships are often undetermined: Several prehistoric waterfowl supposedly part of

1176-432: The idea that a newly defined genus should fulfill these three criteria to be descriptively useful: Moreover, genera should be composed of phylogenetic units of the same kind as other (analogous) genera. The term "genus" comes from Latin genus , a noun form cognate with gignere ('to bear; to give birth to'). The Swedish taxonomist Carl Linnaeus popularized its use in his 1753 Species Plantarum , but

1218-468: The idea that the different phyla could be perceived in terms of a Bauplan, illustrating their fixity. However, he later abandoned this idea in favor of punctuated equilibrium . 20 out of the 36 body plans originated in the Cambrian period, in the " Cambrian explosion ". However, complete body plans of many phyla emerged much later, in the Palaeozoic or beyond. The current range of body plans

1260-633: The largest component, with 23,236 ± 5,379 accepted genus names, of which 20,845 ± 4,494 are angiosperms (superclass Angiospermae). By comparison, the 2018 annual edition of the Catalogue of Life (estimated >90% complete, for extant species in the main) contains currently 175,363 "accepted" genus names for 1,744,204 living and 59,284 extinct species, also including genus names only (no species) for some groups. The number of species in genera varies considerably among taxonomic groups. For instance, among (non-avian) reptiles , which have about 1180 genera,

1302-488: The lizard genus Anolis has been suggested to be broken down into 8 or so different genera which would bring its ~400 species to smaller, more manageable subsets. Bauplan A body plan , Bauplan ( pl.   German : Baupläne ), or ground plan is a set of morphological features common to many members of a phylum of animals . The vertebrates share one body plan, while invertebrates have many. This term, usually applied to animals, envisages

Anas - Misplaced Pages Continue

1344-524: The moa-nalos are a radical departure from the Anseriforme bauplan . This illustrates that in a truly evolutionary sense, a strictly phylogenetic taxonomy may be difficult to apply. Genus The composition of a genus is determined by taxonomists . The standards for genus classification are not strictly codified, so different authorities often produce different classifications for genera. There are some general practices used, however, including

1386-403: The most (>300) have only 1 species, ~360 have between 2 and 4 species, 260 have 5–10 species, ~200 have 11–50 species, and only 27 genera have more than 50 species. However, some insect genera such as the bee genera Lasioglossum and Andrena have over 1000 species each. The largest flowering plant genus, Astragalus , contains over 3,000 species. Which species are assigned to a genus

1428-428: The name could not be used for both. Johann Friedrich Blumenbach published the replacement name Ornithorhynchus in 1800. However, a genus in one kingdom is allowed to bear a scientific name that is in use as a generic name (or the name of a taxon in another rank) in a kingdom that is governed by a different nomenclature code. Names with the same form but applying to different taxa are called "homonyms". Although this

1470-541: The provisions of the ICZN Code, e.g., incorrect original or subsequent spellings, names published only in a thesis, and generic names published after 1930 with no type species indicated. According to "Glossary" section of the zoological Code, suppressed names (per published "Opinions" of the International Commission of Zoological Nomenclature) remain available but cannot be used as the valid name for

1512-497: The specific name particular to the wolf. A botanical example would be Hibiscus arnottianus , a particular species of the genus Hibiscus native to Hawaii. The specific name is written in lower-case and may be followed by subspecies names in zoology or a variety of infraspecific names in botany . When the generic name is already known from context, it may be shortened to its initial letter, for example, C. lupus in place of Canis lupus . Where species are further subdivided,

1554-412: The standard format for a species name comprises the generic name, indicating the genus to which the species belongs, followed by the specific epithet, which (within that genus) is unique to the species. For example, the gray wolf 's scientific name is Canis lupus , with Canis ( Latin for 'dog') being the generic name shared by the wolf's close relatives and lupus (Latin for 'wolf') being

1596-403: The taxon is termed a synonym ; some authors also include unavailable names in lists of synonyms as well as available names, such as misspellings, names previously published without fulfilling all of the requirements of the relevant nomenclatural code, and rejected or suppressed names. A particular genus name may have zero to many synonyms, the latter case generally if the genus has been known for

1638-576: The values quoted are the mean of "accepted" names alone (all "uncertain" names treated as unaccepted) and "accepted + uncertain" names (all "uncertain" names treated as accepted), with the associated range of uncertainty indicating these two extremes. Within Animalia, the largest phylum is Arthropoda , with 151,697 ± 33,160 accepted genus names, of which 114,387 ± 27,654 are insects (class Insecta). Within Plantae, Tracheophyta (vascular plants) make up

1680-429: The virus species " Salmonid herpesvirus 1 ", " Salmonid herpesvirus 2 " and " Salmonid herpesvirus 3 " are all within the genus Salmonivirus ; however, the genus to which the species with the formal names " Everglades virus " and " Ross River virus " are assigned is Alphavirus . As with scientific names at other ranks, in all groups other than viruses, names of genera may be cited with their authorities, typically in

1722-559: Was introduced by the Swedish naturalist Carl Linnaeus in 1758 in the tenth edition of his Systema Naturae . Anas is the Latin word for a duck. The genus formerly included additional species. In 2009 a large molecular phylogenetic study was published that compared mitochondrial DNA sequences from ducks, geese and swans in the family Anatidae . The results confirmed some of the conclusions of earlier smaller studies and indicated that

Anas - Misplaced Pages Continue

1764-424: Was the existence of groups of homeobox genes , which function as switches responsible for laying down the basic body plan in animals. The homeobox genes are remarkably conserved between species as diverse as the fruit fly and humans, the basic segmented pattern of the worm or fruit fly being the origin of the segmented spine in humans. The field of animal evolutionary developmental biology ('Evo Devo'), which studies

#64935