Misplaced Pages

Alpher

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Ralph Asher Alpher (February 3, 1921 – August 12, 2007) was an American cosmologist , who carried out pioneering work in the early 1950s on the Big Bang model, including Big Bang nucleosynthesis and predictions of the cosmic microwave background radiation.

#758241

90-424: Alpher is a surname. Notable people with the surname include: Ralph Alpher (1921–2007), American cosmologist Yossi Alpher (born 1942), Israeli writer [REDACTED] Surname list This page lists people with the surname Alpher . If an internal link intending to refer to a specific person led you to this page, you may wish to change that link by adding

180-466: A pun on alpha , beta , gamma ( α, β, γ ), the first three letters of the Greek alphabet . Gamow joked that "There was, however, a rumor that later, when the alpha, beta, gamma theory went temporarily on the rocks, Bethe seriously considered changing his name to Zacharias". When referring to Robert Herman he wrote: "R. C. Herman, who stubbornly refuses to change his name to Delter." Alpher worried that

270-587: A Dicke radiometer that they intended to use for radio astronomy and satellite communication experiments. The antenna was constructed in 1959 to support Project Echo —the National Aeronautics and Space Administration's passive communications satellites, which used large earth orbiting aluminized plastic balloons as reflectors to bounce radio signals from one point on the Earth to another. On 20 May 1964 they made their first measurement clearly showing

360-515: A brief paper by Soviet astrophysicists A. G. Doroshkevich and Igor Novikov , in the spring of 1964. In 1964, David Todd Wilkinson and Peter Roll, Dicke's colleagues at Princeton University , began constructing a Dicke radiometer to measure the cosmic microwave background. In 1964, Arno Penzias and Robert Woodrow Wilson at the Crawford Hill location of Bell Telephone Laboratories in nearby Holmdel Township, New Jersey had built

450-642: A day secretary with the State Department. Nearly two months after the attack on Pearl Harbor, Alpher and Louise were married. At this time he had already done classified work for the U.S. Navy through the Carnegie Institution for nearly one and a half years. During a hiatus in his scientific work in early 1944, he did apply to the Navy for a commission, for which he was eligible. By this time he had done so much classified and secret work that he

540-412: A factor of 10 less strong than the temperature anisotropy; it supplements the temperature data as they are correlated. The B-mode signal is even weaker but may contain additional cosmological data. The anisotropy is related to physical origin of the polarization. Excitation of an electron by linear polarized light generates polarized light at 90 degrees to the incident direction. If the incoming radiation

630-605: A heterogeneous plasma. E-modes were first seen in 2002 by the Degree Angular Scale Interferometer (DASI). B-modes are expected to be an order of magnitude weaker than the E-modes. The former are not produced by standard scalar type perturbations, but are generated by gravitational waves during cosmic inflation shortly after the big bang. However, gravitational lensing of the stronger E-modes can also produce B-mode polarization. Detecting

720-594: A high energy photon. However, as time progressed, the universe expanded and cooled and the average energy of the photons decreased. At some point, roughly one second after the Big Bang, the attractive force of nuclear attraction would begin to win out over the lower energy photons and neutrons and protons would begin to form stable deuterium nuclei. As the universe continued to expand and cool, additional nuclear particles would bind with these light nuclei, building up heavier elements such as helium , etc. Alpher argued that

810-406: A measured brightness temperature at any wavelength can be converted to a blackbody temperature. The radiation is remarkably uniform across the sky, very unlike the almost point-like structure of stars or clumps of stars in galaxies. The radiation is isotropic to roughly one part in 25,000: the root mean square variations are just over 100 μK, after subtracting a dipole anisotropy from

900-515: A series of peaks whose angular scales ( ℓ values of the peaks) are roughly in the ratio 1 : 3 : 5 : ..., while adiabatic density perturbations produce peaks whose locations are in the ratio 1 : 2 : 3 : ... Observations are consistent with the primordial density perturbations being entirely adiabatic, providing key support for inflation, and ruling out many models of structure formation involving, for example, cosmic strings. Collisionless damping

990-461: A stable isotope with an atomic mass of five or eight, hindering the production of elements beyond helium. It was eventually recognized that most of the heavy elements observed in the present universe are the result of stellar nucleosynthesis in stars, a theory largely developed by Hans Bethe , William Fowler and Subrahmanyan Chandrasekhar . Bethe had been a last minute addition to Alpher's dissertation examining committee. Since Alpher's dissertation

SECTION 10

#1732786573759

1080-453: A thermal spectrum. The cosmic microwave background was first predicted in 1948 by Ralph Alpher and Robert Herman , in a correction they prepared for a paper by Alpher's PhD advisor George Gamow . Alpher and Herman were able to estimate the temperature of the cosmic microwave background to be 5 K. The first published recognition of the CMB radiation as a detectable phenomenon appeared in

1170-610: Is flat . A number of ground-based interferometers provided measurements of the fluctuations with higher accuracy over the next three years, including the Very Small Array , Degree Angular Scale Interferometer (DASI), and the Cosmic Background Imager (CBI). DASI made the first detection of the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it

1260-412: Is microwave radiation that fills all space in the observable universe . With a standard optical telescope , the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object . This glow is strongest in the microwave region of

1350-476: Is an emission of uniform black body thermal energy coming from all directions. Intensity of the CMB is expressed in kelvin (K), the SI unit of temperature. The CMB has a thermal black body spectrum at a temperature of 2.725 48 ± 0.000 57  K . Variations in intensity are expressed as variations in temperature. The blackbody temperature uniquely characterizes the intensity of the radiation at all wavelengths;

1440-525: Is caused by two effects, when the treatment of the primordial plasma as fluid begins to break down: These effects contribute about equally to the suppression of anisotropies at small scales and give rise to the characteristic exponential damping tail seen in the very small angular scale anisotropies. The depth of the LSS refers to the fact that the decoupling of the photons and baryons does not happen instantaneously, but instead requires an appreciable fraction of

1530-405: Is determined by various interactions of matter and photons up to the point of decoupling, which results in a characteristic lumpy pattern that varies with angular scale. The distribution of the anisotropy across the sky has frequency components that can be represented by a power spectrum displaying a sequence of peaks and valleys. The peak values of this spectrum hold important information about

1620-414: Is isotropic, different incoming directions create polarizations that cancel out. If the incoming radiation has quadrupole anisotropy, residual polarization will be seen. Other than the temperature and polarization anisotropy, the CMB frequency spectrum is expected to feature tiny departures from the black-body law known as spectral distortions . These are also at the focus of an active research effort with

1710-591: Is known quite precisely. The first-year WMAP results put the time at which P ( t ) has a maximum as 372,000 years. This is often taken as the "time" at which the CMB formed. However, to figure out how long it took the photons and baryons to decouple, we need a measure of the width of the PVF. The WMAP team finds that the PVF is greater than half of its maximal value (the "full width at half maximum", or FWHM) over an interval of 115,000 years. By this measure, decoupling took place over roughly 115,000 years, and thus when it

1800-466: Is out of phase with the T-mode spectrum. In June 2001, NASA launched a second CMB space mission, WMAP , to make much more precise measurements of the large scale anisotropies over the full sky. WMAP used symmetric, rapid-multi-modulated scanning, rapid switching radiometers at five frequencies to minimize non-sky signal noise. The data from the mission was released in five installments, the last being

1890-590: Is similar in design to the Cosmic Background Imager (CBI) and the Very Small Array (VSA). A third space mission, the ESA (European Space Agency) Planck Surveyor , was launched in May 2009 and performed an even more detailed investigation until it was shut down in October 2013. Planck employed both HEMT radiometers and bolometer technology and measured the CMB at a smaller scale than WMAP. Its detectors were trialled in

SECTION 20

#1732786573759

1980-449: Is still a matter of scientific debate. It may have included starlight from the very first population of stars ( population III stars), supernovae when these first stars reached the end of their lives, or the ionizing radiation produced by the accretion disks of massive black holes. The time following the emission of the cosmic microwave background—and before the observation of the first stars—is semi-humorously referred to by cosmologists as

2070-530: The Dark Age , and is a period which is under intense study by astronomers (see 21 centimeter radiation ). Two other effects which occurred between reionization and our observations of the cosmic microwave background, and which appear to cause anisotropies, are the Sunyaev–Zeldovich effect , where a cloud of high-energy electrons scatters the radiation, transferring some of its energy to the CMB photons, and

2160-502: The Doppler shift of the background radiation. The latter is caused by the peculiar velocity of the Sun relative to the comoving cosmic rest frame as it moves at 369.82 ± 0.11 km/s towards the constellation Crater near its boundary with the constellation Leo The CMB dipole and aberration at higher multipoles have been measured, consistent with galactic motion. Despite

2250-734: The Dudley Observatory . From 2005 until his death, he remained emeritus director of the Dudley Observatory and emeritus distinguished professor of physics and astronomy at Union College. In 1986, he was recognized with the Distinguished Alumnus Achievement Award of the George Washington University . All of his degrees were achieved by studying at night, whilst working for the Navy and Johns Hopkins APL during

2340-1023: The Magellanic Premium of the American Philosophical Society in 1975, the Georges Vanderlinden Physics prize of the Belgian Academy of Sciences , as well as significant awards of the New York Academy of Sciences and the Franklin Institute of Philadelphia. Two Nobel Prizes in physics have been awarded for empirical work related to the cosmic background radiation — in 1978 to Arno Penzias and Robert Wilson and in 2006 to John Mather and George Smoot . Alpher and Herman (the latter, posthumously) published their own account of their work in cosmology in 2001, Genesis of

2430-678: The Sachs–Wolfe effect , which causes photons from the Cosmic Microwave Background to be gravitationally redshifted or blueshifted due to changing gravitational fields. The standard cosmology that includes the Big Bang "enjoys considerable popularity among the practicing cosmologists" However, there are challenges to the standard big bang framework for explaining CMB data. In particular standard cosmology requires fine-tuning of some free parameters, with different values supported by different experimental data. As an example of

2520-519: The cosmological redshift associated with the expansion of the universe . The surface of last scattering refers to a shell at the right distance in space so photons are now received that were originally emitted at the time of decoupling. The CMB is not completely smooth and uniform, showing a faint anisotropy that can be mapped by sensitive detectors. Ground and space-based experiments such as COBE , WMAP and Planck have been used to measure these temperature inhomogeneities. The anisotropy structure

2610-551: The inflaton field that caused the inflation event. Long before the formation of stars and planets, the early universe was more compact, much hotter and, starting 10 seconds after the Big Bang, filled with a uniform glow from its white-hot fog of interacting plasma of photons , electrons , and baryons . As the universe expanded , adiabatic cooling caused the energy density of the plasma to decrease until it became favorable for electrons to combine with protons , forming hydrogen atoms. This recombination event happened when

2700-437: The photon – baryon plasma in the early universe. The pressure of the photons tends to erase anisotropies, whereas the gravitational attraction of the baryons, moving at speeds much slower than light, makes them tend to collapse to form overdensities. These two effects compete to create acoustic oscillations, which give the microwave background its characteristic peak structure. The peaks correspond, roughly, to resonances in which

2790-461: The two decades. The sensitivity of the new experiments improved dramatically, with a reduction in internal noise by three orders of magnitude. The primary goal of these experiments was to measure the scale of the first acoustic peak, which COBE did not have sufficient resolution to resolve. This peak corresponds to large scale density variations in the early universe that are created by gravitational instabilities, resulting in acoustical oscillations in

Alpher - Misplaced Pages Continue

2880-458: The 1970s numerous studies showed that tiny deviations from isotropy in the CMB could result from events in the early universe. Harrison, Peebles and Yu, and Zel'dovich realized that the early universe would require quantum inhomogeneities that would result in temperature anisotropy at the level of 10 or 10 . Rashid Sunyaev , using the alternative name relic radiation , calculated the observable imprint that these inhomogeneities would have on

2970-454: The 1978 Nobel Prize in Physics for their discovery. The interpretation of the cosmic microwave background was a controversial issue in the late 1960s. Alternative explanations included energy from within the solar system, from galaxies, from intergalactic plasma and from multiple extragalactic radio sources. Two requirements would show that the microwave radiation was truly "cosmic". First,

3060-555: The 2013 data, the universe contains 4.9% ordinary matter , 26.8% dark matter and 68.3% dark energy . On 5 February 2015, new data was released by the Planck mission, according to which the age of the universe is 13.799 ± 0.021 billion years old and the Hubble constant was measured to be 67.74 ± 0.46 (km/s)/Mpc . The cosmic microwave background radiation and the cosmological redshift -distance relation are together regarded as

3150-667: The Antarctic Viper telescope as ACBAR ( Arcminute Cosmology Bolometer Array Receiver ) experiment—which has produced the most precise measurements at small angular scales to date—and in the Archeops balloon telescope. On 21 March 2013, the European-led research team behind the Planck cosmology probe released the mission's all-sky map ( 565x318 jpeg , 3600x1800 jpeg ) of the cosmic microwave background. The map suggests

3240-591: The Big Bang (Oxford University Press). Published as a trade book, it received little promotion or sales in the first edition. He was elected a Fellow of the American Academy of Arts and Sciences in 1986. In 2005 Alpher was awarded the National Medal of Science . The citation for the award reads "For his unprecedented work in the areas of nucleosynthesis, for the prediction that universe expansion leaves behind background radiation, and for providing

3330-406: The Big Bang would create hydrogen, helium and heavier elements in the correct proportions to explain their abundance in the early universe. Alpher and Gamow's theory originally proposed that all atomic nuclei are produced by the successive capture of neutrons, one mass unit at a time. However, later studies challenged the universality of the successive capture theory, since no element was found to have

3420-409: The CMB as a function of redshift, z , can be shown to be proportional to the color temperature of the CMB as observed in the present day (2.725 K or 0.2348 meV): The high degree of uniformity throughout the observable universe and its faint but measured anisotropy lend strong support for the Big Bang model in general and the ΛCDM ("Lambda Cold Dark Matter") model in particular. Moreover,

3510-585: The Elements", and soon after obtaining his doctorate, made the first prediction of the existence of "fossil" radiation from a hypothetical singularity—the Cosmic Microwave Background Radiation . This was observationally confirmed by Arno Allan Penzias and Robert Wilson at Bell Labs using a horn radio telescope. While attending GWU, Alpher met Louise Ellen Simons, who was majoring in psychology at night school and working as

3600-552: The Nobel Prize in Physics for this work in 1978. Elements of Alpher's independent dissertation were first published on April 1, 1948 in the Physical Review with three authors: Alpher, Hans Bethe and Gamow. Although his name appears on the paper, Bethe had no direct part in the development of the theory, although he later worked on related topics; Gamow added his name to make the author list Alpher, Bethe, Gamow ,

3690-828: The U.S. Navy to develop ship degaussing techniques during World War II . He contributed to the development of the Mark 32 and Mark 45 detonators, torpedoes, Naval gun control, Magnetic Airborne Detection (of submarines), and other top-secret ordnance work (including the Manhattan Project), and he was recognized at the end of the War with the Naval Ordnance Development Award (December 10, 1945 — with Symbol), and another Naval Ordnance Development award in 1946. Alpher's war time work been somewhat obscured by security classification. From 1944 through 1955, he

Alpher - Misplaced Pages Continue

3780-417: The age of the universe up to that era. One method of quantifying how long this process took uses the photon visibility function (PVF). This function is defined so that, denoting the PVF by P ( t ), the probability that a CMB photon last scattered between time t and t + dt is given by P ( t )   dt . The maximum of the PVF (the time when it is most likely that a given CMB photon last scattered)

3870-484: The anisotropies in the cosmic microwave background. The CMB spectrum has become the most precisely measured black body spectrum in nature. In the late 1940s Alpher and Herman reasoned that if there was a Big Bang, the expansion of the universe would have stretched the high-energy radiation of the very early universe into the microwave region of the electromagnetic spectrum , and down to a temperature of about 5 K. They were slightly off with their estimate, but they had

3960-418: The attractive nuclear force ) they would be immediately broken apart by the high energy photons ( quanta of light ) present in high density. In other words, at this extremely high temperature, the photons' kinetic energy would overwhelm the binding energy of the strong nuclear force . For example, if a proton and a neutron became bound together (forming deuterium ), it would be immediately broken apart by

4050-408: The background radiation with intervening hot gas or gravitational potentials, which occur between the last scattering surface and the observer. The structure of the cosmic microwave background anisotropies is principally determined by two effects: acoustic oscillations and diffusion damping (also called collisionless damping or Silk damping). The acoustic oscillations arise because of a conflict in

4140-697: The best available evidence for the Big Bang event. Measurements of the CMB have made the inflationary Big Bang model the Standard Cosmological Model . The discovery of the CMB in the mid-1960s curtailed interest in alternatives such as the steady state theory . In the Big Bang model for the formation of the universe , inflationary cosmology predicts that after about 10 seconds the nascent universe underwent exponential growth that smoothed out nearly all irregularities. The remaining irregularities were caused by quantum fluctuations in

4230-439: The color temperature of the background radiation has dropped by an average factor of 1,089 due to the expansion of the universe. As the universe expands, the CMB photons are redshifted , causing them to decrease in energy. The color temperature of this radiation stays inversely proportional to a parameter that describes the relative expansion of the universe over time, known as the scale length . The color temperature T r of

4320-478: The cosmic microwave background. After a lull in the 1970s caused in part by the many experimental difficulties in measuring CMB at high precision, increasingly stringent limits on the anisotropy of the cosmic microwave background were set by ground-based experiments during the 1980s. RELIKT-1 , a Soviet cosmic microwave background anisotropy experiment on board the Prognoz 9 satellite (launched 1 July 1983), gave

4410-478: The cosmological significance. From 1987 to 2004, he served as distinguished research professor of physics and astronomy at Union College in Schenectady, New York, during which time he was able to return to research and teaching. During all this time he continued to publish major peer-reviewed scientific papers and was active in community service for Public Broadcasting. Alpher was also (1987–2004) director of

4500-515: The daytime. In 2004 he joined the emeritus faculty at Union and was emeritus director of Dudley. He also received honorary Doctor of Science degrees from Union College and the Rensselaer Polytechnic Institute . Alpher told Joseph D'Agnese in his interview for Discover Magazine , "There are two reasons you do science. One is the altruistic feeling that maybe you can contribute to mankind's store of knowledge about

4590-458: The decoupling event is estimated to have occurred and at a point in time such that the photons from that distance have just reached observers. Most of the radiation energy in the universe is in the cosmic microwave background, making up a fraction of roughly 6 × 10 of the total density of the universe. Two of the greatest successes of the Big Bang theory are its prediction of the almost perfect black body spectrum and its detailed prediction of

SECTION 50

#1732786573759

4680-448: The electromagnetic spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s. The CMB is landmark evidence of the Big Bang theory for the origin of the universe. In the Big Bang cosmological models , during the earliest periods, the universe was filled with an opaque fog of dense, hot plasma of sub-atomic particles . As

4770-594: The fine-tuning issue, standard cosmology cannot predict the present temperature of the relic radiation, T 0 {\displaystyle T_{0}} . This value of T 0 {\displaystyle T_{0}} is one of the best results of experimental cosmology and the steady state model can predict it. However, alternative models have their own set of problems and they have only made post-facto explanations of existing observations. Nevertheless, these alternatives have played an important historic role in providing ideas for and challenges to

4860-516: The first upper limits on the large-scale anisotropy. The other key event in the 1980s was the proposal by Alan Guth for cosmic inflation . This theory of rapid spatial expansion gave an explanation for large-scale isotropy by allowing causal connection just before the epoch of last scattering. With this and similar theories, detailed prediction encouraged larger and more ambitious experiments. The NASA Cosmic Background Explorer ( COBE ) satellite orbited Earth in 1989–1996 detected and quantified

4950-473: The fluctuations are coherent on angular scales that are larger than the apparent cosmological horizon at recombination. Either such coherence is acausally fine-tuned , or cosmic inflation occurred. The anisotropy , or directional dependency, of the cosmic microwave background is divided into two types: primary anisotropy, due to effects that occur at the surface of last scattering and before; and secondary anisotropy, due to effects such as interactions of

5040-411: The hope of a first measurement within the forthcoming decades, as they contain a wealth of information about the primordial universe and the formation of structures at late time. The CMB contains the vast majority of photons in the universe by a factor of 400 to 1; the number density of photons in the CMB is one billion times (10 ) the number density of matter in the universe. Without the expansion of

5130-538: The humor engendered by Gamow may have obscured his own critical role in developing the theory. With the award of the 2005 National Medal of Science, Alpher's original work on nucleosynthesis and the cosmic microwave background radiation prediction was recognised. Alpher and Robert Herman were awarded the Henry Draper Medal from the National Academy of Sciences in 1993. They were also awarded

5220-502: The hypothesized Big Bang. However, Alpher's predictions concerning the cosmic background radiation were more or less forgotten until they were rediscovered by Robert Dicke and Yakov Zel'dovich in the early 1960s. The existence of the cosmic background radiation and its temperature were measured experimentally in 1964 by two physicists working for Bell Laboratories in New Jersey , Arno Penzias and Robert Wilson , who were awarded

5310-406: The intensity vs frequency or spectrum needed to be shown to match a thermal or blackbody source. This was accomplished by 1968 in a series of measurements of the radiation temperature at higher and lower wavelengths. Second, the radiation needed be shown to be isotropic, the same from all directions. This was also accomplished by 1970, demonstrating that this radiation was truly cosmic in origin. In

5400-668: The large scale anisotropies at the limit of its detection capabilities. The NASA COBE mission clearly confirmed the primary anisotropy with the Differential Microwave Radiometer instrument, publishing their findings in 1992. The team received the Nobel Prize in physics for 2006 for this discovery. Inspired by the COBE results, a series of ground and balloon-based experiments measured cosmic microwave background anisotropies on smaller angular scales over

5490-460: The leading theory of cosmic structure formation, and suggested cosmic inflation was the right theory. During the 1990s, the first peak was measured with increasing sensitivity and by 2000 the BOOMERanG experiment reported that the highest power fluctuations occur at scales of approximately one degree. Together with other cosmological data, these results implied that the geometry of the universe

SECTION 60

#1732786573759

5580-557: The model for the Big Bang theory." The medal was presented to his son, Dr. Victor S. Alpher, on July 27, 2007 by President George W. Bush, as his father could not travel to receive the award. In 1955, Alpher moved to a position with the General Electric Company's Research and Development Center. His primary role in his early years there was working on problems of vehicle re-entry from space. In 1955, both Alpher and Herman applied for positions at Iowa, where van Allen

5670-514: The nine year summary. The results are broadly consistent Lambda CDM models based on 6 free parameters and fitting in to Big Bang cosmology with cosmic inflation . The Degree Angular Scale Interferometer (DASI) was a telescope installed at the U.S. National Science Foundation 's Amundsen–Scott South Pole Station in Antarctica . It was a 13-element interferometer operating between 26 and 36 GHz ( Ka band ) in ten bands. The instrument

5760-534: The peaks give important information about the nature of the primordial density perturbations. There are two fundamental types of density perturbations called adiabatic and isocurvature . A general density perturbation is a mixture of both, and different theories that purport to explain the primordial density perturbation spectrum predict different mixtures. The CMB spectrum can distinguish between these two because these two types of perturbations produce different peak locations. Isocurvature density perturbations produce

5850-718: The person's given name (s) to the link. Retrieved from " https://en.wikipedia.org/w/index.php?title=Alpher&oldid=1237457893 " Category : Surnames Hidden categories: Articles with short description Short description is different from Wikidata All set index articles Monitored short pages Ralph Alpher Alpher was the son of a Jewish immigrant, Samuel Alpher ( né Alfirevich), from Vitebsk , Russian Empire. His mother, Rose Maleson, died of stomach cancer in 1938, and his father later remarried. Alpher graduated at age 15 from Theodore Roosevelt High School in Washington, D.C. , and held

5940-435: The photons decouple when a particular mode is at its peak amplitude. The peaks contain interesting physical signatures. The angular scale of the first peak determines the curvature of the universe (but not the topology of the universe). The next peak—ratio of the odd peaks to the even peaks—determines the reduced baryon density. The third peak can be used to get information about the dark-matter density. The locations of

6030-426: The physical properties of the early universe: the first peak determines the overall curvature of the universe , while the second and third peak detail the density of normal matter and so-called dark matter , respectively. Extracting fine details from the CMB data can be challenging, since the emission has undergone modification by foreground features such as galaxy clusters . The cosmic microwave background radiation

6120-460: The plasma. The first peak in the anisotropy was tentatively detected by the MAT/TOCO experiment and the result was confirmed by the BOOMERanG and MAXIMA experiments. These measurements demonstrated that the geometry of the universe is approximately flat, rather than curved . They ruled out cosmic strings as a major component of cosmic structure formation and suggested cosmic inflation

6210-465: The presence of the microwave background, with their instrument having an excess 4.2K antenna temperature which they could not account for. After receiving a telephone call from Crawford Hill, Dicke said "Boys, we've been scooped." A meeting between the Princeton and Crawford Hill groups determined that the antenna temperature was indeed due to the microwave background. Penzias and Wilson received

6300-682: The ranks of Major and Commander of his school's Cadet program . He worked in the high school theater as stage manager for two years, supplementing his family's Depression-era income. He also learned Gregg shorthand , and in 1937 began working for the director of the American Geophysical Union as a stenographer. In 1940, he was hired by the Department of Terrestrial Magnetism of the Carnegie Foundation , where he worked with Dr. Scott Forbush under contract for

6390-431: The right idea. They predicted the CMB. It took another 15 years for Penzias and Wilson to discover that the microwave background was actually there. According to standard cosmology, the CMB gives a snapshot of the hot early universe at the point in time when the temperature dropped enough to allow electrons and protons to form hydrogen atoms. This event made the universe nearly transparent to radiation because light

6480-425: The standard explanation. The cosmic microwave background is polarized at the level of a few microkelvin. There are two types of polarization, called E-mode (or gradient-mode) and B-mode (or curl mode). This is in analogy to electrostatics , in which the electric field ( E -field) has a vanishing curl and the magnetic field ( B -field) has a vanishing divergence . The E-modes arise from Thomson scattering in

6570-444: The temperature was around 3000 K or when the universe was approximately 379,000 years old. As photons did not interact with these electrically neutral atoms, the former began to travel freely through space, resulting in the decoupling of matter and radiation. The color temperature of the ensemble of decoupled photons has continued to diminish ever since; now down to 2.7260 ± 0.0013 K , it will continue to drop as

6660-432: The universe expanded, this plasma cooled to the point where protons and electrons combined to form neutral atoms of mostly hydrogen. Unlike the plasma, these atoms could not scatter thermal radiation by Thomson scattering , and so the universe became transparent. Known as the recombination epoch, this decoupling event released photons to travel freely through space. However, the photons have grown less energetic due to

6750-407: The universe expands. The intensity of the radiation corresponds to black-body radiation at 2.726 K because red-shifted black-body radiation is just like black-body radiation at a lower temperature. According to the Big Bang model, the radiation from the sky we measure today comes from a spherical surface called the surface of last scattering . This represents the set of locations in space at which

6840-441: The universe is slightly older than researchers expected. According to the map, subtle fluctuations in temperature were imprinted on the deep sky when the cosmos was about 370 000 years old. The imprint reflects ripples that arose as early, in the existence of the universe, as the first nonillionth (10 ) of a second. Apparently, these ripples gave rise to the present vast cosmic web of galaxy clusters and dark matter . Based on

6930-458: The universe to cause the cooling of the CMB, the night sky would shine as brightly as the Sun. The energy density of the CMB is 0.260 eV/cm (4.17 × 10  J/m ), about 411 photons/cm . In 1931, Georges Lemaître speculated that remnants of the early universe may be observable as radiation, but his candidate was cosmic rays . Richard C. Tolman showed in 1934 that expansion of the universe would cool blackbody radiation while maintaining

7020-400: The very small degree of anisotropy in the CMB, many aspects can be measured with high precision and such measurements are critical for cosmological theories. In addition to temperature anisotropy, the CMB should have an angular variation in polarization . The polarization at each direction in the sky has an orientation described in terms of E-mode and B-mode polarization. The E-mode signal is

7110-544: The volume of the intergalactic medium (IGM) consists of ionized material (since there are few absorption lines due to hydrogen atoms). This implies a period of reionization during which some of the material of the universe was broken into hydrogen ions. The CMB photons are scattered by free charges such as electrons that are not bound in atoms. In an ionized universe, such charged particles have been liberated from neutral atoms by ionizing (ultraviolet) radiation. Today these free charges are at sufficiently low density in most of

7200-581: The volume of the universe that they do not measurably affect the CMB. However, if the IGM was ionized at very early times when the universe was still denser, then there are two main effects on the CMB: Both of these effects have been observed by the WMAP spacecraft, providing evidence that the universe was ionized at very early times, at a redshift around 10. The detailed provenance of this early ionizing radiation

7290-641: The while working as a physicist on contract to the Navy, and eventually for the Johns Hopkins University APL. He met Russian-Ukrainian physicist George Gamow at the University, who subsequently took him on as his doctoral student. Gamow was a prominent Soviet defector and one of the luminaries on the GWU faculty. Alpher provided much needed mathematical ability to support Gamow's theorizing. Alpher wrote his doctoral thesis on "The Origin of

7380-594: The world. The other and more personal thing is you want the approbation of your peers. Pure and simple." Despite raising a Jewish family, Alpher considered himself to be agnostic and humanist. He and his wife, Louise, had two children and two grandchildren. Alpher died following an extended illness on August 12, 2007. He had been in failing health since falling and breaking his hip in February 2007. Cosmic Microwave Background Radiation The cosmic microwave background ( CMB , CMBR ), or relic radiation ,

7470-506: Was badly in need of replacement (V.S. Alpher, The Submarine Review , October 2009). Alpher's dissertation in 1948 dealt with a subject that came to be known as Big Bang nucleosynthesis . Nucleosynthesis is the explanation of how more complex elements are created out of simple elements in the moments following the Big Bang . Right after the Big Bang, when the temperature was extremely high, if any nuclear particles, such as neutrons and protons , became bound together (being held together by

7560-470: Was complete, the universe was roughly 487,000 years old. Since the CMB came into existence, it has apparently been modified by several subsequent physical processes, which are collectively referred to as late-time anisotropy, or secondary anisotropy. When the CMB photons became free to travel unimpeded, ordinary matter in the universe was mostly in the form of neutral hydrogen and helium atoms. However, observations of galaxies today seem to indicate that most of

7650-618: Was employed at the Applied Physics Laboratory (APL). During the daytime he was involved in the development of ballistic missiles, guidance systems, supersonics, and related subjects. In 1948, he earned his Ph.D. in physics with a theory of nucleosynthesis called neutron capture , and from 1948 onward collaborated with Dr. Robert C. Herman , also at APL, on predictions of the cosmic microwave background radiation . He earned his bachelor's degree and advanced graduate degrees in physics from George Washington University , all

7740-440: Was no longer being scattered off free electrons. When this occurred some 380,000 years after the Big Bang, the temperature of the universe was about 3,000 K. This corresponds to an ambient energy of about 0.26  eV , which is much less than the 13.6 eV ionization energy of hydrogen. This epoch is generally known as the "time of last scattering" or the period of recombination or decoupling . Since decoupling,

7830-534: Was no longer subject to the draft (along with about 7,000 others), and was prohibited from enlistment. That summer, he signed on to APL at Johns Hopkins University to work on another classified project — a new magnetic-influence torpedo exploder. This was badly needed since the Mark 14 torpedo , which had a poorly tested exploder that had its magnetic component turned off by order of the Chief of Naval Operations in late 1943,

7920-528: Was now department chair, however, the salaries in academia were simply too low by comparison with industrial pay. Alpher also continued to collaborate with Robert Herman, who had moved to the General Motors Research Laboratory, on problems in cosmology. The Cosmic Microwave Background Radiation was finally confirmed in 1964, although in retrospect many other astronomers and radio astronomers probably observed it without recognizing

8010-432: Was perceived to be ground-breaking, over 300 people attended the dissertation defense, including the press, and articles about his predictions and a Herblock cartoon appeared in major newspapers. This was quite unusual for a doctoral dissertation. Later the same year, collaborating with Robert Herman , Alpher predicted the temperature of the residual radiation known as cosmic microwave background radiation resulting from

8100-475: Was the right theory of structure formation. Inspired by the initial COBE results of an extremely isotropic and homogeneous background, a series of ground- and balloon-based experiments quantified CMB anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the angular scale of the first acoustic peak, for which COBE did not have sufficient resolution. These measurements were able to rule out cosmic strings as

#758241