Misplaced Pages

Avalanche

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Mass wasting , also known as mass movement , is a general term for the movement of rock or soil down slopes under the force of gravity . It differs from other processes of erosion in that the debris transported by mass wasting is not entrained in a moving medium, such as water, wind, or ice. Types of mass wasting include creep , solifluction , rockfalls , debris flows , and landslides , each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth , Mars , Venus , Jupiter's moon Io , and on many other bodies in the Solar System .

#971028

124-516: An avalanche is a rapid flow of snow down a slope , such as a hill or mountain. Avalanches can be triggered spontaneously, by factors such as increased precipitation or snowpack weakening, or by external means such as humans, other animals, and earthquakes . Primarily composed of flowing snow and air, large avalanches have the capability to capture and move ice, rocks, and trees. Avalanches occur in two general forms, or combinations thereof: slab avalanches made of tightly packed snow, triggered by

248-633: A glacier may form. Otherwise, snow typically melts seasonally, causing runoff into streams and rivers and recharging groundwater . Major snow-prone areas include the polar regions , the northernmost half of the Northern Hemisphere and mountainous regions worldwide with sufficient moisture and cold temperatures. In the Southern Hemisphere , snow is confined primarily to mountainous areas, apart from Antarctica . Snow affects such human activities as transportation : creating

372-401: A rainband ), when temperature is near freezing at the surface. The strong convection that develops has enough moisture to produce whiteout conditions at places which the line passes over as the wind causes intense blowing snow. This type of snowsquall generally lasts less than 30 minutes at any point along its path, but the motion of the line can cover large distances. Frontal squalls may form

496-433: A cirque (corrie or cwm), a typically armchair-shaped geological feature, which collects snow and where the snowpack compacts under the weight of successive layers of accumulating snow, forming névé. Further crushing of the individual snow crystals and reduction of entrapped air in the snow turns it into glacial ice. This glacial ice will fill the cirque until it overflows through a geological weakness or an escape route, such as

620-666: A collapse of an underlying weak snow layer, and loose snow avalanches made of looser snow. After being set off, avalanches usually accelerate rapidly and grow in mass and volume as they capture more snow. If an avalanche moves fast enough, some of the snow may mix with the air, forming a powder snow avalanche . Though they appear to share similarities, avalanches are distinct from slush flows , mudslides , rock slides , and serac collapses. They are also different from large scale movements of ice . Avalanches can happen in any mountain range that has an enduring snowpack. They are most frequent in winter or spring, but may occur at any time of

744-424: A critical temperature gradient. Large, angular snow crystals are indicators of weak snow, because such crystals have fewer bonds per unit volume than small, rounded crystals that pack tightly together. Consolidated snow is less likely to slough than loose powdery layers or wet isothermal snow; however, consolidated snow is a necessary condition for the occurrence of slab avalanches , and persistent instabilities within

868-649: A crystal morphology diagram, relating crystal shapes to the temperature and moisture conditions under which they formed, which is summarized in the following table. Dendrites Hollow prisms Needles Solid plates Dendrites Solid plates Prisms Nakaya discovered that the shape is also a function of whether the prevalent moisture is above or below saturation. Forms below the saturation line tend more toward solid and compact while crystals formed in supersaturated air tend more toward lacy, delicate, and ornate. Many more complex growth patterns also form, which include side-planes, bullet-rosettes, and planar types, depending on

992-557: A drag force that was proportional to the square of the speed of its flow: He and others subsequently derived other formulae that take other factors into account, with the Voellmy-Salm-Gubler and the Perla-Cheng-McClung models becoming most widely used as simple tools to model flowing (as opposed to powder snow) avalanches. Since the 1990s many more sophisticated models have been developed. In Europe much of

1116-447: A droplet has frozen, it grows in the supersaturated environment—one where air is saturated with respect to ice when the temperature is below the freezing point. The droplet then grows by diffusion of water molecules in the air (vapor) onto the ice crystal surface where they are collected. Because water droplets are so much more numerous than the ice crystals, the crystals are able to grow to hundreds of micrometers or millimeters in size at

1240-589: A few molecules in the droplet need to get together by chance to form an arrangement similar to that in an ice lattice. The droplet freezes around this "nucleus". In warmer clouds, an aerosol particle or "ice nucleus" must be present in (or in contact with) the droplet to act as a nucleus. Ice nuclei are very rare compared to cloud condensation nuclei on which liquid droplets form. Clays, desert dust, and biological particles can be nuclei. Artificial nuclei include particles of silver iodide and dry ice , and these are used to stimulate precipitation in cloud seeding . Once

1364-569: A form of mass wasting. A distinction is then made between mass wasting by subsidence, which involves little horizontal movement, and mass wasting by slope movement. Soil creep is a slow and long term mass movement. The combination of small movements of soil or rock in different directions over time is directed by gravity gradually downslope. The steeper the slope, the faster the creep. The creep makes trees and shrubs curve to maintain their perpendicularity, and they can trigger landslides if they lose their root footing. The surface soil can migrate under

SECTION 10

#1732772652972

1488-462: A fracture at the bottom called the stauchwall. The crown and flank fractures are vertical walls in the snow delineating the snow that was entrained in the avalanche from the snow that remained on the slope. Slabs can vary in thickness from a few centimetres to three metres. Slab avalanches account for around 90% of avalanche-related fatalities. The largest avalanches form turbulent suspension currents known as powder snow avalanches or mixed avalanches,

1612-568: A hemisphere's fall , winter, and spring, the atmosphere over continents can be cold enough through the depth of the troposphere to cause snowfall. In the Northern Hemisphere, the northern side of the low-pressure area produces the most snow. For the southern mid-latitudes , the side of a cyclone that produces the most snow is the southern side. A cold front , the leading edge of a cooler mass of air, can produce frontal snowsqualls —an intense frontal convective line (similar to

1736-485: A highly porous, sintered material made up of a continuous ice structure and a continuously connected pore space, forming together the snow microstructure". Almost always near its melting temperature, a snowpack is continually transforming these properties wherein all three phases of water may coexist, including liquid water partially filling the pore space. After deposition, snow progresses on one of two paths that determine its fate, either by ablation (mostly by melting) from

1860-449: A kind of gravity current . These consist of a powder cloud, which overlies a dense avalanche. They can form from any type of snow or initiation mechanism, but usually occur with fresh dry powder. They can exceed speeds of 300 km/h (190 mph), and masses of 1,000,000 tons; their flows can travel long distances along flat valley bottoms and even uphill for short distances. In contrast to powder snow avalanches, wet snow avalanches are

1984-443: A large mass of earth and rocks down a hill or a mountainside. Landslides can be further classified by the importance of water in the mass wasting process. In a narrow sense, landslides are rapid movement of large amounts of relatively dry debris down moderate to steep slopes. With increasing water content, the mass wasting takes the form of debris avalanches , then earthflows , then mudflows . Further increase in water content produces

2108-470: A larger weather system. The physics of snow crystal development in clouds results from a complex set of variables that include moisture content and temperatures. The resulting shapes of the falling and fallen crystals can be classified into a number of basic shapes and combinations thereof. Occasionally, some plate-like, dendritic and stellar-shaped snowflakes can form under clear sky with a very cold temperature inversion present. Snow clouds usually occur in

2232-606: A long term, lasting from days to years. Experts interpret the recorded data and are able to recognize upcoming ruptures in order to initiate appropriate measures. Such systems (e.g. the monitoring of the Weissmies glacier in Switzerland) can recognize events several days in advance. Modern radar technology enables the monitoring of large areas and the localization of avalanches at any weather condition, by day and by night. Complex alarm systems are able to detect avalanches within

2356-410: A low velocity suspension of snow and water, with the flow confined to the track surface (McClung, 1999, p. 108). The low speed of travel is due to the friction between the sliding surface of the track and the water saturated flow. Despite the low speed of travel (≈10–40 km/h), wet snow avalanches are capable of generating powerful destructive forces, due to the large mass and density. The body of

2480-435: A minimum extent of 2 million square kilometres (0.77 × 10 ^  sq mi) each August to a maximum extent of 45 million square kilometres (17 × 10 ^  sq mi) each January or nearly half of the land surface in that hemisphere. A study of Northern Hemisphere snow cover extent for the period 1972–2006 suggests a reduction of 0.5 million square kilometres (0.19 × 10 ^  sq mi) over

2604-530: A mountain range results in adiabatic cooling, and ultimately condensation and precipitation. Moisture is gradually removed from the air by this process, leaving drier and warmer air on the descending, or leeward , side. The resulting enhanced snowfall, along with the decrease in temperature with elevation, combine to increase snow depth and seasonal persistence of snowpack in snow-prone areas. Mountain waves have also been found to help enhance precipitation amounts downwind of mountain ranges by enhancing

SECTION 20

#1732772652972

2728-400: A number of methods including hand-tossed charges, helicopter-dropped bombs, Gazex concussion lines, and ballistic projectiles launched by air cannons and artillery. Passive preventive systems such as snow fences and light walls can be used to direct the placement of snow. Snow builds up around the fence, especially the side that faces the prevailing winds . Downwind of the fence, snow build-up

2852-412: A persistent weakness in the snowpack. When a slab lying on top of a persistent weakness is loaded by a force greater than the strength of the slab and persistent weak layer, the persistent weak layer can fail and generate an avalanche. Any wind stronger than a light breeze can contribute to a rapid accumulation of snow on sheltered slopes downwind. Wind slabs form quickly and, if present, weaker snow below

2976-399: A point significantly above the freezing point of water, may cause avalanche formation at any time of year. Persistent cold temperatures can either prevent new snow from stabilizing or destabilize the existing snowpack. Cold air temperatures on the snow surface produce a temperature gradient in the snow, because the ground temperature at the base of the snowpack is usually around 0 °C, and

3100-411: A point with only a small amount of snow moving initially; this is typical of wet snow avalanches or avalanches in dry unconsolidated snow. However, if the snow has sintered into a stiff slab overlying a weak layer, then fractures can propagate very rapidly, so that a large volume of snow, possibly thousands of cubic metres, can start moving almost simultaneously. A snowpack will fail when the load exceeds

3224-488: A series of snow events, punctuated by freezing and thawing, over areas that are cold enough to retain snow seasonally or perennially. Major snow-prone areas include the Arctic and Antarctic , the Northern Hemisphere, and alpine regions. The liquid equivalent of snowfall may be evaluated using a snow gauge or with a standard rain gauge , adjusted for winter by removal of a funnel and inner cylinder. Both types of gauges melt

3348-425: A sheetflood, which is a form of sheet erosion rather than mass wasting. On Earth , mass wasting occurs on both terrestrial and submarine slopes. Submarine mass wasting is particularly common along glaciated coastlines where glaciers are retreating and great quantities of sediments are being released. Submarine slides can transport huge volumes of sediments for hundreds of kilometers in a few hours. Mass wasting

3472-409: A short distance ahead of the surface cold front or behind the cold front where there may be a deepening low-pressure system or a series of trough lines which act similar to a traditional cold frontal passage. In situations where squalls develop post-frontally, it is not unusual to have two or three linear squall bands pass in rapid succession separated only by 25 miles (40 kilometers), with each passing

3596-650: A short time in order to close (e.g. roads and rails) or evacuate (e.g. construction sites) endangered areas. An example of such a system is installed on the only access road of Zermatt in Switzerland. Two radars monitor the slope of a mountain above the road. The system automatically closes the road by activating several barriers and traffic lights within seconds such that no people are harmed. Avalanche accidents are broadly differentiated into 2 categories: accidents in recreational settings, and accidents in residential, industrial, and transportation settings. This distinction

3720-419: A snow fall or seasonal snowpack, or by transitioning from firn (multi-year snow) into glacier ice . Over the course of time, a snowpack may settle under its own weight until its density is approximately 30% of water. Increases in density above this initial compression occur primarily by melting and refreezing, caused by temperatures above freezing or by direct solar radiation. In colder climates, snow lies on

3844-608: A snowpack can create flow fingers and ponding or flow along capillary barriers, which can refreeze into horizontal and vertical solid ice formations within the snowpack. Among the measurements of the properties of snowpacks that the International Classification for Seasonal Snow on the Ground includes are: snow height, snow water equivalent, snow strength, and extent of snow cover. Each has a designation with code and detailed description. The classification extends

Avalanche - Misplaced Pages Continue

3968-416: A snowslide or snowslip) is a rapid flow of snow down a sloping surface. Avalanches are typically triggered in a starting zone from a mechanical failure in the snowpack (slab avalanche) when the forces on the snow exceed its strength but sometimes only with gradually widening (loose snow avalanche). After initiation, avalanches usually accelerate rapidly and grow in mass and volume as they entrain more snow. If

4092-417: A start zone where the avalanche originates, a track along which the avalanche flows, and a runout zone where the avalanche comes to rest. The debris deposit is the accumulated mass of the avalanched snow once it has come to rest in the run-out zone. For the image at left, many small avalanches form in this avalanche path every year, but most of these avalanches do not run the full vertical or horizontal length of

4216-414: A storm. Daytime exposure to sunlight will rapidly destabilize the upper layers of the snowpack if the sunlight is strong enough to melt the snow, thereby reducing its hardness. During clear nights, the snowpack can re-freeze when ambient air temperatures fall below freezing, through the process of long-wave radiative cooling, or both. Radiative heat loss occurs when the night air is significantly cooler than

4340-630: A substance denser than névé , yet less dense and hard than glacial ice . Firn resembles caked sugar and is very resistant to shovelling. Its density generally ranges from 550 to 830 kilograms per cubic metre (34 to 52 lb/cu ft), and it can often be found underneath the snow that accumulates at the head of a glacier . The minimum altitude that firn accumulates on a glacier is called the firn limit , firn line or snowline . There are four main mechanisms for movement of deposited snow: drifting of unsintered snow, avalanches of accumulated snow on steep slopes, snowmelt during thaw conditions, and

4464-411: A sufficient quantity of airborne snow, this portion of the avalanche can become separated from the bulk of the avalanche and travel a greater distance as a powder snow avalanche. Scientific studies using radar , following the 1999 Galtür avalanche disaster , confirmed the hypothesis that a saltation layer forms between the surface and the airborne components of an avalanche, which can also separate from

4588-724: A three-month period throughout the Alps in Austria, France, Switzerland, Italy and Germany. This series of avalanches killed around 265 people and was termed the Winter of Terror . A mountain climbing camp on Lenin Peak, in what is now Kyrgyzstan, was wiped out in 1990 when an earthquake triggered a large avalanche that overran the camp. Forty-three climbers were killed. In 1993, the Bayburt Üzengili avalanche killed 60 individuals in Üzengili in

4712-412: A variety of factors such as the snow's shear strength (which is itself dependent upon crystal form) and the configuration of layers and inter-layer interfaces. The snowpack on slopes with sunny exposures is strongly influenced by sunshine . Diurnal cycles of thawing and refreezing can stabilize the snowpack by promoting settlement. Strong freeze-thaw cycles result in the formation of surface crusts during

4836-417: A very muddy stream (stream erosion), without a sharp dividing line. Many forms of mass wasting are recognized, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Based on how the soil, regolith or rock moves downslope as a whole, mass movements can be broadly classified as either creeps or landslides . Subsidence is sometimes also regarded as

4960-431: Is rock glaciers , which form from rockfall from cliffs oversteepened by glaciers. Landslides can produce scarps and step-like small terraces. Landslide deposits are poorly sorted . Those rich in clay may show stretched clay lumps (a phenomenon called boudinage ) and zones of concentrated shear. Debris flow deposits take the form of long, narrow tracks of very poorly sorted material. These may have natural levees at

5084-472: Is "the transformation that the snow undergoes in the period from deposition to either melting or passage to glacial ice". Starting as a powdery deposition, snow becomes more granular when it begins to compact under its own weight, be blown by the wind, sinter particles together and commence the cycle of melting and refreezing. Water vapor plays a role as it deposits ice crystals, known as hoar frost , during cold, still conditions. During this transition, snow "is

Avalanche - Misplaced Pages Continue

5208-684: Is a common phenomenon throughout the Solar System, occurring where volatile materials are lost from a regolith . Such mass wasting has been observed on Mars , Io , Triton , and possibly Europa and Ganymede . Mass wasting also occurs in the equatorial regions of Mars, where stopes of soft sulfate -rich sediments are steepened by wind erosion. Mass wasting on Venus is associated with the rugged terrain of tesserae . Io shows extensive mass wasting of its volcanic mountains. Mass wasting affects geomorphology , most often in subtle, small-scale ways, but occasionally more spectacularly. Soil creep

5332-419: Is a general term for any process of erosion that is driven by gravity and in which the transported soil and rock is not entrained in a moving medium, such as water, wind, or ice. The presence of water usually aids mass wasting, but the water is not abundant enough to be regarded as a transporting medium. Thus, the distinction between mass wasting and stream erosion lies between a mudflow (mass wasting) and

5456-403: Is a rigid fence-like structure ( snow fence ) and may be constructed of steel , wood or pre-stressed concrete . They usually have gaps between the beams and are built perpendicular to the slope, with reinforcing beams on the downhill side. Rigid barriers are often considered unsightly, especially when many rows must be built. They are also expensive and vulnerable to damage from falling rocks in

5580-578: Is called the Starting Point and typically occurs on a 30–45 degree slope. The body of the pathway is called the Track of the avalanche and usually occurs on a 20–30 degree slope. When the avalanche loses its momentum and eventually stops it reaches the Runout Zone. This usually occurs when the slope has reached a steepness that is less than 20 degrees. These degrees are not consistently true due to

5704-424: Is critically sensitive to small variations within the narrow range of meteorological conditions that allow for the accumulation of snow into a snowpack. Among the critical factors controlling snowpack evolution are: heating by the sun, radiational cooling , vertical temperature gradients in standing snow, snowfall amounts, and snow types. Generally, mild winter weather will promote the settlement and stabilization of

5828-407: Is flat enough to hold snow but steep enough to ski has the potential to generate an avalanche, regardless of the angle. The snowpack is composed of ground-parallel layers that accumulate over the winter. Each layer contains ice grains that are representative of the distinct meteorological conditions during which the snow formed and was deposited. Once deposited, a snow layer continues to evolve under

5952-470: Is lessened. This is caused by the loss of snow at the fence that would have been deposited and the pickup of the snow that is already there by the wind, which was depleted of snow at the fence. When there is a sufficient density of trees , they can greatly reduce the strength of avalanches. They hold snow in place and when there is an avalanche, the impact of the snow against the trees slows it down. Trees can either be planted or they can be conserved, such as in

6076-503: Is motivated by the observed difference in the causes of avalanche accidents in the two settings. In the recreational setting most accidents are caused by the people involved in the avalanche. In a 1996 study, Jamieson et al. (pages 7–20) found that 83% of all avalanches in the recreational setting were caused by those who were involved in the accident . In contrast, all the accidents in the residential, industrial, and transportation settings were due to spontaneous natural avalanches. Because of

6200-429: Is not a requirement, as blowing snow can create a ground blizzard . Snowstorm intensity may be categorized by visibility and depth of accumulation. Snowfall's intensity is determined by visibility , as follows: Snowsqualls may deposit snow in bands that extend from bodies of water as lake-event weather or result from the passage of an upper-level front. The International Classification for Seasonal Snow on

6324-456: Is rarely apparent but can produce such subtle effects as curved forest growth and tilted fences and telephone poles. It occasionally produces low scarps and shallow depressions. Solifluction produced lobed or sheetlike deposits, with fairly definite edges, in which clasts (rock fragments) are oriented perpendicular to the contours of the deposit. Rockfall can produce talus slopes at the feet of cliffs. A more dramatic manifestation of rockfall

SECTION 50

#1732772652972

6448-401: Is sufficiently unsettled and cold enough for precipitated snow to accumulate into a seasonal snowpack. Continentality , through its potentiating influence on the meteorological extremes experienced by snowpacks, is an important factor in the evolution of instabilities, and consequential occurrence of avalanches faster stabilization of the snowpack after storm cycles. The evolution of the snowpack

6572-464: Is termed ocean-effect or bay-effect snow . The effect is enhanced when the moving air mass is uplifted by the orographic influence of higher elevations on the downwind shores. This uplifting can produce narrow but very intense bands of precipitation which may deposit at a rate of many inches of snow each hour, often resulting in a large amount of total snowfall. The areas affected by lake-effect snow are called snowbelts . These include areas east of

6696-629: The Gaillard Cut of the Panama Canal accounted for 55,860,400 cubic meters (73,062,600 cu yd) of the 128,648,530 cubic meters (168,265,924 cu yd) of material removed while excavating the cut. Rockslides or landslides can have disastrous consequences, both immediate and delayed. The Oso disaster of March 2014 was a landslide that caused 43 fatalities in Oso, Washington , US. Delayed consequences of landslides can arise from

6820-645: The Great Lakes , the west coasts of northern Japan, the Kamchatka Peninsula in Russia, and areas near the Great Salt Lake , Black Sea , Caspian Sea , Baltic Sea , and parts of the northern Atlantic Ocean. Orographic or relief snowfall is created when moist air is forced up the windward side of mountain ranges by a large-scale wind flow. The lifting of moist air up the side of

6944-690: The Rogers Pass avalanche in British Columbia , Canada. During World War I , an estimated 40,000 to 80,000 soldiers died as a result of avalanches during the mountain campaign in the Alps at the Austrian-Italian front, many of which were caused by artillery fire. Some 10,000 men, from both sides, died in avalanches in December 1916. In the northern hemisphere winter of 1950–1951 approximately 649 avalanches were recorded in

7068-502: The angle of repose , depends on a variety of factors, such as crystal form and moisture content. Some forms of drier and colder snow will only stick to shallower slopes, while wet and warm snow can bond to very steep surfaces. In coastal mountains, such as the Cordillera del Paine region of Patagonia , deep snowpacks collect on vertical and even overhanging rock faces. The slope angle that can allow moving snow to accelerate depends on

7192-496: The avalanche dam on Mount Stephen in Kicking Horse Pass , have been constructed to protect people and property by redirecting the flow of avalanches. Deep debris deposits from avalanches will collect in catchments at the terminus of a run out, such as gullies and river beds. Slopes flatter than 25 degrees or steeper than 60 degrees typically have a lower incidence of avalanches. Human-triggered avalanches have

7316-411: The movement of glaciers after snow has persisted for multiple years and metamorphosed into glacier ice. When powdery snow drifts with the wind from the location where it originally fell, forming deposits with a depth of several meters in isolated locations. After attaching to hillsides, blown snow can evolve into a snow slab, which is an avalanche hazard on steep slopes. An avalanche (also called

7440-648: The 35-year period. The following are world records regarding snowfall and snowflakes: The cities (more than 100,000 inhabitants) with the highest annual snowfall are Aomori (792 cm), Sapporo (485 cm) and Toyama (363 cm) in Japan , followed by St. John's (332 cm) and Quebec City (315 cm) in Canada , and Syracuse, NY (325 cm). According to the International Association of Cryospheric Sciences, snow metamorphism

7564-460: The Ground defines "height of new snow" as the depth of freshly fallen snow, in centimeters as measured with a ruler, that accumulated on a snowboard during an observation period of 24 hours, or other observation interval. After the measurement, the snow is cleared from the board and the board is placed flush with the snow surface to provide an accurate measurement at the end of the next interval. Melting, compacting, blowing and drifting contribute to

SECTION 60

#1732772652972

7688-507: The Khumbu Icefall), triggering a movement of broken ice chunks. The resulting movement is more analogous to a rockfall or a landslide than a snow avalanche. They are typically very difficult to predict and almost impossible to mitigate. As an avalanche moves down a slope it follows a certain pathway that is dependent on the slope's degree of steepness and the volume of snow/ice involved in the mass movement . The origin of an avalanche

7812-515: The SAMOS-AT avalanche simulation software and the RAMMS software. Preventative measures are employed in areas where avalanches pose a significant threat to people, such as ski resorts , mountain towns, roads, and railways. There are several ways to prevent avalanches and lessen their power and develop preventative measures to reduce the likelihood and size of avalanches by disrupting the structure of

7936-472: The United States. In 2001 it was reported that globally an average of 150 people die each year from avalanches. Three of the deadliest recorded avalanches have killed over a thousand people each. Doug Fesler and Jill Fredston developed a conceptual model of the three primary elements of avalanches: terrain, weather, and snowpack. Terrain describes the places where avalanches occur, weather describes

8060-413: The accumulated snow and report the amount of water collected. At some automatic weather stations an ultrasonic snow depth sensor may be used to augment the precipitation gauge. Snow flurry , snow shower , snow storm and blizzard describe snow events of progressively greater duration and intensity. A blizzard is a weather condition involving snow and has varying definitions in different parts of

8184-408: The ambient air temperature can be much colder. When a temperature gradient greater than 10 °C change per vertical meter of snow is sustained for more than a day, angular crystals called depth hoar or facets begin forming in the snowpack because of rapid moisture transport along the temperature gradient. These angular crystals, which bond poorly to one another and the surrounding snow, often become

8308-425: The atmosphere by attracting supercooled water droplets, which freeze in hexagonal-shaped crystals. Snowflakes take on a variety of shapes, basic among these are platelets, needles, columns and rime . As snow accumulates into a snowpack , it may blow into drifts. Over time, accumulated snow metamorphoses, by sintering , sublimation and freeze-thaw . Where the climate is cold enough for year-to-year accumulation,

8432-458: The avalanche moves fast enough some of the snow may mix with the air forming a powder snow avalanche, which is a type of gravity current . They occur in three major mechanisms: Many rivers originating in mountainous or high-latitude regions receive a significant portion of their flow from snowmelt. This often makes the river's flow highly seasonal resulting in periodic flooding during the spring months and at least in dry mountainous regions like

8556-425: The avalanche's path to slow it down. Finally, along transportation corridors, large shelters, called snow sheds , can be built directly in the slide path of an avalanche to protect traffic from avalanches. Warning systems can detect avalanches which develop slowly, such as ice avalanches caused by icefalls from glaciers. Interferometric radars, high-resolution cameras, or motion sensors can monitor instable areas over

8680-400: The building of a ski resort, to reduce the strength of avalanches. In turn, socio-environmental changes can influence the occurrence of damaging avalanches: some studies linking changes in land-use/land-cover patterns and the evolution of snow avalanche damage in mid latitude mountains show the importance of the role played by vegetation cover, that is at the root of the increase of damage when

8804-431: The bulk of the avalanche. Driving an avalanche is the component of the avalanche's weight parallel to the slope; as the avalanche progresses any unstable snow in its path will tend to become incorporated, so increasing the overall weight. This force will increase as the steepness of the slope increases, and diminish as the slope flattens. Resisting this are a number of components that are thought to interact with each other:

8928-448: The conditions and ice nuclei. If a crystal has started forming in a column growth regime at around −5 °C (23 °F) and then falls into the warmer plate-like regime, plate or dendritic crystals sprout at the end of the column, producing so called "capped columns". Magono and Lee devised a classification of freshly formed snow crystals that includes 80 distinct shapes. They documented each with micrographs. Snow accumulates from

9052-475: The context of larger weather systems, the most important of which is the low-pressure area, which typically incorporate warm and cold fronts as part of their circulation. Two additional and locally productive sources of snow are lake-effect (also sea-effect) storms and elevation effects, especially in mountains. Mid-latitude cyclones are low-pressure areas which are capable of producing anything from cloudiness and mild snow storms to heavy blizzards . During

9176-544: The contribution of snowmelt to river hydraulics and ground hydrology . In doing so, they employ a variety of instruments to observe and measure the phenomena studied. Their findings contribute to knowledge applied by engineers , who adapt vehicles and structures to snow, by agronomists , who address the availability of snowmelt to agriculture , and those, who design equipment for sporting activities on snow. Scientists develop and others employ snow classification systems that describe its physical properties at scales ranging from

9300-450: The crystal facets and hollows/imperfections mean that the crystals often appear white in color due to diffuse reflection of the whole spectrum of light by the small ice particles. Micrography of thousands of snowflakes from 1885 onward, starting with Wilson Alwyn Bentley , revealed the wide diversity of snowflakes within a classifiable set of patterns. Closely matching snow crystals have been observed. Ukichiro Nakaya developed

9424-408: The depths, crystal forms, and layering of the seasonal snowpack. Slab avalanches are formed frequently in snow that has been deposited, or redeposited by wind. They have the characteristic appearance of a block (slab) of snow cut out from its surroundings by fractures. Elements of slab avalanches include a crown fracture at the top of the start zone, flank fractures on the sides of the start zones, and

9548-692: The difference in the causes of avalanche accidents, and the activities pursued in the two settings, avalanche and disaster management professionals have developed two related preparedness, rescue, and recovery strategies for each of the settings. Two avalanches occurred in March 1910 in the Cascade and Selkirk Mountain ranges; on 1 March the Wellington avalanche killed 96 in Washington state , United States. Three days later 62 railroad workers were killed in

9672-446: The difficulty of measuring snowfall. Glaciers with their permanent snowpacks cover about 10% of the earth's surface, while seasonal snow covers about nine percent, mostly in the Northern Hemisphere, where seasonal snow covers about 40 million square kilometres (15 × 10 ^  sq mi), according to a 1987 estimate. A 2007 estimate of snow cover over the Northern Hemisphere suggested that, on average, snow cover ranges from

9796-530: The early 20th century, notably the work of Professor Lagotala in preparation for the 1924 Winter Olympics in Chamonix . His method was developed by A. Voellmy and popularised following the publication in 1955 of his Ueber die Zerstoerungskraft von Lawinen (On the Destructive Force of Avalanches). Voellmy used a simple empirical formula, treating an avalanche as a sliding block of snow moving with

9920-483: The expense of the water droplets by the Wegener–Bergeron–Findeisen process . These large crystals are an efficient source of precipitation, since they fall through the atmosphere due to their mass, and may collide and stick together in clusters, or aggregates. These aggregates are snowflakes , and are usually the type of ice particle that falls to the ground. Although the ice is clear, scattering of light by

10044-530: The fact that each avalanche is unique depending on the stability of the snowpack that it was derived from as well as the environmental or human influences that triggered the mass movement. People caught in avalanches can die from suffocation , trauma, or hypothermia . From "1950–1951 to 2020–2021" there were 1,169 people who died in avalanches in the United States. For the 11-year period ending April 2006, 445 people died in avalanches throughout North America. On average, 28 people die in avalanches every winter in

10168-452: The flow of a wet snow avalanche can plough through soft snow, and can scour boulders, earth, trees, and other vegetation; leaving exposed and often scored ground in the avalanche track. Wet snow avalanches can be initiated from either loose snow releases, or slab releases, and only occur in snowpacks that are water saturated and isothermally equilibrated to the melting point of water. The isothermal characteristic of wet snow avalanches has led to

10292-706: The formation of landslide dams , as at Thistle, Utah , in April 1983. Volcano flanks can become over-steep resulting in instability and mass wasting. This is now a recognised part of the growth of all active volcanoes. It is seen on submarine volcanoes as well as surface volcanoes: Kamaʻehuakanaloa (formerly Loihi) in the Hawaiian–Emperor seamount chain and Kick 'em Jenny in the Lesser Antilles Volcanic Arc are two submarine volcanoes that are known to undergo mass wasting. The failure of

10416-459: The friction between the avalanche and the surface beneath; friction between the air and snow within the fluid; fluid-dynamic drag at the leading edge of the avalanche; shear resistance between the avalanche and the air through which it is passing, and shear resistance between the fragments within the avalanche itself. An avalanche will continue to accelerate until the resistance exceeds the forward force. Attempts to model avalanche behaviour date from

10540-442: The gap between two mountains. When the mass of snow and ice is sufficiently thick, it begins to move due to a combination of surface slope, gravity and pressure. On steeper slopes, this can occur with as little as 15 m (49 ft) of snow-ice. Scientists study snow at a wide variety of scales that include the physics of chemical bonds and clouds ; the distribution, accumulation, metamorphosis, and ablation of snowpacks; and

10664-468: The greatest incidence when the snow's angle of repose is between 35 and 45 degrees; the critical angle, the angle at which human-triggered avalanches are most frequent, is 38 degrees. When the incidence of human triggered avalanches is normalized by the rates of recreational use, however, hazard increases uniformly with slope angle, and no significant difference in hazard for a given exposure direction can be found. The rule of thumb is: A slope that

10788-453: The ground all winter. By late spring, snow densities typically reach a maximum of 50% of water. Snow that persists into summer evolves into névé , granular snow, which has been partially melted, refrozen and compacted. Névé has a minimum density of 500 kilograms per cubic metre (31 lb/cu ft), which is roughly half of the density of liquid water. Firn is snow that has persisted for multiple years and has been recrystallized into

10912-865: The ground surface beneath the snowpack influences the stability of the snowpack, either being a source of strength or weakness. Avalanches are unlikely to form in very thick forests, but boulders and sparsely distributed vegetation can create weak areas deep within the snowpack through the formation of strong temperature gradients. Full-depth avalanches (avalanches that sweep a slope virtually clean of snow cover) are more common on slopes with smooth ground, such as grass or rock slabs. Generally speaking, avalanches follow drainages down-slope, frequently sharing drainage features with summertime watersheds. At and below tree line , avalanche paths through drainages are well defined by vegetation boundaries called trim lines , which occur where avalanches have removed trees and prevented regrowth of large vegetation. Engineered drainages, such as

11036-445: The individual crystal to the aggregated snowpack. A sub-specialty is avalanches , which are of concern to engineers and outdoors sports people, alike. Snow science addresses how snow forms, its distribution, and processes affecting how snowpacks change over time. Scientists improve storm forecasting, study global snow cover and its effect on climate, glaciers, and water supplies around the world. The study includes physical properties of

11160-455: The influence of cycles of freezing and thawing, or hot and cold temperatures, inching its way towards the bottom of the slope forming terracettes . Landslides are often preceded by soil creep accompanied with soil sloughing —loose soil that falls and accumulates at the base of the steepest creep sections. Solifluction is a form of creep characteristics of arctic or alpine climates. It takes place in soil saturated with moisture that thaws during

11284-507: The influence of the meteorological conditions that prevail after deposition. For an avalanche to occur, it is necessary that a snowpack have a weak layer (or instability) below a slab of cohesive snow. In practice the formal mechanical and structural factors related to snowpack instability are not directly observable outside of laboratories, thus the more easily observed properties of the snow layers (e.g. penetration resistance, grain size, grain type, temperature) are used as index measurements of

11408-615: The lift needed for condensation and precipitation. A snowflake consists of roughly 10 water molecules which are added to its core at different rates and in different patterns depending on the changing temperature and humidity within the atmosphere that the snowflake falls through on its way to the ground. As a result, snowflakes differ from each other though they follow similar patterns. Snow crystals form when tiny supercooled cloud droplets (about 10  μm in diameter) freeze . These droplets are able to remain liquid at temperatures lower than −18 °C (0 °F), because to freeze,

11532-413: The likelihood of an avalanche. Observation and experience has shown that newly fallen snow requires time to bond with the snow layers beneath it, especially if the new snow falls during very cold and dry conditions. If ambient air temperatures are cold enough, shallow snow above or around boulders, plants, and other discontinuities in the slope, weakens from rapid crystal growth that occurs in the presence of

11656-449: The local humidity, water vapour flux, temperature and heat flux. The top of the snowpack is also extensively influenced by incoming radiation and the local air flow. One of the aims of avalanche research is to develop and validate computer models that can describe the evolution of the seasonal snowpack over time. A complicating factor is the complex interaction of terrain and weather, which causes significant spatial and temporal variability of

11780-563: The material as it changes, bulk properties of in-place snow packs, and the aggregate properties of regions with snow cover. In doing so, they employ on-the-ground physical measurement techniques to establish ground truth and remote sensing techniques to develop understanding of snow-related processes over large areas. In the field snow scientists often excavate a snow pit within which to make basic measurements and observations. Observations can describe features caused by wind, water percolation, or snow unloading from trees. Water percolation into

11904-526: The mechanical properties of the snow (e.g. tensile strength , friction coefficients, shear strength , and ductile strength ). This results in two principal sources of uncertainty in determining snowpack stability based on snow structure: First, both the factors influencing snow stability and the specific characteristics of the snowpack vary widely within small areas and time scales, resulting in significant difficulty extrapolating point observations of snow layers across different scales of space and time. Second,

12028-419: The meteorological conditions that create the snowpack, and snowpack describes the structural characteristics of snow that make avalanche formation possible. Avalanche formation requires a slope shallow enough for snow to accumulate but steep enough for the snow to accelerate once set in motion by the combination of mechanical failure (of the snowpack) and gravity. The angle of the slope that can hold snow, called

12152-502: The mountain West of the US or most of Iran and Afghanistan , very low flow for the rest of the year. In contrast, if much of the melt is from glaciated or nearly glaciated areas, the melt continues through the warm season, with peak flows occurring in mid to late summer. Glaciers form where the accumulation of snow and ice exceeds ablation. The area in which an alpine glacier forms is called

12276-409: The need for keeping roadways, wings, and windows clear; agriculture : providing water to crops and safeguarding livestock; sports such as skiing , snowboarding , and snowmachine travel; and warfare . Snow affects ecosystems , as well, by providing an insulating layer during winter under which plants and animals are able to survive the cold. Snow develops in clouds that themselves are part of

12400-414: The new snow has insufficient time to bond to underlying snow layers. Rain has a similar effect. In the short term, rain causes instability because, like a heavy snowfall, it imposes an additional load on the snowpack and once rainwater seeps down through the snow, acts as a lubricant, reducing the natural friction between snow layers that holds the snowpack together. Most avalanches happen during or soon after

12524-426: The night and of unstable surface snow during the day. Slopes in the lee of a ridge or of another wind obstacle accumulate more snow and are more likely to include pockets of deep snow, wind slabs , and cornices , all of which, when disturbed, may result in avalanche formation. Conversely, the snowpack on a windward slope is often much shallower than on a lee slope. Avalanches and avalanche paths share common elements:

12648-406: The path. The frequency with which avalanches form in a given area is known as the return period . The start zone of an avalanche must be steep enough to allow snow to accelerate once set in motion, additionally convex slopes are less stable than concave slopes because of the disparity between the tensile strength of snow layers and their compressive strength . The composition and structure of

12772-414: The prevention of development in these areas. To mitigate the effect of avalanches the construction of artificial barriers can be very effective in reducing avalanche damage. There are several types: One kind of barrier ( snow net ) uses a net strung between poles that are anchored by guy wires in addition to their foundations. These barriers are similar to those used for rockslides . Another type of barrier

12896-909: The prior classifications of Nakaya and his successors to related types of precipitation and are quoted in the following table: All are formed in cloud, except for rime, which forms on objects exposed to supercooled moisture. Mass wasting Subsidence is sometimes regarded as a form of mass wasting. A distinction is then made between mass wasting by subsidence, which involves little horizontal movement, and mass wasting by slope movement . Rapid mass wasting events, such as landslides, can be deadly and destructive. More gradual mass wasting, such as soil creep, poses challenges to civil engineering , as creep can deform roadways and structures and break pipelines. Mitigation methods include slope stabilization , construction of walls, catchment dams, or other structures to contain rockfall or debris flows, afforestation , or improved drainage of source areas. Mass wasting

13020-549: The protective forest is deforested (because of demographic growth, intensive grazing and industrial or legal causes), and at the root of the decrease of damage because of the transformation of a traditional land-management system based on overexploitation into a system based on land marginalization and reforestation, something that has happened mainly since the mid-20th century in mountain environments of developed countries. In many areas, regular avalanche tracks can be identified and precautions can be taken to minimize damage, such as

13144-681: The province of Bayburt , Turkey . Snow Snow comprises individual ice crystals that grow while suspended in the atmosphere —usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away. Snowstorms organize and develop by feeding on sources of atmospheric moisture and cold air. Snowflakes nucleate around particles in

13268-802: The recent work was carried out as part of the SATSIE (Avalanche Studies and Model Validation in Europe) research project supported by the European Commission which produced the leading-edge MN2L model, now in use with the Service Restauration des Terrains en Montagne (Mountain Rescue Service) in France, and D2FRAM (Dynamical Two-Flow-Regime Avalanche Model), which was still undergoing validation as of 2007. Other known models are

13392-408: The relationship between readily observable snowpack characteristics and the snowpack's critical mechanical properties has not been completely developed. While the deterministic relationship between snowpack characteristics and snowpack stability is still a matter of ongoing scientific study, there is a growing empirical understanding of the snow composition and deposition characteristics that influence

13516-401: The same point roughly 30 minutes apart. In cases where there is a large amount of vertical growth and mixing, the squall may develop embedded cumulonimbus clouds resulting in lightning and thunder which is dubbed thundersnow . A warm front can produce snow for a period as warm, moist air overrides below-freezing air and creates precipitation at the boundary. Often, snow transitions to rain in

13640-456: The secondary term of isothermal slides found in the literature (for example in Daffern, 1999, p. 93). At temperate latitudes wet snow avalanches are frequently associated with climatic avalanche cycles at the end of the winter season, when there is significant daytime warming. An ice avalanche occurs when a large piece of ice, such as from a serac or calving glacier, falls onto ice (such as

13764-573: The sides of the tracks, and sometimes consist of lenses of rock fragments alternating with lenses of fine-grained earthy material. Debris flows often form much of the upper slopes of alluvial fans . Triggers for mass wasting can be divided into passive and activating (initiating) causes. Passive causes include: Activating causes include: Mass wasting causes problems for civil engineering , particularly highway construction . It can displace roads, buildings, and other construction and can break pipelines. Historically, mitigation of landslide hazards on

13888-416: The slab may not have time to adjust to the new load. Even on a clear day, wind can quickly load a slope with snow by blowing snow from one place to another. Top-loading occurs when wind deposits snow from the top of a slope; cross-loading occurs when wind deposits snow parallel to the slope. When a wind blows over the top of a mountain, the leeward, or downwind, side of the mountain experiences top-loading, from

14012-428: The snowpack can hide below well-consolidated surface layers. Uncertainty associated with the empirical understanding of the factors influencing snow stability leads most professional avalanche workers to recommend conservative use of avalanche terrain relative to current snowpack instability. Avalanches only occur in a standing snowpack. Typically winter seasons at high latitudes, high altitudes, or both have weather that

14136-422: The snowpack, and the heat stored in the snow is re-radiated into the atmosphere. When a slab avalanche forms, the slab disintegrates into increasingly smaller fragments as the snow travels downhill. If the fragments become small enough the outer layer of the avalanche, called a saltation layer, takes on the characteristics of a fluid . When sufficiently fine particles are present they can become airborne and, given

14260-459: The snowpack, such as melting due to solar radiation, is the second-largest cause of natural avalanches. Other natural causes include rain, earthquakes, rockfall, and icefall. Artificial triggers of avalanches include skiers, snowmobiles, and controlled explosive work. Contrary to popular belief, avalanches are not triggered by loud sound; the pressure from sound is orders of magnitude too small to trigger an avalanche. Avalanche initiation can start at

14384-479: The snowpack, while passive measures reinforce and stabilize the snowpack in situ . The simplest active measure is repeatedly traveling on a snowpack as snow accumulates; this can be by means of boot-packing, ski-cutting, or machine grooming . Explosives are used extensively to prevent avalanches, by triggering smaller avalanches that break down instabilities in the snowpack, and removing overburden that can result in larger avalanches. Explosive charges are delivered by

14508-401: The snowpack; conversely, very cold, windy, or hot weather will weaken the snowpack. At temperatures close to the freezing point of water, or during times of moderate solar radiation, a gentle freeze-thaw cycle will take place. The melting and refreezing of water in the snow strengthens the snowpack during the freezing phase and weakens it during the thawing phase. A rapid rise in temperature, to

14632-400: The strength. The load is straightforward; it is the weight of the snow. However, the strength of the snowpack is much more difficult to determine and is extremely heterogeneous. It varies in detail with properties of the snow grains, size, density, morphology, temperature, water content; and the properties of the bonds between the grains. These properties may all metamorphose in time according to

14756-409: The summer months to creep downhill. It takes place on moderate slopes, relatively free of vegetation, that are underlain by permafrost and receive a constant supply of new debris by weathering . Solifluction affects the entire slope rather than being confined to channels and can produce terrace-like landforms or stone rivers . A landslide, also called a landslip, is a relatively rapid movement of

14880-420: The top to the bottom of that lee slope. When the wind blows across a ridge that leads up the mountain, the leeward side of the ridge is subject to cross-loading. Cross-loaded wind-slabs are usually difficult to identify visually. Snowstorms and rainstorms are important contributors to avalanche danger. Heavy snowfall will cause instability in the existing snowpack, both because of the additional weight and because

15004-406: The warm sector behind the front. Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water, warming the lower layer of air which picks up water vapor from the lake, rises up through the colder air above, freezes, and is deposited on the leeward (downwind) shores. The same effect occurring over bodies of salt water

15128-449: The warmer months. In addition to industrially manufactured barriers, landscaped barriers, called avalanche dams stop or deflect avalanches with their weight and strength. These barriers are made out of concrete, rocks, or earth. They are usually placed right above the structure, road, or railway that they are trying to protect, although they can also be used to channel avalanches into other barriers. Occasionally, earth mounds are placed in

15252-551: The world. In the United States , a blizzard occurs when two conditions are met for a period of three hours or more: a sustained wind or frequent gusts to 35 miles per hour (16 m/s), and sufficient snow in the air to reduce visibility to less than 0.4 kilometers (0.25 mi). In Canada and the United Kingdom , the criteria are similar. While heavy snowfall often occurs during blizzard conditions, falling snow

15376-485: The year. In mountainous areas, avalanches are among the most serious natural hazards to life and property, so great efforts are made in avalanche control . There are many classification systems for the different forms of avalanches. Avalanches can be described by their size, destructive potential, initiation mechanism, composition, and dynamics . Most avalanches occur spontaneously during storms under increased load due to snowfall and/or erosion . Metamorphic changes in

#971028