Misplaced Pages

Aylesbeare Mudstone Group

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Triassic ( / t r aɪ ˈ æ s ɪ k / try- ASS -ik ; sometimes symbolized 🝈 ) is a geologic period and system which spans 50.5 million years from the end of the Permian Period 251.902 million years ago ( Mya ), to the beginning of the Jurassic Period 201.4 Mya. The Triassic is the first and shortest period of the Mesozoic Era and the seventh period of the Phanerozoic Eon . Both the start and end of the period are marked by major extinction events . The Triassic Period is subdivided into three epochs: Early Triassic , Middle Triassic and Late Triassic .

#844155

115-591: The Aylesbeare Mudstone Group is an early Triassic lithostratigraphic group (a sequence of rock strata ) in southwest England . The name is derived from the village of Aylesbeare in east Devon . The Group comprises the Littleham Mudstone Formation, the Exmouth Mudstone and Sandstone Formation and the underlying Clyst St Lawrence Formation. The strata are exposed on the coast between Exmouth and Budleigh Salterton where

230-630: A bolide impact, for which an impact crater containing Manicouagan Reservoir in Quebec , Canada , has been singled out. However, the Manicouagan impact melt has been dated to 214±1 Mya. The date of the Triassic-Jurassic boundary has also been more accurately fixed recently, at 201.4 Mya. Both dates are gaining accuracy by using more accurate forms of radiometric dating, in particular the decay of uranium to lead in zircons formed at time of

345-626: A cosmopolitan distribution . Coelacanths show their highest post- Devonian diversity in the Early Triassic . Ray-finned fishes (actinopterygians) went through a remarkable diversification in the beginning of the Triassic, leading to peak diversity during the Middle Triassic; however, the pattern of this diversification is still not well understood due to a taphonomic megabias . The first stem-group teleosts appeared during

460-538: A preservation bias . During the late Ordovician (~458.4 Ma), the particular configuration of Gondwana may have allowed for glaciation and high CO 2 levels to occur at the same time. However, some geologists disagree and think that there was a temperature increase at this time. This increase may have been strongly influenced by the movement of Gondwana across the South Pole, which may have prevented lengthy snow accumulation. Although late Ordovician temperatures at

575-555: A chain of mountain ranges stretching from Turkey to Malaysia . Pangaea was fractured by widespread faulting and rift basins during the Triassic—especially late in that period—but had not yet separated. The first nonmarine sediments in the rift that marks the initial break-up of Pangaea, which separated eastern North America from Morocco , are of Late Triassic age; in the United States , these thick sediments comprise

690-474: A few exposures in the west. During the Triassic peneplains are thought to have formed in what is now Norway and southern Sweden. Remnants of this peneplain can be traced as a tilted summit accordance in the Swedish West Coast . In northern Norway Triassic peneplains may have been buried in sediments to be then re-exposed as coastal plains called strandflats . Dating of illite clay from

805-504: A limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent. Moving under the forces of plate tectonics , supercontinents have assembled and dispersed multiple times in the geologic past. According to modern definitions, a supercontinent does not exist today; the closest is the current Afro-Eurasian landmass, which covers approximately 57% of Earth's total land area. The last period in which

920-471: A long beak-like snout), and Shringasaurus (a horned herbivore which reached a body length of 3–4 metres (9.8–13.1 ft)). One group of archosauromorphs, the archosauriforms , were distinguished by their active predatory lifestyle, with serrated teeth and upright limb postures. Archosauriforms were diverse in the Triassic, including various terrestrial and semiaquatic predators of all shapes and sizes. The large-headed and robust erythrosuchids were among

1035-550: A low number of passive margins during 336 to 275 Ma, and its break-up is indicated accurately by an increase in passive margins. Orogenic belts can form during the assembly of continents and supercontinents. The orogenic belts present on continental blocks are classified into three different categories and have implications for interpreting geologic bodies. Intercratonic orogenic belts are characteristic of ocean basin closure. Clear indicators of intracratonic activity contain ophiolites and other oceanic materials that are present in

1150-617: A pseudosuchian. Pseudosuchians were far more ecologically dominant in the Triassic, including large herbivores (such as aetosaurs ), large carnivores (" rauisuchians "), and the first crocodylomorphs (" sphenosuchians "). Aetosaurs were heavily-armored reptiles that were common during the last 30 million years of the Late Triassic until they died out at the Triassic-Jurassic extinction. Most aetosaurs were herbivorous and fed on low-growing plants, but some may have eaten meat. " rauisuchians " (formally known as paracrocodylomorphs ) were

1265-458: A short period of time, becoming extinct about 220 million years ago. They were exceptionally abundant in the middle of the Triassic, as the primary large herbivores in many Carnian-age ecosystems. They sheared plants with premaxillary beaks and plates along the upper jaw with multiple rows of teeth. Allokotosaurs were iguana-like reptiles, including Trilophosaurus (a common Late Triassic reptile with three-crowned teeth), Teraterpeton (which had

SECTION 10

#1732801817845

1380-578: A single lava flow is also undetermined. These are important factors on how flood basalts influenced paleoclimate . Global palaeogeography and plate interactions as far back as Pangaea are relatively well understood today. However, the evidence becomes more sparse further back in geologic history. Marine magnetic anomalies, passive margin match-ups, geologic interpretation of orogenic belts , paleomagnetism, paleobiogeography of fossils, and distribution of climatically sensitive strata are all methods to obtain evidence for continent locality and indicators of

1495-401: A slab of the subducted crust is denser than the surrounding mantle, it sinks to discontinuity. Once the slabs build up, they will sink through to the lower mantle in what is known as a "slab avalanche". This displacement at the discontinuity will cause the lower mantle to compensate and rise elsewhere. The rising mantle can form a plume or superplume. Besides having compositional effects on

1610-449: A strandflat of Bømlo , southern Norway, have shown that landscape there became weathered in Late Triassic times ( c. 210 million years ago) with the landscape likely also being shaped during that time. Eustatic sea level in the Triassic was consistently low compared to the other geological periods. The beginning of the Triassic was around present sea level, rising to about 10–20 metres (33–66 ft) above present-day sea level during

1725-585: A supercontinent has less shoreline compared to a series of smaller continents, Triassic marine deposits are relatively uncommon on a global scale. A major exception is in Western Europe , where the Triassic was first studied. The northeastern margin of Gondwana was a stable passive margin along the Neo-Tethys Ocean, and marine sediments have been preserved in parts of northern India and Arabia . In North America , marine deposits are limited to

1840-529: A supercontinent would have to show intracratonic orogenic belts. However, interpretation of orogenic belts can be difficult. The collision of Gondwana and Laurasia occurred in the late Palaeozoic. By this collision, the Variscan mountain range was created, along the equator. This 6000-km-long mountain range is usually referred to in two parts: the Hercynian mountain range of the late Carboniferous makes up

1955-468: Is a recent study of North American faunas. In the Petrified Forest of northeast Arizona there is a unique sequence of late Carnian-early Norian terrestrial sediments. An analysis in 2002 found no significant change in the paleoenvironment. Phytosaurs , the most common fossils there, experienced a change-over only at the genus level, and the number of species remained the same. Some aetosaurs ,

2070-647: Is almost as simple as fitting together the present continents bordering the Atlantic ocean like puzzle pieces. For the period before Pangaea, there are two contrasting models for supercontinent evolution through geological time . The first model theorizes that at least two separate supercontinents existed comprising Vaalbara and Kenorland , with Kenorland comprising Superia and Sclavia . These parts of Neoarchean age broke off at ~2480 and 2312 Ma , and portions of them later collided to form Nuna (Northern Europe and North America). Nuna continued to develop during

2185-569: Is an association between the rifting and breakup of continents and supercontinents and glacial epochs. According to the model for Precambrian supercontinent series, the breakup of Kenorland and Rodinia was associated with the Paleoproterozoic and Neoproterozoic glacial epochs, respectively. In contrast, the Protopangea–Paleopangea theory shows that these glaciations correlated with periods of low continental velocity, and it

2300-503: Is based on both palaeomagnetic and geological evidence and proposes that the continental crust comprised a single supercontinent from ~2.72 Ga until break-up during the Ediacaran period after ~0.573 Ga . The reconstruction is derived from the observation that palaeomagnetic poles converge to quasi-static positions for long intervals between ~2.72–2.115 Ga; 1.35–1.13 Ga; and 0.75–0.573 Ga with only small peripheral modifications to

2415-448: Is concluded that a fall in tectonic and corresponding volcanic activity was responsible for these intervals of global frigidity. During the accumulation of supercontinents with times of regional uplift, glacial epochs seem to be rare with little supporting evidence. However, the lack of evidence does not allow for the conclusion that glacial epochs are not associated with the collisional assembly of supercontinents. This could just represent

SECTION 20

#1732801817845

2530-546: Is evidence for a large orographic barrier within the interior of Pangaea during the late Paleozoic (~251.9 Ma). The possibility of the southwest–northeast trending Appalachian-Hercynian Mountains makes the region's monsoonal circulations potentially relatable to present-day monsoonal circulations surrounding the Tibetan Plateau, which is known to positively influence the magnitude of monsoonal periods within Eurasia. It

2645-508: Is likely a paraphyletic group rather than a true clade. Tanystropheids were a family of protorosaurs which elevated their neck size to extremes, with the largest genus Tanystropheus having a neck longer than its body. The protorosaur family Sharovipterygidae used their elongated hindlimbs for gliding. Other archosauromorphs, such as rhynchosaurs and allokotosaurs , were mostly stocky-bodied herbivores with specialized jaw structures. Rhynchosaurs, barrel-gutted herbivores, thrived for only

2760-469: Is no evidence of glaciation at or near either pole; in fact, the polar regions were apparently moist and temperate , providing a climate suitable for forests and vertebrates, including reptiles. Pangaea's large size limited the moderating effect of the global ocean; its continental climate was highly seasonal, with very hot summers and cold winters. The strong contrast between the Pangea supercontinent and

2875-477: Is seen today in Eurasia , and rock record shows evidence of continentality in the middle of Pangaea. The term glacial-epoch refers to a long episode of glaciation on Earth over millions of years. Glaciers have major implications on the climate, particularly through sea level change . Changes in the position and elevation of the continents, the paleolatitude and ocean circulation affect the glacial epochs. There

2990-460: Is superimposed by 22 sea level drop events widespread in the geologic record, mostly of minor (less than 25-metre (82 ft)) and medium (25–75-metre (82–246 ft)) magnitudes. A lack of evidence for Triassic continental ice sheets suggest that glacial eustasy is unlikely to be the cause of these changes. The Triassic continental interior climate was generally hot and dry, so that typical deposits are red bed sandstones and evaporites . There

3105-477: Is the fifth oxygenation stage. One of the reasons indicating this period to be an oxygenation event is the increase in redox -sensitive molybdenum in black shales . The sixth event occurred between 360 and 260 Ma and was identified by models suggesting shifts in the balance of S in sulfates and C in carbonates , which were strongly influenced by an increase in atmospheric oxygen. Granites and detrital zircons have notably similar and episodic appearances in

3220-439: Is the opening and closing of an individual oceanic basin . The Wilson cycle rarely synchronizes with the timing of a supercontinent cycle. However, supercontinent cycles and Wilson cycles were both involved in the creation of Pangaea and Rodinia. Secular trends such as carbonatites , granulites , eclogites , and greenstone belt deformation events are all possible indicators of Precambrian supercontinent cyclicity, although

3335-466: Is therefore somewhat expected that lower topography in other regions of the supercontinent during the Jurassic would negatively influence precipitation variations. The breakup of supercontinents may have affected local precipitation. When any supercontinent breaks up, there will be an increase in precipitation runoff over the surface of the continental landmasses, increasing silicate weathering and

3450-504: Is thought that the Earth's oxygen content has risen in stages: six or seven steps that are timed very closely to the development of Earth's supercontinents. The process of Earth's increase in atmospheric oxygen content is theorized to have started with the continent-continent collision of huge landmasses forming supercontinents, and therefore possibly supercontinent mountain ranges (super-mountains). These super-mountains would have eroded, and

3565-474: Is thought to have been approximately 10 degrees Celsius warmer along 90 degrees East paleolongitude compared to the present temperature of today's central Eurasia. Many studies of the Milankovitch cycles during supercontinent time periods have focused on the mid-Cretaceous. Present amplitudes of Milankovitch cycles over present-day Eurasia may be mirrored in both the southern and northern hemispheres of

Aylesbeare Mudstone Group - Misplaced Pages Continue

3680-411: Is usually divided into Early , Middle , and Late Triassic Epochs , and the corresponding rocks are referred to as Lower, Middle, or Upper Triassic. The faunal stages from the youngest to oldest are: During the Triassic, almost all the Earth's land mass was concentrated into a single supercontinent , Pangaea ( lit.   ' entire land ' ). This supercontinent was more-or-less centered on

3795-578: The Carnian (early part of the Late Triassic), some advanced cynodonts gave rise to the first mammals . During the Triassic, archosaurs displaced therapsids as the largest and most ecologically prolific terrestrial amniotes. This "Triassic Takeover" may have contributed to the evolution of mammals by forcing the surviving therapsids and their mammaliaform successors to live as small, mainly nocturnal insectivores . Nocturnal life may have forced

3910-559: The Jurassic , when the temnospondyls had become very rare. Most of the Reptiliomorpha , stem-amniotes that gave rise to the amniotes, disappeared in the Triassic, but two water-dwelling groups survived: Embolomeri that only survived into the early part of the period, and the Chroniosuchia , which survived until the end of the Triassic. The Permian–Triassic extinction devastated terrestrial life. Biodiversity rebounded as

4025-568: The Lake Lugano region of northern Italy and southern Switzerland , was in Middle Triassic times a lagoon behind reefs with an anoxic bottom layer, so there were no scavengers and little turbulence to disturb fossilization, a situation that can be compared to the better-known Jurassic Solnhofen Limestone lagerstätte . The remains of fish and various marine reptiles (including the common pachypleurosaur Neusticosaurus , and

4140-530: The Mesoproterozoic , primarily by lateral accretion of juvenile arcs, and in ~1000 Ma Nuna collided with other land masses, forming Rodinia . Between ~825 and 750 Ma Rodinia broke apart. However, before completely breaking up, some fragments of Rodinia had already come together to form Gondwana by ~608 Ma . Pangaea formed through the collision of Gondwana, Laurasia ( Laurentia and Baltica ), and Siberia . The second model (Kenorland-Arctica)

4255-658: The Newark Supergroup . Rift basins are also common in South America, Europe, and Africa. Terrestrial environments are particularly well-represented in the South Africa, Russia, central Europe, and the southwest United States. Terrestrial Triassic biostratigraphy is mostly based on terrestrial and freshwater tetrapods, as well as conchostracans ("clam shrimps"), a type of fast-breeding crustacean which lived in lakes and hypersaline environments. Because

4370-474: The Olenekian and Anisian of Gondwana . Both kannemeyeriiform dicynodonts and gomphodont cynodonts remained important herbivores during much of the period. Therocephalians included both large predators ( Moschorhinus ) and herbivorous forms ( bauriids ) until their extinction midway through the period. Ecteniniid cynodonts played a role as large-sized, cursorial predators in the Late Triassic. During

4485-416: The pterosaurs . Therapsids , the dominant vertebrates of the preceding Permian period, saw a brief surge in diversification in the Triassic, with dicynodonts and cynodonts quickly becoming dominant, but they declined throughout the period with the majority becoming extinct by the end. However, the first stem-group mammals ( mammaliamorphs ), themselves a specialized subgroup of cynodonts, appeared during

4600-735: The surviving species repopulated empty terrain, but these were short-lived. Diverse communities with complex food-web structures took 30 million years to reestablish. Archosauromorph reptiles, which had already appeared and diversified to an extent in the Permian Period, exploded in diversity as an adaptive radiation in response to the Permian-Triassic mass extinction. By the Early Triassic, several major archosauromorph groups had appeared. Long-necked, lizard-like early archosauromorphs were known as protorosaurs , which

4715-524: The thecodonts ) disappeared, as did most of the large labyrinthodont amphibians, groups of small reptiles, and most synapsids. Some of the early, primitive dinosaurs also became extinct, but more adaptive ones survived to evolve into the Jurassic. Surviving plants that went on to dominate the Mesozoic world included modern conifers and cycadeoids. The cause of the Late Triassic extinction is uncertain. It

Aylesbeare Mudstone Group - Misplaced Pages Continue

4830-437: The traversodont cynodonts—were much reduced in the northern half of Pangaea ( Laurasia ). These extinctions within the Triassic and at its end allowed the dinosaurs to expand into many niches that had become unoccupied. Dinosaurs became increasingly dominant, abundant and diverse, and remained that way for the next 150 million years. The true "Age of Dinosaurs" is during the following Jurassic and Cretaceous periods, rather than

4945-652: The type section is defined. The rocks of the Aylesbeare Mudstone Group have also previously been known as the Aylesbeare Group and the Aylesbeare Mudstone Formation. Around 200 - 255m of silty mudstones between the coast near Exmouth north to Aylesbeare, beyond which it is not separately mapped. It includes numerous sandstone lenses which can be up to 30m thick. This sequence has been known by various names in

5060-403: The upper mantle by replenishing the large-ion lithophile elements , volcanism affects plate movement. The plates will be moved towards a geoidal low perhaps where the slab avalanche occurred and pushed away from the geoidal high that can be caused by the plumes or superplumes. This causes the continents to push together to form supercontinents and was evidently the process that operated to cause

5175-832: The Anisian to Ladinian of the Tethysian domain, and from the Carnian and Rhaetian of a larger area that includes also the Boreal domain (e.g., Svalbard Islands), the North American continent, the South China block and Argentina . The best-studied of such episodes of humid climate, and probably the most intense and widespread, was the Carnian Pluvial Event . The Early Triassic was the hottest portion of

5290-405: The Carnian and include early sauropodomorphs and theropods. Most Triassic dinosaurs were small predators and only a few were common, such as Coelophysis , which was 1 to 2 metres (3.3 to 6.6 ft) long. Triassic sauropodomorphs primarily inhabited cooler regions of the world. The large predator Smok was most likely also an archosaur, but it is uncertain if it was a primitive dinosaur or

5405-563: The Early Triassic, forming small patches of reefs of modest extent compared to the great reef systems of Devonian or modern times. At the end of the Carnian, a reef crisis occurred in South China. Serpulids appeared in the Middle Triassic. Microconchids were abundant. The shelled cephalopods called ammonites recovered, diversifying from a single line that survived the Permian extinction. Bivalves began to rapidly diversify during

5520-402: The Early Triassic, while others (e.g. capitosaurs ) remained successful throughout the whole period, or only came to prominence in the Late Triassic (e.g. Plagiosaurus , metoposaurs ). The first Lissamphibians (modern amphibians) appear in the Triassic, with the progenitors of the first frogs already present by the Early Triassic. However, the group as a whole did not become common until

5635-562: The Early and Middle Triassic. Sea level rise accelerated in the Ladinian, culminating with a sea level up to 50 metres (164 ft) above present-day levels during the Carnian. Sea level began to decline in the Norian, reaching a low of 50 metres (164 ft) below present sea level during the mid-Rhaetian. Low global sea levels persisted into the earliest Jurassic. The long-term sea level trend

5750-403: The Jurassic. The Triassic was named in 1834 by Friedrich August von Alberti , after a succession of three distinct rock layers (Greek triás meaning 'triad') that are widespread in southern Germany : the lower Buntsandstein (colourful sandstone ) , the middle Muschelkalk (shell-bearing limestone ) and the upper Keuper (coloured clay ). On the geologic time scale , the Triassic

5865-613: The Jurassic. There were many types of marine reptiles. These included the Sauropterygia , which featured pachypleurosaurus and nothosaurs (both common during the Middle Triassic, especially in the Tethys region), placodonts , the earliest known herbivorous marine reptile Atopodentatus , and the first plesiosaurs . The first of the lizardlike Thalattosauria ( askeptosaurs ) and the highly successful ichthyopterygians , which appeared in Early Triassic seas, soon diversified. By

SECTION 50

#1732801817845

5980-600: The Latest Olenekian Cooling (LOC), from 248 to 247 Ma, temperatures cooled by about 6 °C. The Middle Triassic was cooler than the Early Triassic, with temperatures falling over most of the Anisian, with the exception of a warming spike in the latter portion of the stage. From 242 to 233 Ma, the Ladinian-Carnian Cooling (LCC) ensued. At the beginning of the Carnian, global temperatures continued to be relatively cool. The eruption of

6095-486: The Middle Triassic, becoming highly abundant in the oceans. Aquatic insects rapidly diversified during the Middle Triassic, with this time interval representing a crucial diversification for Holometabola , the clade containing the majority of modern insect species. In the wake of the Permian-Triassic mass extinction event , the fish fauna was remarkably uniform, with many families and genera exhibiting

6210-618: The Middle Triassic, some ichthyopterygians were achieving very large body masses. Among other reptiles, the earliest turtles , like Proganochelys and Proterochersis , appeared during the Norian Age (Stage) of the Late Triassic Period. The Lepidosauromorpha , specifically the Sphenodontia , are first found in the fossil record of the earlier Carnian Age, though the earliest lepidosauromorphs likely occurred in

6325-450: The Permian extinction, Archaeplastida (red and green algae) had been the major marine phytoplanktons since about 659–645 million years ago, when they replaced marine planktonic cyanobacteria , which first appeared about 800 million years ago, as the dominant phytoplankton in the oceans. In the Triassic, secondary endosymbiotic algae became the most important plankton. In marine environments , new modern types of corals appeared in

6440-475: The Permian. The Procolophonidae , the last surviving parareptiles , were an important group of small lizard-like herbivores. The drepanosaurs were a clade of unusual, chameleon-like arboreal reptiles with birdlike heads and specialised claws. Three therapsid groups survived into the Triassic: dicynodonts , therocephalians , and cynodonts . The cynodont Cynognathus was a characteristic top predator in

6555-402: The Protopangea–Paleopangea solution implies that Phanerozoic style of supercontinent cycles did not operate during these times. Also, there are instances where these secular trends have a weak, uneven, or absent imprint on the supercontinent cycle; secular methods for supercontinent reconstruction will produce results that have only one explanation, and each explanation for a trend must fit in with

6670-481: The South Pole may have reached freezing, there were no ice sheets during the early Silurian (~443.8 Ma) through the late Mississippian (~330.9 Ma). Agreement can be met with the theory that continental snow can occur when the edge of a continent is near the pole. Therefore Gondwana, although located tangent to the South Pole, may have experienced glaciation along its coasts. Though precipitation rates during monsoonal circulations are difficult to predict, there

6785-408: The Triassic (teleosts are by far the most diverse group of fish today). Predatory actinopterygians such as saurichthyids and birgeriids , some of which grew over 1.2 m (3.9 ft) in length, appeared in the Early Triassic and became widespread and successful during the period as a whole. Lakes and rivers were populated by lungfish (Dipnoi), such as Ceratodus , which are mainly known from

6900-497: The Triassic and survived the extinction event. The earliest known neopterygian fish, including early holosteans and teleosts , appeared near the beginning of the Triassic, and quickly diversified to become among the dominant groups of fish in both freshwater and marine habitats. The vast supercontinent of Pangaea dominated the globe during the Triassic, but in the latest Triassic ( Rhaetian ) and Early Jurassic it began to gradually rift into two separate landmasses: Laurasia to

7015-458: The Triassic and would survive the extinction event, allowing them to radiate during the Jurassic. Amphibians were primarily represented by the temnospondyls , giant aquatic predators that had survived the end-Permian extinction and saw a new burst of diversification in the Triassic, before going extinct by the end; however, early crown-group lissamphibians (including stem-group frogs , salamanders and caecilians ) also became more common during

SECTION 60

#1732801817845

7130-609: The Triassic, enlarging the Neo-Tethys Ocean which formed in their wake. At the same time, they forced the Paleo-Tethys Ocean to shrink as it was being subducted under Asia. By the end of the Triassic, the Paleo-Tethys Ocean occupied a small area and the Cimmerian terranes began to collide with southern Asia. This collision, known as the Cimmerian Orogeny , continued into the Jurassic and Cretaceous to produce

7245-421: The Triassic. Supercontinent In geology , a supercontinent is the assembly of most or all of Earth 's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings,

7360-839: The Wrangellia Large Igneous Province around 234 Ma caused abrupt global warming, terminating the cooling trend of the LCC. This warming was responsible for the Carnian Pluvial Event and resulted in an episode of widespread global humidity. The CPE ushered in the Mid-Carnian Warm Interval (MCWI), which lasted from 234 to 227 Ma. At the Carnian-Norian boundary occurred a positive δ C excursion believed to signify an increase in organic carbon burial. From 227 to 217 Ma, there

7475-399: The accretion and dispersion of supercontinents is seen in the geological rock record. The influence of known volcanic eruptions does not compare to that of flood basalts . The timing of flood basalts has corresponded with a large-scale continental break-up. However, due to a lack of data on the time required to produce flood basalts, the climatic impact is difficult to quantify. The timing of

7590-455: The bizarre long-necked archosauromorph Tanystropheus ), along with some terrestrial forms like Ticinosuchus and Macrocnemus , have been recovered from this locality. All these fossils date from the Anisian and Ladinian ages (about 242 Ma ago). The Triassic Period ended with a mass extinction, which was particularly severe in the oceans; the conodonts disappeared, as did all

7705-400: The break-up of supercontinents and die during supercontinent assembly. Pangaea's supercontinent cycle is a good example of the efficiency of using the presence or lack of these entities to record the development, tenure, and break-up of supercontinents. There is a sharp decrease in passive margins between 500 and 350 Ma during the timing of Pangaea's assembly. The tenure of Pangaea is marked by

7820-414: The breakup of Precambrian supercontinents and the lack of land plants as a carbon sink . During the late Permian, it is expected that seasonal Pangaean temperatures varied drastically. Subtropic summer temperatures were warmer than that of today by as much as 6–10 degrees, and mid-latitudes in the winter were less than −30 degrees Celsius. These seasonal changes within the supercontinent were influenced by

7935-427: The chief terrestrial vertebrates during this time. A specialized group of archosaurs, called dinosaurs , first appeared in the Late Triassic but did not become dominant until the succeeding Jurassic Period. Archosaurs that became dominant in this period were primarily pseudosuchians , relatives and ancestors of modern crocodilians , while some archosaurs specialized in flight, the first time among vertebrates, becoming

8050-422: The climate of the planet drastically, with supercontinents having a larger, more prevalent influence. Continents modify global wind patterns, control ocean current paths, and have a higher albedo than the oceans. Winds are redirected by mountains, and albedo differences cause shifts in onshore winds. Higher elevation in continental interiors produces a cooler, drier climate, the phenomenon of continentality . This

8165-739: The consumption of CO 2 . Even though during the Archaean solar radiation was reduced by 30 percent and the Cambrian - Precambrian boundary by 6 percent, the Earth has only experienced three ice ages throughout the Precambrian. Erroneous conclusions are more likely to be made when models are limited to one climatic configuration (which is usually present-day). Cold winters in continental interiors are due to rate ratios of radiative cooling (greater) and heat transport from continental rims. To raise winter temperatures within continental interiors,

8280-456: The contemporary Earth became dominant only during the latter part of geological times. This approach was widely criticized by many researchers as it uses incorrect application of paleomagnetic data. A supercontinent cycle is the break-up of one supercontinent and the development of another, which takes place on a global scale. Supercontinent cycles are not the same as the Wilson cycle , which

8395-426: The continental landmasses were near to one another was 336 to 175 million years ago, forming the supercontinent Pangaea . The positions of continents have been accurately determined back to the early Jurassic , shortly before the breakup of Pangaea. Pangaea's predecessor Gondwana is not considered a supercontinent under the first definition since the landmasses of Baltica , Laurentia and Siberia were separate at

8510-506: The dental plates, abundant in the fossils record. Hybodonts , a group of shark-like cartilaginous fish , were dominant in both freshwater and marine environments throughout the Triassic. Last survivors of the mainly Palaeozoic Eugeneodontida are known from the Early Triassic. Temnospondyl amphibians were among those groups that survived the Permian–Triassic extinction. Once abundant in both terrestrial and aquatic environments,

8625-428: The dominant carnivores in the early Triassic. Phytosaurs were a particularly common group which prospered during the Late Triassic. These long-snouted and semiaquatic predators resemble living crocodiles and probably had a similar lifestyle, hunting for fish and small reptiles around the water's edge. However, this resemblance is only superficial and is a prime-case of convergent evolution. True archosaurs appeared in

8740-405: The early Triassic, splitting into two branches: Avemetatarsalia (the ancestors to birds) and Pseudosuchia (the ancestors to crocodilians). Avemetatarsalians were a minor component of their ecosystems, but eventually produced the earliest pterosaurs and dinosaurs in the Late Triassic. Early long-tailed pterosaurs appeared in the Norian and quickly spread worldwide. Triassic dinosaurs evolved in

8855-416: The early continental crust to aggregate into Protopangea. Dispersal of supercontinents is caused by the accumulation of heat underneath the crust due to the rising of very large convection cells or plumes, and a massive heat release resulted in the final break-up of Paleopangea. Accretion occurs over geoidal lows that can be caused by avalanche slabs or the downgoing limbs of convection cells. Evidence of

8970-656: The eastern part, and the western part is the Appalachian Mountains , uplifted in the early Permian . (The existence of a flat elevated plateau like the Tibetan Plateau is under debate.) The locality of the Variscan range made it influential to both the northern and southern hemispheres. The elevation of the Appalachians would greatly influence global atmospheric circulation. Continents affect

9085-640: The entire Phanerozoic, seeing as it occurred during and immediately after the discharge of titanic volumes of greenhouse gases from the Siberian Traps. The Early Triassic began with the Permian-Triassic Thermal Maximum (PTTM) and was followed by the brief Dienerian Cooling (DC) from 251 to 249 Ma, which was in turn followed by the Latest Smithian Thermal Maximum (LSTT) around 249 to 248 Ma. During

9200-440: The environment throughout time. Phanerozoic (541 Ma to present) and Precambrian ( 4.6 Ga to 541 Ma ) had primarily passive margins and detrital zircons (and orogenic granites ), whereas the tenure of Pangaea contained few. Matching edges of continents are where passive margins form. The edges of these continents may rift . At this point, seafloor spreading becomes the driving force. Passive margins are therefore born during

9315-467: The equator and extended between the poles, though it did drift northwards as the period progressed. Southern Pangea, also known as Gondwana , was made up by closely-appressed cratons corresponding to modern South America , Africa , Madagascar , India , Antarctica , and Australia . North Pangea, also known as Laurussia or Laurasia , corresponds to modern-day North America and the fragmented predecessors of Eurasia . The western edge of Pangea lay at

9430-538: The extinct family Cheirolepidiaceae , which first appeared in the Late Triassic, and would be prominent throughout most of the rest of the Mesozoic. No known coal deposits date from the start of the Triassic Period. This is known as the Early Triassic "coal gap" and can be seen as part of the Permian–Triassic extinction event . Possible explanations for the coal gap include sharp drops in sea level at

9545-521: The global ocean triggered intense cross-equatorial monsoons , sometimes referred to as the Pangean megamonsoons . The Triassic may have mostly been a dry period, but evidence exists that it was punctuated by several episodes of increased rainfall in tropical and subtropical latitudes of the Tethys Sea and its surrounding land. Sediments and fossils suggestive of a more humid climate are known from

9660-420: The impact. So, the evidence suggests the Manicouagan impact preceded the end of the Triassic by approximately 10±2 Ma. It could not therefore be the immediate cause of the observed mass extinction. The number of Late Triassic extinctions is disputed. Some studies suggest that there are at least two periods of extinction towards the end of the Triassic, separated by 12 to 17 million years. But arguing against this

9775-401: The keystone predators of most Triassic terrestrial ecosystems. Over 25 species have been found, including giant quadrupedal hunters, sleek bipedal omnivores, and lumbering beasts with deep sails on their backs. They probably occupied the large-predator niche later filled by theropods. "Rauisuchians" were ancestral to small, lightly-built crocodylomorphs, the only pseudosuchians which survived into

9890-474: The lack of iron formations may have been the result of an increase in oxygen. The fourth oxygenation event, roughly 0.6 Ga, is based on modeled rates of sulfur isotopes from marine carbonate-associated sulfates . An increase (near doubled concentration) of sulfur isotopes, which is suggested by these models, would require an increase in the oxygen content of the deep oceans. Between 650 and 550 Ma there were three increases in ocean oxygen levels, this period

10005-411: The large size of Pangaea. And, just like today, coastal regions experienced much less variation. During the Jurassic, summer temperatures did not rise above zero degrees Celsius along the northern rim of Laurasia, which was the northernmost part of Pangaea (the southernmost portion of Pangaea was Gondwana). Ice-rafted dropstones sourced from Russia are indicators of this northern boundary. The Jurassic

10120-545: The mammaliaforms to develop fur and a higher metabolic rate . Two Early Triassic lagerstätten (high-quality fossil beds), the Dienerian aged Guiyang biota and the earliest Spathian aged Paris biota stand out due to their exceptional preservation and diversity . They represent the earliest lagerstätten of the Mesozoic era and provide insight into the biotic recovery from the Permian-Triassic mass extinction event. The Monte San Giorgio lagerstätte, now in

10235-573: The margin of an enormous ocean, Panthalassa ( lit.   ' entire sea ' ), which roughly corresponds to the modern Pacific Ocean . Practically all deep-ocean crust present during the Triassic has been recycled through the subduction of oceanic plates, so very little is known about the open ocean from this time period. Most information on Panthalassan geology and marine life is derived from island arcs and rare seafloor sediments accreted onto surrounding land masses, such as present-day Japan and western North America. The eastern edge of Pangea

10350-453: The marine reptiles except ichthyosaurs and plesiosaurs . Invertebrates like brachiopods and molluscs (such as gastropods ) were severely affected. In the oceans, 22% of marine families and possibly about half of marine genera went missing. Though the end-Triassic extinction event was not equally devastating in all terrestrial ecosystems, several important clades of crurotarsans (large archosaurian reptiles previously grouped together as

10465-433: The mass amounts of nutrients, including iron and phosphorus , would have washed into oceans, just as is seen happening today. The oceans would then be rich in nutrients essential to photosynthetic organisms, which would then be able to respire mass amounts of oxygen. There is an apparent direct relationship between orogeny and the atmospheric oxygen content. There is also evidence for increased sedimentation concurrent with

10580-430: The next most common tetrapods, and early dinosaurs, passed through unchanged. However, both phytosaurs and aetosaurs were among the groups of archosaur reptiles completely wiped out by the end-Triassic extinction event. It seems likely then that there was some sort of end-Carnian extinction, when several herbivorous archosauromorph groups died out, while the large herbivorous therapsids —the kannemeyeriid dicynodonts and

10695-512: The north and Gondwana to the south. The global climate during the Triassic was mostly hot and dry, with deserts spanning much of Pangaea's interior. However, the climate shifted and became more humid as Pangaea began to drift apart. The end of the period was marked by yet another major mass extinction, the Triassic–Jurassic extinction event , that wiped out many groups, including most pseudosuchians, and allowed dinosaurs to assume dominance in

10810-402: The order Isoetales (which contains living quillworts ), rose to prominence due to the environmental instability following the Permian-Triassic extinction, with one particularly notable example being the genus Pleuromeia , which grew in columnar like fashion, sometimes reaching a height of 2 metres (6.6 ft). The relevance of lycophytes declined from the Middle Triassic onwards, following

10925-537: The past including the Exmouth Sandstones, Exmouth Formation and the Exmouth Mudstone and Sandstone Member amongst others. The type section is in the coastal exposures between Exmouth and Straight Point. Around 200m of silty mudstone in the Exeter area rising to 275m thickness on the coast between Littleham Cove and Budleigh Salterton (type section). The formation has been mapped northwards from Littleham to

11040-479: The rate of heat transport must increase to become greater than the rate of radiative cooling. Through climate models, alterations in atmospheric CO 2 content and ocean heat transport are not comparatively effective. CO 2 models suggest that values were low in the late Cenozoic and Carboniferous-Permian glaciations. Although early Paleozoic values are much larger (more than 10 percent higher than that of today). This may be due to high seafloor spreading rates after

11155-527: The reconstruction. During the intervening periods, the poles conform to a unified apparent polar wander path. Although it contrasts the first model, the first phase (Protopangea) essentially incorporates Vaalbara and Kenorland of the first model. The explanation for the prolonged duration of the Protopangea–Paleopangea supercontinent appears to be that lid tectonics (comparable to the tectonics operating on Mars and Venus) prevailed during Precambrian times. According to this theory, plate tectonics as seen on

11270-557: The rest. The following table names reconstructed ancient supercontinents, using Bradley's 2011 looser definition, with an approximate timescale of millions of years ago (Ma). The causes of supercontinent assembly and dispersal are thought to be driven by convection processes in Earth's mantle . Approximately 660 km into the mantle, a discontinuity occurs, affecting the surface crust through processes involving plumes and superplumes (aka large low-shear-velocity provinces ). When

11385-487: The return of more stable environmental conditions. While having first appeared during the Permian, the extinct seed plant group Bennettitales first became a prominent element in global floras during the Late Triassic, a position they would hold for much of the Mesozoic. In the Southern Hemisphere landmasses of Gondwana, the tree Dicroidium , an extinct " seed fern " belong to the order Corystospermales

11500-471: The rock record. Their fluctuations correlate with Precambrian supercontinent cycles. The U–Pb zircon dates from orogenic granites are among the most reliable aging determinants. Some issues exist with relying on granite sourced zircons, such as a lack of evenly globally sourced data and the loss of granite zircons by sedimentary coverage or plutonic consumption. Where granite zircons are less adequate, detrital zircons from sandstones appear and make up for

11615-591: The second period of oxygenation occurred, which has been called the 'great oxygenation event.' Evidence supporting this event includes red beds appearance 2.3 Ga (meaning that Fe was being produced and became an important component in soils). The third oxygenation stage approximately 1.8 Ga is indicated by the disappearance of iron formations. Neodymium isotopic studies suggest that iron formations are usually from continental sources, meaning that dissolved Fe and Fe had to be transported during continental erosion. A rise in atmospheric oxygen prevents Fe transport, so

11730-505: The supercontinent Pangaea. Climate modeling shows that summer fluctuations varied 14–16 degrees Celsius on Pangaea, which is similar or slightly higher than summer temperatures of Eurasia during the Pleistocene. The largest-amplitude Milankovitch cycles are expected to have been at mid-to high-latitudes during the Triassic and Jurassic. Plate tectonics and the chemical composition of the atmosphere (specifically greenhouse gases ) are

11845-403: The suture zone. Intracratonic orogenic belts occur as thrust belts and do not contain any oceanic material. However, the absence of ophiolites is not strong evidence for intracratonic belts, because the oceanic material can be squeezed out and eroded away in an intracratonic environment. The third kind of orogenic belt is a confined orogenic belt which is the closure of small basins. The assembly of

11960-676: The terminus of the Triassic, there was an extreme warming event referred to as the End-Triassic Thermal Event (ETTE), which was responsible for the Triassic-Jurassic mass extinction. Bubbles of carbon dioxide in basaltic rocks dating back to the end of the Triassic indicate that volcanic activity from the Central Atlantic Magmatic Province helped trigger climate change in the ETTE. During the Early Triassic, lycophytes , particularly those of

12075-595: The terrestrial species had mostly died out during the extinction event. The Triassic survivors were aquatic or semi-aquatic, and were represented by Tupilakosaurus , Thabanchuia , Branchiosauridae and Micropholis , all of which died out in Early Triassic, and the successful Stereospondyli , with survivors into the Cretaceous Period. The largest Triassic stereospondyls, such as Mastodonsaurus , were up to 4 to 6 metres (13 to 20 ft) in length. Some lineages (e.g. trematosaurs ) flourished briefly in

12190-577: The time of the Permo-Triassic boundary; acid rain from the Siberian Traps eruptions or from an impact event that overwhelmed acidic swamps; climate shift to a greenhouse climate that was too hot and dry for peat accumulation; evolution of fungi or herbivores that were more destructive of wetlands; the extinction of all plants adapted to peat swamps, with a hiatus of several million years before new plant species evolved that were adapted to peat swamps; or soil anoxia as oxygen levels plummeted. Before

12305-404: The time. A future supercontinent, termed Pangaea Proxima , is hypothesized to form within the next 250 million years. The Phanerozoic supercontinent Pangaea began to break up 215 Ma and this distancing continues today. Because Pangaea is the most recent of Earth's supercontinents, it is the best known and understood. Contributing to Pangaea's popularity in the classroom, its reconstruction

12420-485: The timing of these mass oxygenation events, meaning that the organic carbon and pyrite at these times were more likely to be buried beneath sediment and therefore unable to react with the free oxygen. This sustained the atmospheric oxygen increases. At 2.65 Ga there was an increase in molybdenum isotope fractionation. It was temporary but supports the increase in atmospheric oxygen because molybdenum isotopes require free oxygen to fractionate. Between 2.45 and 2.32 Ga,

12535-422: The two most prevailing factors present within the geologic time scale. Continental drift influences both cold and warm climatic episodes. Atmospheric circulation and climate are strongly influenced by the location and formation of continents and supercontinents. Therefore, continental drift influences mean global temperature. Oxygen levels of the Archaean were negligible, and today they are roughly 21 percent. It

12650-637: The vicinity of Aylesbeare but is not separately distinguished beyond there. This sequence has previously been referred to variously as the Littleham Beds, the Littleham Formation and the Littleham Mudstones. The formation comprises between 30 and 50m of sand and silt, representing weathered sandstone and siltstone, at outcrop between the east Devon hamlets of Westwood and Mutterton. Triassic The Triassic began in

12765-506: The wake of the Permian–Triassic extinction event , which left the Earth's biosphere impoverished; it was well into the middle of the Triassic before life recovered its former diversity. Three categories of organisms can be distinguished in the Triassic record: survivors from the extinction event, new groups that flourished briefly, and other new groups that went on to dominate the Mesozoic Era. Reptiles , especially archosaurs , were

12880-615: Was a dominant element in forest habitats across the region during the Middle-Late Triassic. During the Late Triassic, the Ginkgoales (which today are represented by only a single species, Ginkgo biloba ) underwent considerable diversification. Conifers were abundant during the Triassic, and included the Voltziales (which contains various lineages, probably including those ancestral to modern conifers), as well as

12995-673: Was a relatively cool period known as the Early Norian Cool Interval (ENCI), after which occurred the Mid-Norian Warm Interval (MNWI) from 217 to 209 Ma. The MNWI was briefly interrupted around 214 Ma by a cooling possibly related to the Manicouagan impact . Around 212 Ma, a 10 Myr eccentricity maximum caused a paludification of Pangaea and a reduction in the size of arid climatic zones. The Rhaetian Cool Interval (RCI) lasted from 209 to 201 Ma. At

13110-505: Was accompanied by huge volcanic eruptions that occurred as the supercontinent Pangaea began to break apart about 202 to 191 million years ago (40Ar/39Ar dates), forming the Central Atlantic Magmatic Province (CAMP), one of the largest known inland volcanic events since the planet had first cooled and stabilized. Other possible but less likely causes for the extinction events include global cooling or even

13225-484: Was encroached upon by a pair of extensive oceanic basins: The Neo-Tethys (or simply Tethys) and Paleo-Tethys Oceans . These extended from China to Iberia, hosting abundant marine life along their shallow tropical peripheries. They were divided from each other by a long string of microcontinents known as the Cimmerian terranes . Cimmerian crust had detached from Gondwana in the early Permian and drifted northwards during

#844155