Alterra Power Corp. a subsidiary of Innergex Renewable Energy Inc. , is a diversified renewable power generation company based in Vancouver , British Columbia, Canada. It was formed in 2011 through the merger of Magma Energy Corp. and Plutonic Power Corp . It develops, owns, acquires and operates hydroelectric, wind, solar energy and geothermal projects. On February 6, 2018, Innergex Renewable Energy Inc. completed the acquisition of Alterra including all its assets.
55-474: Alterra may refer to: Alterra Power , a Canadian energy company Alterra Coffee Roasters, a house brand of Lavazza 's Flavia Beverage Systems single-serve coffee container business. This brand was the former name of Colectivo Coffee Roasters . Alterra Mountain Company , a North American ski resort operator Alterra Corporation, a fictional corporation in
110-413: A photovoltaic system , or PV system, produces direct current (DC) power which fluctuates with the sunlight's intensity. For practical use this usually requires conversion to alternating current (AC), through the use of inverters . Multiple solar cells are connected inside panels. Panels are wired together to form arrays, then tied to an inverter, which produces power at the desired voltage, and for AC,
165-496: A growing number of countries and regions all over the world. The largest manufacturers of solar equipment were based in China. Although concentrated solar power capacity grew more than tenfold, it remained a tiny proportion of the total, because the cost of utility-scale solar PV fell by 85% between 2010 and 2020, while CSP costs only fell 68% in the same timeframe. Despite the rising cost of materials, such as polysilicon , during
220-587: A high specific heat capacity, and can deliver heat at temperatures compatible with conventional power systems. This method of energy storage is used, for example, by the Solar Two power station, allowing it to store 1.44 TJ in its 68 m storage tank, enough to provide full output for close to 39 hours, with an efficiency of about 99%. In stand alone PV systems , batteries are traditionally used to store excess electricity. With grid-connected photovoltaic power systems , excess electricity can be sent to
275-691: A limited effect on the users, but their effect on self-consumption of solar power may be limited. The original political purpose of incentive policies for PV was to facilitate an initial small-scale deployment to begin to grow the industry, even where the cost of PV was significantly above grid parity, to allow the industry to achieve the economies of scale necessary to reach grid parity. Since reaching grid parity, some policies are implemented to promote national energy independence, high tech job creation and reduction of CO 2 emissions. Financial incentives for photovoltaics differ across countries, including Australia , China , Germany , India , Japan , and
330-490: A local user or users. Utility-scale solar is sometimes used to describe this type of project. This approach differs from concentrated solar power , the other major large-scale solar generation technology, which uses heat to drive a variety of conventional generator systems. Both approaches have their own advantages and disadvantages, but to date, for a variety of reasons, photovoltaic technology has seen much wider use. As of 2019 , about 97% of utility-scale solar power capacity
385-504: A measure more directly comparable to other forms of power generation. Most solar parks are developed at a scale of at least 1 MW p . As of 2018, the world's largest operating photovoltaic power stations surpassed 1 gigawatt . At the end of 2019, about 9,000 solar farms were larger than 4 MW AC (utility scale), with a combined capacity of over 220 GW AC . Commercial concentrating solar power (CSP) plants, also called "solar thermal power stations", were first developed in
440-579: A rate ranging from wholesale to retail rate or above, as can be excess annual credits. A community solar project is a solar power installation that accepts capital from and provides output credit and tax benefits to multiple customers, including individuals, businesses, nonprofits, and other investors. Participants typically invest in or subscribe to a certain kW capacity or kWh generation of remote electrical production. In some countries tariffs (import taxes) are imposed on imported solar panels. The overwhelming majority of electricity produced worldwide
495-519: A solar project in Ontario. East Toba River (123MW) and Montrose Creek (73MW) are two run-of-river hydroelectric plants 18 km apart, they have operated since in 2010 with a combined capacity of 196 MW and generate an average of 720 GWh of electricity annually, which is contracted to B.C. Hydro until 2045. The Upper Toba Valley Hydroelectric project originally planned two renewable power facilities constructed 90 km north of Powell River, BC at
550-447: A source of electricity for small and medium-sized applications, from the calculator powered by a single solar cell to remote homes powered by an off-grid rooftop PV system. Commercial concentrated solar power plants were first developed in the 1980s. Since then, as the cost of solar panels has fallen, grid-connected solar PV systems ' capacity and production has doubled about every three years . Three-quarters of new generation capacity
605-463: A tenth of their electricity from solar, with China making up more than half of solar growth. Almost half the solar power installed in 2022 was mounted on rooftops . Much more low-carbon power is needed for electrification and to limit climate change . The International Energy Agency said in 2022 that more effort was needed for grid integration and the mitigation of policy, regulation and financing challenges. Nevertheless solar may greatly cut
SECTION 10
#1732794507461660-440: A thin coating of boron. The “Bell Solar Battery” was described as 6% efficient, with a square yard of the panels generating 50 watts. The first satellite with solar panels was launched in 1957 . By the 1970s, solar panels were still too expensive for much other than satellites . In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems. However,
715-691: A total capacity of 50 MW, divided between Amherstburg (10MW), Belmont (20MW) and Walpole (20MW). This represents a first venture into solar power for Plutonic Power although engineering, procurement, construction and operation will still be provided by First Solar. In 2010, during the Icelandic financial crisis , Magma Energy acquired 98.5% of shares in the Icelandic geothermal power company HS Orka . The deal created an opposition in Iceland . On May 21, 2010 Icelandic singer Björk wrote an open letter in
770-467: Is (or is predicted to become) the cheapest source of energy in all of Central America, Africa, the Middle East, India, South-east Asia, Australia, and several other regions. Different measurements of solar irradiance (direct normal irradiance, global horizontal irradiance) are mapped below: In cases of self-consumption of solar energy, the payback time is calculated based on how much electricity
825-497: Is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture. Concentrated solar power (CSP), also called "concentrated solar thermal", uses lenses or mirrors and tracking systems to concentrate sunlight, then uses
880-700: Is different from Wikidata All article disambiguation pages All disambiguation pages Alterra Power On 7 March 2011, it was announced that Magma Energy and Plutonic Power would merge to create Alterra Power Corp. Magma Energy was renamed Alterra Power and each shareholder of Plutonic Power received 2.38 shares of Magma for each Plutonic share held. At the time, the merged company owned two geothermal power plants in Iceland , and one in Nevada (since sold), one run of river hydro plant and one wind farm in British Columbia and an option on
935-455: Is forecast to be solar, surpassing coal as the largest source of installed power capacity. Utility scale is forecast to become the largest source of electricity in all regions except sub-Saharan Africa by 2050. According to a 2021 study, global electricity generation potential of rooftop solar panels is estimated at 27 PWh per year at costs ranging from $ 40 (Asia) to $ 240 per MWh (US, Europe). Its practical realization will however depend on
990-571: Is key for high self-consumption. The match can be improved with batteries or controllable electricity consumption. However, batteries are expensive, and profitability may require the provision of other services from them besides self-consumption increase, for example avoiding power outages . Hot water storage tanks with electric heating with heat pumps or resistance heaters can provide low-cost storage for self-consumption of solar power. Shiftable loads, such as dishwashers, tumble dryers and washing machines, can provide controllable consumption with only
1045-421: Is not purchased from the grid. However, in many cases, the patterns of generation and consumption do not coincide, and some or all of the energy is fed back into the grid. The electricity is sold, and at other times when energy is taken from the grid, electricity is bought. The relative costs and prices obtained affect the economics. In many markets, the price paid for sold PV electricity is significantly lower than
1100-695: Is potentially an important issue, particularly in off-grid applications and for future 100% renewable energy scenarios. Solar is intermittent due to the day/night cycles and variable weather conditions. However solar power can be forecast somewhat by time of day, location, and seasons. The challenge of integrating solar power in any given electric utility varies significantly. In places with hot summers and mild winters, solar tends to be well matched to daytime cooling demands. Concentrated solar power plants may use thermal storage to store solar energy, such as in high-temperature molten salts. These salts are an effective storage medium because they are low-cost, have
1155-489: Is solar, with both millions of rooftop installations and gigawatt-scale photovoltaic power stations continuing to be built. In 2023, solar power generated 5.5% (1,631 TWh) of global electricity and over 1% of primary energy , adding twice as much new electricity as coal. Along with onshore wind power , utility-scale solar is the source with the cheapest levelised cost of electricity for new installations in most countries. As of 2023, 33 countries generated more than
SECTION 20
#17327945074611210-465: Is the conversion of energy from sunlight into electricity , either directly using photovoltaics (PV) or indirectly using concentrated solar power . Solar panels use the photovoltaic effect to convert light into an electric current . Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine . Photovoltaics (PV) were initially solely used as
1265-768: Is then used for power generation or energy storage. Thermal storage efficiently allows overnight electricity generation, thus complementing PV. CSP generates a very small share of solar power and in 2022 the IEA said that CSP should be better paid for its storage. As of 2021 the levelized cost of electricity from CSP is over twice that of PV. However, their very high temperatures may prove useful to help decarbonize industries (perhaps via hydrogen) which need to be hotter than electricity can provide. A hybrid system combines solar with energy storage and/or one or more other forms of generation. Hydro, wind and batteries are commonly combined with solar. The combined generation may enable
1320-435: Is used immediately because traditional generators can adapt to demand and storage is usually more expensive. Both solar power and wind power are sources of variable renewable power , meaning that all available output must be used locally, carried on transmission lines to be used elsewhere, or stored (e.g., in a battery). Since solar energy is not available at night, storing it so as to have continuous electricity availability
1375-881: The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL ), Japan ( NEDO ), and Germany ( Fraunhofer ISE ). Between 1970 and 1983 installations of photovoltaic systems grew rapidly. In
1430-463: The 2021–2022 global energy crisis , utility scale solar was still the least expensive energy source in many countries due to the rising costs of other energy sources, such as natural gas. In 2022, global solar generation capacity exceeded 1 TW for the first time. However, fossil-fuel subsidies have slowed the growth of solar generation capacity. About half of installed capacity is utility scale. Most new renewable capacity between 2022 and 2027
1485-467: The United States and even across states within the US. In net metering the price of the electricity produced is the same as the price supplied to the consumer, and the consumer is billed on the difference between production and consumption. Net metering can usually be done with no changes to standard electricity meters , which accurately measure power in both directions and automatically report
1540-486: The electrical grid . Net metering and feed-in tariff programs give these systems a credit for the electricity they produce. This credit offsets electricity provided from the grid when the system cannot meet demand, effectively trading with the grid instead of storing excess electricity. When wind and solar are a small fraction of the grid power, other generation techniques can adjust their output appropriately, but as these forms of variable power grow, additional balance on
1595-399: The silicon solar cell in 1954. These early solar cells cost US$ 286/watt and reached efficiencies of 4.5–6%. In 1957, Mohamed M. Atalla developed the process of silicon surface passivation by thermal oxidation at Bell Labs . The surface passivation process has since been critical to solar cell efficiency . As of 2022 over 90% of the market is crystalline silicon . The array of
1650-567: The 1860s was driven by an expectation that coal would soon become scarce, such as experiments by Augustin Mouchot . Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884. However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum . Bell Telephone Laboratories’ 1950s research used silicon wafers with
1705-684: The 1980s. The 377 MW Ivanpah Solar Power Facility , located in California's Mojave Desert, is the world's largest solar thermal power plant project. Other large CSP plants include the Solnova Solar Power Station (150 MW), the Andasol solar power station (150 MW), and Extresol Solar Power Station (150 MW), all in Spain. The principal advantage of CSP is the ability to efficiently add thermal storage, allowing
Alterra - Misplaced Pages Continue
1760-535: The 62MW Jimmie Creek facility. In 2016 Alterra Power Corp. announced that the Jimmie Creek facility had achieved its full output of 62 MW. It is located at 50°34′08″N 124°04′21″W / 50.568962°N 124.072627°W / 50.568962; -124.072627 In early 2011, Plutonic Power agreed, together with GE Energy financial Services, to purchase three proposed photovoltaic power plants in Ontario from First Solar . The three plants will have
1815-476: The US, residential solar cost from 2 to 4 dollars/watt (but solar shingles cost much more) and utility solar costs were around $ 1/watt. The productivity of solar power in a region depends on solar irradiance , which varies through the day and year and is influenced by latitude and climate . PV system output power also depends on ambient temperature, wind speed, solar spectrum, the local soiling conditions, and other factors. Onshore wind power tends to be
1870-543: The United States, President Jimmy Carter set a target of producing 20% of U.S. energy from solar by the year 2000, but his successor, Ronald Reagan , removed the funding for research into renewables. Falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996. In the mid-1990s development of both, residential and commercial rooftop solar as well as utility-scale photovoltaic power stations began to accelerate again due to supply issues with oil and natural gas, global warming concerns, and
1925-559: The arid tropics and subtropics. Deserts lying in low latitudes usually have few clouds and can receive sunshine for more than ten hours a day. These hot deserts form the Global Sun Belt circling the world. This belt consists of extensive swathes of land in Northern Africa , Southern Africa , Southwest Asia , Middle East , and Australia , as well as the much smaller deserts of North and South America . Thus solar
1980-429: The availability and cost of scalable electricity storage solutions. A photovoltaic power station , also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system (PV system) designed for the supply of merchant power . They are different from most building-mounted and other decentralized solar power because they supply power at the utility level, rather than to
2035-605: The cheapest source of electricity in Northern Eurasia, Canada, some parts of the United States, and Patagonia in Argentina whereas in other parts of the world mostly solar power (or less often a combination of wind, solar and other low carbon energy) is thought to be best. Modelling by Exeter University suggests that by 2030, solar will be least expensive in all countries except for some in north-eastern Europe. The locations with highest annual solar irradiance lie in
2090-464: The cost of energy. Geography affects solar energy potential because different locations receive different amounts of solar radiation. In particular, with some variations, areas that are closer to the equator generally receive higher amounts of solar radiation. However, solar panels that can follow the position of the Sun can significantly increase the solar energy potential in areas that are farther from
2145-560: The cost of solar power, which is a problem for countries where contracts may not be honoured, such as some African countries. Some countries are considering price caps , whereas others prefer contracts for difference . In many countries, solar power is the lowest cost source of electricity. In Saudi Arabia, a power purchase agreement (PPA) was signed in April 2021 for a new solar power plant in Al-Faisaliah. The project has recorded
2200-581: The desired frequency/phase. Many residential PV systems are connected to the grid when available, especially in developed countries with large markets. In these grid-connected PV systems , use of energy storage is optional. In certain applications such as satellites, lighthouses, or in developing countries, batteries or additional power generators are often added as back-ups. Such stand-alone power systems permit operations at night and at other times of limited sunlight. In "vertical agrivoltaics " system, solar cells are oriented vertically on farmland, to allow
2255-421: The difference, and because it allows homeowners and businesses to generate electricity at a different time from consumption, effectively using the grid as a giant storage battery. With net metering, deficits are billed each month while surpluses are rolled over to the following month. Best practices call for perpetual roll over of kWh credits. Excess credits upon termination of service are either lost or paid for at
Alterra - Misplaced Pages Continue
2310-586: The dispatching of electricity over up to a 24-hour period. Since peak electricity demand typically occurs at about 5 pm, many CSP power plants use 3 to 5 hours of thermal storage. The typical cost factors for solar power include the costs of the modules, the frame to hold them, wiring, inverters, labour cost, any land that might be required, the grid connection, maintenance and the solar insolation that location will receive. Photovoltaic systems use no fuel, and modules typically last 25 to 40 years. Thus upfront capital and financing costs make up 80% to 90% of
2365-456: The equator. Daytime cloud cover can reduce the light available for solar cells. Land availability also has a large effect on the available solar energy. Solar power plants use one of two technologies: A solar cell , or photovoltaic cell, is a device that converts light into electric current using the photovoltaic effect . The first solar cell was constructed by Charles Fritts in the 1880s. The German industrialist Ernst Werner von Siemens
2420-565: The game Subnautica Colectivo Coffee Roasters , an American café chain that was formerly known as Alterra Coffee Roasters Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Alterra . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Alterra&oldid=1258710070 " Category : Disambiguation pages Hidden categories: Short description
2475-457: The grid is needed. As prices are rapidly declining, PV systems increasingly use rechargeable batteries to store a surplus to be used later at night. Batteries used for grid-storage can stabilize the electrical grid by leveling out peak loads for a few hours. In the future, less expensive batteries could play an important role on the electrical grid, as they can charge during periods when generation exceeds demand and feed their stored energy into
2530-562: The headwaters of Toba Inlet the first is on Jimmie Creek which flows west into Toba River and the second on the Upper Toba River. Installed capacity of the two facilities was to be 124 MW with an expected annual energy generation of 316 GW hr/yr. Alterra received an Energy Purchase Agreement from BC Hydro to construct the Upper Toba facility. In 2013 Alterra also received an Energy Purchase Agreement from BC Hydro to construct
2585-555: The improving economic position of PV relative to other energy technologies. In the early 2000s, the adoption of feed-in tariffs —a policy mechanism, that gives renewables priority on the grid and defines a fixed price for the generated electricity—led to a high level of investment security and to a soaring number of PV deployments in Europe. For several years, worldwide growth of solar PV was driven by European deployment , but it then shifted to Asia, especially China and Japan , and to
2640-638: The land to both grow crops and generate renewable energy. Other configurations include floating solar farms , placing solar canopies over parking lots, and installing solar panels on roofs. A thin-film solar cell is a second generation solar cell that is made by depositing one or more thin layers, or thin film (TF) of photovoltaic material on a substrate, such as glass, plastic or metal. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si). A perovskite solar cell (PSC)
2695-578: The newspaper Reykjavík Grapevine , calling on the Icelandic government to "do everything in its power to revoke the contracts with Magma Energy". The deal was approved by the Icelandic Government. In 2016, Alterra owned 67%, while the Icelandic pension funds held 33%. In 2019 Alterra sold off its shares in HS Orka to Macquarie Infrastructure and Real Assets (MIRA). Solar power Solar power , also known as solar electricity ,
2750-527: The price of bought electricity, which incentivizes self-consumption. Moreover, separate self-consumption incentives have been used in e.g., Germany and Italy. Grid interaction regulation has also included limitations of grid feed-in in some regions in Germany with high amounts of installed PV capacity. By increasing self-consumption, the grid feed-in can be limited without curtailment , which wastes electricity. A good match between generation and consumption
2805-422: The resulting heat to generate electricity from conventional steam-driven turbines. A wide range of concentrating technologies exists: among the best known are the parabolic trough , the compact linear Fresnel reflector , the dish Stirling and the solar power tower . Various techniques are used to track the sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight and
SECTION 50
#17327945074612860-407: The system to vary power output with demand, or at least smooth the solar power fluctuation. There is much hydro worldwide, and adding solar panels on or around existing hydro reservoirs is particularly useful, because hydro is usually more flexible than wind and cheaper at scale than batteries, and existing power lines can sometimes be used. The early development of solar technologies starting in
2915-471: The world's lowest cost for solar PV electricity production of USD 1.04 cents/ kWh. Expenses of high-power band solar modules has greatly decreased over time. Beginning in 1982, the cost per kW was approximately 27,000 American dollars, and in 2006 the cost dropped to approximately 4,000 American dollars per kW. The PV system in 1992 cost approximately 16,000 American dollars per kW and it dropped to approximately 6,000 American dollars per kW in 2008. In 2021 in
2970-454: Was PV. In some countries, the nameplate capacity of photovoltaic power stations is rated in megawatt-peak (MW p ), which refers to the solar array's theoretical maximum DC power output. In other countries, the manufacturer states the surface and the efficiency. However, Canada, Japan, Spain, and the United States often specify using the converted lower nominal power output in MW AC ,
3025-506: Was among those who recognized the importance of this discovery. In 1931, the German engineer Bruno Lange developed a photo cell using silver selenide in place of copper oxide , although the prototype selenium cells converted less than 1% of incident light into electricity. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created
#460539