104-433: The bit is the most basic unit of information in computing and digital communication . The name is a portmanteau of binary digit . The bit represents a logical state with one of two possible values . These values are most commonly represented as either " 1 " or " 0 " , but other representations such as true / false , yes / no , on / off , or + / − are also widely used. The relation between these values and
208-461: A binit as an arbitrary information unit equivalent to some fixed but unspecified number of bits. Units of information In digital computing and telecommunications , a unit of information is the capacity of some standard data storage system or communication channel , used to measure the capacities of other systems and channels. In information theory , units of information are also used to measure information contained in messages and
312-409: A byte or word , is referred to, it is usually specified by a number from 0 upwards corresponding to its position within the byte or word. However, 0 can refer to either the most or least significant bit depending on the context. Similar to torque and energy in physics; information-theoretic information and data storage size have the same dimensionality of units of measurement , but there
416-455: A conductor 's surface, since otherwise there would be a force along the surface of the conductor that would move the charge carriers to even the potential across the surface. The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre,
520-461: A force on each other, an effect that was known, though not understood, in antiquity. A lightweight ball suspended by a fine thread can be charged by touching it with a glass rod that has itself been charged by rubbing with a cloth. If a similar ball is charged by the same glass rod, it is found to repel the first: the charge acts to force the two balls apart. Two balls that are charged with a rubbed amber rod also repel each other. However, if one ball
624-540: A random access memory chip with a capacity of 2 bytes would be referred to as a 256-megabyte chip. The table below illustrates these differences. In the past, uppercase K has been used instead of lowercase k to indicate 1024 instead of 1000. However, this usage was not consistently applied. On the other hand, for external storage systems (such as optical discs ), the SI prefixes are commonly used with their decimal values (powers of 10). Many attempts have sought to resolve
728-409: A steady state current, but instead blocks it. The inductor is a conductor, usually a coil of wire, that stores energy in a magnetic field in response to the current through it. When the current changes, the magnetic field does too, inducing a voltage between the ends of the conductor. The induced voltage is proportional to the time rate of change of the current. The constant of proportionality
832-508: A unit of information , the bit is also known as a shannon , named after Claude E. Shannon . The symbol for the binary digit is either "bit", per the IEC 80000-13 :2008 standard, or the lowercase character "b", per the IEEE 1541-2002 standard. Use of the latter may create confusion with the capital "B" which is the international standard symbol for the byte. The encoding of data by discrete bits
936-541: A bit is usually represented by an electrical voltage or current pulse, or by the electrical state of a flip-flop circuit. For devices using positive logic , a digit value of 1 (or a logical value of true) is represented by a more positive voltage relative to the representation of 0 . Different logic families require different voltages, and variations are allowed to account for component aging and noise immunity. For example, in transistor–transistor logic (TTL) and compatible circuits, digit values 0 and 1 at
1040-404: A byte, is sometimes called a nibble , nybble or nyble. This unit is most often used in the context of hexadecimal number representations, since a nibble has the same number of possible values as one hexadecimal digit has. Computers usually manipulate bits in groups of a fixed size, conventionally called words . The number of bits in a word is usually defined by the size of the registers in
1144-456: A central role in many modern technologies, serving in electric power where electric current is used to energise equipment, and in electronics dealing with electrical circuits involving active components such as vacuum tubes , transistors , diodes and integrated circuits , and associated passive interconnection technologies. The study of electrical phenomena dates back to antiquity, with theoretical understanding progressing slowly until
SECTION 10
#17327797144631248-432: A charge of Q coulombs every t seconds passing through an electric potential ( voltage ) difference of V is where Electric power is generally supplied to businesses and homes by the electric power industry . Electricity is usually sold by the kilowatt hour (3.6 MJ) which is the product of power in kilowatts multiplied by running time in hours. Electric utilities measure power using electricity meters , which keep
1352-516: A common reference point to which potentials may be expressed and compared is useful. While this could be at infinity, a much more useful reference is the Earth itself, which is assumed to be at the same potential everywhere. This reference point naturally takes the name earth or ground . Earth is assumed to be an infinite source of equal amounts of positive and negative charge and is therefore electrically uncharged—and unchargeable. Electric potential
1456-613: A conducting path at a certain point of a circuit. In optical discs , a bit is encoded as the presence or absence of a microscopic pit on a reflective surface. In one-dimensional bar codes , bits are encoded as the thickness of alternating black and white lines. The bit is not defined in the International System of Units (SI). However, the International Electrotechnical Commission issued standard IEC 60027 , which specifies that
1560-472: A current of one amp. The capacitor is a development of the Leyden jar and is a device that can store charge, and thereby storing electrical energy in the resulting field. It consists of two conducting plates separated by a thin insulating dielectric layer; in practice, thin metal foils are coiled together, increasing the surface area per unit volume and therefore the capacitance . The unit of capacitance
1664-494: A dampened kite string and flown the kite in a storm-threatened sky . A succession of sparks jumping from the key to the back of his hand showed that lightning was indeed electrical in nature. He also explained the apparently paradoxical behavior of the Leyden jar as a device for storing large amounts of electrical charge in terms of electricity consisting of both positive and negative charges. In 1775, Hugh Williamson reported
1768-490: A digital device or other physical system that exists in either of two possible distinct states . These may be the two stable states of a flip-flop , two positions of an electrical switch , two distinct voltage or current levels allowed by a circuit , two distinct levels of light intensity , two directions of magnetization or polarization , the orientation of reversible double stranded DNA , etc. Bits can be implemented in several forms. In most modern computing devices,
1872-456: A fundamental storage principle, which was further formalized by Claude Shannon in 1945: the information that can be stored in a system is proportional to the logarithm of N possible states of that system, denoted log b N . Changing the base of the logarithm from b to a different number c has the effect of multiplying the value of the logarithm by a fixed constant, namely log c N = (log c b ) log b N . Therefore,
1976-425: A large lightning cloud may be as high as 100 MV and have discharge energies as great as 250 kWh. The field strength is greatly affected by nearby conducting objects, and it is particularly intense when it is forced to curve around sharply pointed objects. This principle is exploited in the lightning conductor , the sharp spike of which acts to encourage the lightning strike to develop there, rather than to
2080-402: A millimetre per second, the electric field that drives them itself propagates at close to the speed of light , enabling electrical signals to pass rapidly along wires. Current causes several observable effects, which historically were the means of recognising its presence. That water could be decomposed by the current from a voltaic pile was discovered by Nicholson and Carlisle in 1800,
2184-553: A more reliable source of electrical energy than the electrostatic machines previously used. The recognition of electromagnetism , the unity of electric and magnetic phenomena, is due to Hans Christian Ørsted and André-Marie Ampère in 1819–1820. Michael Faraday invented the electric motor in 1821, and Georg Ohm mathematically analysed the electrical circuit in 1827. Electricity and magnetism (and light) were definitively linked by James Clerk Maxwell , in particular in his " On Physical Lines of Force " in 1861 and 1862. While
SECTION 20
#17327797144632288-425: A positive current is defined as having the same direction of flow as any positive charge it contains, or to flow from the most positive part of a circuit to the most negative part. Current defined in this manner is called conventional current . The motion of negatively charged electrons around an electric circuit , one of the most familiar forms of current, is thus deemed positive in the opposite direction to that of
2392-420: A positive or negative electric charge produces an electric field . The motion of electric charges is an electric current and produces a magnetic field . In most applications, Coulomb's law determines the force acting on an electric charge. Electric potential is the work done to move an electric charge from one point to another within an electric field, typically measured in volts . Electricity plays
2496-891: A practical generator, but it showed the possibility of generating electric power using magnetism, a possibility that would be taken up by those that followed on from his work. An electric circuit is an interconnection of electric components such that electric charge is made to flow along a closed path (a circuit), usually to perform some useful task. The components in an electric circuit can take many forms, which can include elements such as resistors , capacitors , switches , transformers and electronics . Electronic circuits contain active components , usually semiconductors , and typically exhibit non-linear behaviour, requiring complex analysis. The simplest electric components are those that are termed passive and linear : while they may temporarily store energy, they contain no sources of it, and exhibit linear responses to stimuli. The resistor
2600-406: A process now known as electrolysis . Their work was greatly expanded upon by Michael Faraday in 1833. Current through a resistance causes localised heating, an effect James Prescott Joule studied mathematically in 1840. One of the most important discoveries relating to current was made accidentally by Hans Christian Ørsted in 1820, when, while preparing a lecture, he witnessed the current in
2704-471: A rapidly changing one. Electric power is the rate at which electric energy is transferred by an electric circuit . The SI unit of power is the watt , one joule per second . Electric power, like mechanical power , is the rate of doing work , measured in watts , and represented by the letter P . The term wattage is used colloquially to mean "electric power in watts." The electric power in watts produced by an electric current I consisting of
2808-489: A resistance is directly proportional to the potential difference across it. The resistance of most materials is relatively constant over a range of temperatures and currents; materials under these conditions are known as 'ohmic'. The ohm , the unit of resistance, was named in honour of Georg Ohm , and is symbolised by the Greek letter Ω. 1 Ω is the resistance that will produce a potential difference of one volt in response to
2912-595: A running total of the electric energy delivered to a customer. Unlike fossil fuels , electricity is a low entropy form of energy and can be converted into motion or many other forms of energy with high efficiency. Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes , transistors , diodes , sensors and integrated circuits , and associated passive interconnection technologies. The nonlinear behaviour of active components and their ability to control electron flows makes digital switching possible, and electronics
3016-431: A scientific curiosity into an essential tool for modern life. In 1887, Heinrich Hertz discovered that electrodes illuminated with ultraviolet light create electric sparks more easily. In 1905, Albert Einstein published a paper that explained experimental data from the photoelectric effect as being the result of light energy being carried in discrete quantized packets, energising electrons. This discovery led to
3120-575: A series of experiments to the Royal Society on the shocks delivered by the electric eel ; that same year the surgeon and anatomist John Hunter described the structure of the fish's electric organs . In 1791, Luigi Galvani published his discovery of bioelectromagnetics , demonstrating that electricity was the medium by which neurons passed signals to the muscles. Alessandro Volta 's battery, or voltaic pile , of 1800, made from alternating layers of zinc and copper, provided scientists with
3224-515: A series of observations on static electricity around 600 BCE, from which he believed that friction rendered amber magnetic , in contrast to minerals such as magnetite , which needed no rubbing. Thales was incorrect in believing the attraction was due to a magnetic effect, but later science would prove a link between magnetism and electricity. According to a controversial theory, the Parthians may have had knowledge of electroplating , based on
Bit - Misplaced Pages Continue
3328-477: A solid crystal (such as a germanium crystal) to detect a radio signal by the contact junction effect. In a solid-state component, the current is confined to solid elements and compounds engineered specifically to switch and amplify it. Current flow can be understood in two forms: as negatively charged electrons , and as positively charged electron deficiencies called holes . These charges and holes are understood in terms of quantum physics. The building material
3432-511: A wire disturbing the needle of a magnetic compass. He had discovered electromagnetism , a fundamental interaction between electricity and magnetics. The level of electromagnetic emissions generated by electric arcing is high enough to produce electromagnetic interference , which can be detrimental to the workings of adjacent equipment. In engineering or household applications, current is often described as being either direct current (DC) or alternating current (AC). These terms refer to how
3536-448: A wire suspended from a pivot above the magnet and dipped into the mercury. The magnet exerted a tangential force on the wire, making it circle around the magnet for as long as the current was maintained. Experimentation by Faraday in 1831 revealed that a wire moving perpendicular to a magnetic field developed a potential difference between its ends. Further analysis of this process, known as electromagnetic induction , enabled him to state
3640-402: A wire. The informal term static electricity refers to the net presence (or 'imbalance') of charge on a body, usually caused when dissimilar materials are rubbed together, transferring charge from one to the other. Charge can be measured by a number of means, an early instrument being the gold-leaf electroscope , which although still in use for classroom demonstrations, has been superseded by
3744-584: Is a scalar quantity . That is, it has only magnitude and not direction. It may be viewed as analogous to height : just as a released object will fall through a difference in heights caused by a gravitational field, so a charge will 'fall' across the voltage caused by an electric field. As relief maps show contour lines marking points of equal height, a set of lines marking points of equal potential (known as equipotentials ) may be drawn around an electrostatically charged object. The equipotentials cross all lines of force at right angles. They must also lie parallel to
3848-411: Is a vector field . The study of electric fields created by stationary charges is called electrostatics . The field may be visualised by a set of imaginary lines whose direction at any point is the same as that of the field. This concept was introduced by Faraday, whose term ' lines of force ' still sometimes sees use. The field lines are the paths that a point positive charge would seek to make as it
3952-452: Is an important difference. Gravity always acts in attraction, drawing two masses together, while the electric field can result in either attraction or repulsion. Since large bodies such as planets generally carry no net charge, the electric field at a distance is usually zero. Thus gravity is the dominant force at distance in the universe, despite being much weaker. An electric field generally varies in space, and its strength at any one point
4056-401: Is charged by the glass rod, and the other by an amber rod, the two balls are found to attract each other. These phenomena were investigated in the late eighteenth century by Charles-Augustin de Coulomb , who deduced that charge manifests itself in two opposing forms. This discovery led to the well-known axiom: like-charged objects repel and opposite-charged objects attract . The force acts on
4160-473: Is defined as negative, and that by protons is positive. Before these particles were discovered, Benjamin Franklin had defined a positive charge as being the charge acquired by a glass rod when it is rubbed with a silk cloth. A proton by definition carries a charge of exactly 1.602 176 634 × 10 coulombs . This value is also defined as the elementary charge . No object can have a charge smaller than
4264-483: Is defined as the force (per unit charge) that would be felt by a stationary, negligible charge if placed at that point. The conceptual charge, termed a ' test charge ', must be vanishingly small to prevent its own electric field disturbing the main field and must also be stationary to prevent the effect of magnetic fields . As the electric field is defined in terms of force , and force is a vector , having both magnitude and direction , it follows that an electric field
Bit - Misplaced Pages Continue
4368-486: Is in general no meaning to adding, subtracting or otherwise combining the units mathematically, although one may act as a bound on the other. Units of information used in information theory include the shannon (Sh), the natural unit of information (nat) and the hartley (Hart). One shannon is the maximum amount of information needed to specify the state of one bit of storage. These are related by 1 Sh ≈ 0.693 nat ≈ 0.301 Hart. Some authors also define
4472-531: Is integral to applications spanning transport , heating , lighting , communications , and computation , making it the foundation of modern industrial society. Long before any knowledge of electricity existed, people were aware of shocks from electric fish . Ancient Egyptian texts dating from 2750 BCE described them as the "protectors" of all other fish. Electric fish were again reported millennia later by ancient Greek , Roman and Arabic naturalists and physicians . Several ancient writers, such as Pliny
4576-406: Is mediated by the magnetic field each current produces and forms the basis for the international definition of the ampere . This relationship between magnetic fields and currents is extremely important, for it led to Michael Faraday's invention of the electric motor in 1821. Faraday's homopolar motor consisted of a permanent magnet sitting in a pool of mercury . A current was allowed through
4680-552: Is more compressed—the same bucket can hold more. For example, it is estimated that the combined technological capacity of the world to store information provides 1,300 exabytes of hardware digits. However, when this storage space is filled and the corresponding content is optimally compressed, this only represents 295 exabytes of information. When optimally compressed, the resulting carrying capacity approaches Shannon information or information entropy . Certain bitwise computer processor instructions (such as bit set ) operate at
4784-415: Is most often a crystalline semiconductor . Solid-state electronics came into its own with the emergence of transistor technology. The first working transistor, a germanium -based point-contact transistor , was invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947, followed by the bipolar junction transistor in 1948. By modern convention, the charge carried by electrons
4888-403: Is perhaps the simplest of passive circuit elements: as its name suggests, it resists the current through it, dissipating its energy as heat. The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions. Ohm's law is a basic law of circuit theory , stating that the current passing through
4992-531: Is subjected to transients , such as when first energised. The concept of the electric field was introduced by Michael Faraday . An electric field is created by a charged body in the space that surrounds it, and results in a force exerted on any other charges placed within the field. The electric field acts between two charges in a similar manner to the way that the gravitational field acts between two masses , and like it, extends towards infinity and shows an inverse square relationship with distance. However, there
5096-406: Is termed the inductance . The unit of inductance is the henry , named after Joseph Henry , a contemporary of Faraday. One henry is the inductance that will induce a potential difference of one volt if the current through it changes at a rate of one ampere per second. The inductor's behaviour is in some regards converse to that of the capacitor: it will freely allow an unchanging current, but opposes
5200-415: Is the farad , named after Michael Faraday , and given the symbol F : one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as the capacitor fills, eventually falling to zero. A capacitor will therefore not permit
5304-430: Is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge . Electricity is related to magnetism , both being part of the phenomenon of electromagnetism , as described by Maxwell's equations . Common phenomena are related to electricity, including lightning , static electricity , electric heating , electric discharges and many others. The presence of either
SECTION 50
#17327797144635408-489: Is the unit byte , coined by Werner Buchholz in June 1956, which historically was used to represent the group of bits used to encode a single character of text (until UTF-8 multibyte encoding took over) in a computer and for this reason it was used as the basic addressable element in many computer architectures . The trend in hardware design converged on the most common implementation of using eight bits per byte, as it
5512-529: Is therefore 0 at all places inside the body. This is the operating principal of the Faraday cage , a conducting metal shell which isolates its interior from outside electrical effects. The principles of electrostatics are important when designing items of high-voltage equipment. There is a finite limit to the electric field strength that may be withstood by any medium. Beyond this point, electrical breakdown occurs and an electric arc causes flashover between
5616-409: Is usually measured in volts , and one volt is the potential for which one joule of work must be expended to bring a charge of one coulomb from infinity. This definition of potential, while formal, has little practical application, and a more useful concept is that of electric potential difference , and is the energy required to move a unit charge between two specified points. An electric field has
5720-536: Is widely used in information processing , telecommunications , and signal processing . Interconnection technologies such as circuit boards , electronics packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed components into a regular working system . Today, most electronic devices use semiconductor components to perform electron control. The underlying principles that explain how semiconductors work are studied in solid state physics , whereas
5824-451: Is widely used today. However, because of the ambiguity of relying on the underlying hardware design, the unit octet was defined to explicitly denote a sequence of eight bits. Computers usually manipulate bits in groups of a fixed size, conventionally named " words ". Like the byte, the number of bits in a word also varies with the hardware design, and is typically between 8 and 80 bits, or even more in some specialized computers. In
5928-721: The Neo-Latin word electricus ("of amber" or "like amber", from ἤλεκτρον, elektron , the Greek word for "amber") to refer to the property of attracting small objects after being rubbed. This association gave rise to the English words "electric" and "electricity", which made their first appearance in print in Thomas Browne 's Pseudodoxia Epidemica of 1646. Isaac Newton made early investigations into electricity, with an idea of his written down in his book Opticks arguably
6032-423: The electromagnetic force , one of the four fundamental forces of nature. Experiment has shown charge to be a conserved quantity , that is, the net charge within an electrically isolated system will always remain constant regardless of any changes taking place within that system. Within the system, charge may be transferred between bodies, either by direct contact, or by passing along a conducting material, such as
6136-460: The entropy of random variables. The most commonly used units of data storage capacity are the bit , the capacity of a system that has only two states, and the byte (or octet ), which is equivalent to eight bits. Multiples of these units can be formed from these with the SI prefixes (power-of-ten prefixes) or the newer IEC binary prefixes (power-of-two prefixes). In 1928, Ralph Hartley observed
6240-522: The quantum revolution. Einstein was awarded the Nobel Prize in Physics in 1921 for "his discovery of the law of the photoelectric effect". The photoelectric effect is also employed in photocells such as can be found in solar panels . The first solid-state device was the " cat's-whisker detector " first used in the 1900s in radio receivers. A whisker-like wire is placed lightly in contact with
6344-452: The strong interaction , but unlike that force it operates over all distances. In comparison with the much weaker gravitational force , the electromagnetic force pushing two electrons apart is 10 times that of the gravitational attraction pulling them together. Charge originates from certain types of subatomic particles , the most familiar carriers of which are the electron and proton . Electric charge gives rise to and interacts with
SECTION 60
#17327797144636448-409: The yottabit (Ybit). When the information capacity of a storage system or a communication channel is presented in bits or bits per second , this often refers to binary digits, which is a computer hardware capacity to store binary data ( 0 or 1 , up or down, current or not, etc.). Information capacity of a storage system is only an upper bound to the quantity of information stored therein. If
6552-541: The 17th and 18th centuries. The development of the theory of electromagnetism in the 19th century marked significant progress, leading to electricity's industrial and residential application by electrical engineers by the century's end. This rapid expansion in electrical technology at the time was the driving force behind the Second Industrial Revolution , with electricity's versatility driving transformations in both industry and society. Electricity
6656-545: The 1936 discovery of the Baghdad Battery , which resembles a galvanic cell , though it is uncertain whether the artifact was electrical in nature. Electricity would remain little more than an intellectual curiosity for millennia until 1600, when the English scientist William Gilbert wrote De Magnete , in which he made a careful study of electricity and magnetism, distinguishing the lodestone effect from static electricity produced by rubbing amber. He coined
6760-407: The 1950s and 1960s, these methods were largely supplanted by magnetic storage devices such as magnetic-core memory , magnetic tapes , drums , and disks , where a bit was represented by the polarity of magnetization of a certain area of a ferromagnetic film, or by a change in polarity from one direction to the other. The same principle was later used in the magnetic bubble memory developed in
6864-418: The 1980s, and is still found in various magnetic strip items such as metro tickets and some credit cards . In modern semiconductor memory , such as dynamic random-access memory , the two values of a bit may be represented by two levels of electric charge stored in a capacitor . In certain types of programmable logic arrays and read-only memory , a bit may be represented by the presence or absence of
6968-656: The Elder and Scribonius Largus , attested to the numbing effect of electric shocks delivered by electric catfish and electric rays , and knew that such shocks could travel along conducting objects. Patients with ailments such as gout or headache were directed to touch electric fish in the hope that the powerful jolt might cure them. Ancient cultures around the Mediterranean knew that certain objects, such as rods of amber , could be rubbed with cat's fur to attract light objects like feathers. Thales of Miletus made
7072-424: The average. This principle is the basis of data compression technology. Using an analogy, the hardware binary digits refer to the amount of storage space available (like the number of buckets available to store things), and the information content the filling, which comes in different levels of granularity (fine or coarse, that is, compressed or uncompressed information). When the granularity is finer—when information
7176-408: The beginning of the field theory of the electric force. Further work was conducted in the 17th and early 18th centuries by Otto von Guericke , Robert Boyle , Stephen Gray and C. F. du Fay . Later in the 18th century, Benjamin Franklin conducted extensive research in electricity, selling his possessions to fund his work. In June 1752 he is reputed to have attached a metal key to the bottom of
7280-419: The building it serves to protect. The concept of electric potential is closely linked to that of the electric field. A small charge placed within an electric field experiences a force, and to have brought that charge to that point against the force requires work . The electric potential at any point is defined as the energy required to bring a unit test charge from an infinite distance slowly to that point. It
7384-414: The capacities of computer memories and some storage units are often multiples of some large power of two, such as 2 = 268 435 456 bytes. To avoid such unwieldy numbers, people have often repurposed the SI prefixes to mean the nearest power of two, e.g., using the prefix kilo for 2 = 1024, mega for 2 = 1 048 576 , and giga for 2 = 1 073 741 824 , and so on. For example,
7488-426: The charged particles themselves, hence charge has a tendency to spread itself as evenly as possible over a conducting surface. The magnitude of the electromagnetic force, whether attractive or repulsive, is given by Coulomb's law , which relates the force to the product of the charges and has an inverse-square relation to the distance between them. The electromagnetic force is very strong, second only in strength to
7592-450: The charged parts. Air, for example, tends to arc across small gaps at electric field strengths which exceed 30 kV per centimetre. Over larger gaps, its breakdown strength is weaker, perhaps 1 kV per centimetre. The most visible natural occurrence of this is lightning , caused when charge becomes separated in the clouds by rising columns of air, and raises the electric field in the air to greater than it can withstand. The voltage of
7696-564: The choice of the base b determines the unit used to measure information. In particular, if b is a positive integer, then the unit is the amount of information that can be stored in a system with b possible states. When b is 2, the unit is the shannon , equal to the information content of one "bit" (a portmanteau of binary digit ). A system with 8 possible states, for example, can store up to log 2 8 = 3 bits of information. Other units that have been named include: The trit, ban, and nat are rarely used to measure storage capacity; but
7800-869: The computer's CPU , or by the number of data bits that are fetched from its main memory in a single operation. In the IA-32 architecture more commonly known as x86-32, a word is 32 bits, but other past and current architectures use words with 4, 8, 9, 12, 13, 16, 18, 20, 21, 22, 24, 25, 29, 30, 31, 32, 33, 35, 36, 38, 39, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 72 bits or others. Some machine instructions and computer number formats use two words (a "double word" or "dword"), or four words (a "quad word" or "quad"). Computer memory caches usually operate on blocks of memory that consist of several consecutive words. These units are customarily called cache blocks , or, in CPU caches , cache lines . Virtual memory systems partition
7904-636: The computer's main storage into even larger units, traditionally called pages . Terms for large quantities of bits can be formed using the standard range of SI prefixes for powers of 10, e.g., kilo = 10 = 1000 (as in kilobit or kbit), mega = 10 = 1 000 000 (as in megabit or Mbit) and giga = 10 = 1 000 000 000 (as in gigabit or Gbit). These prefixes are more often used for multiples of bytes, as in kilobyte (1 kB = 8000 bit), megabyte (1 MB = 8 000 000 bit ), and gigabyte (1 GB = 8 000 000 000 bit ). However, for technical reasons,
8008-641: The confusion by providing alternative notations for power-of-two multiples. The International Electrotechnical Commission (IEC) issued a standard for this purpose by defining a series of binary prefixes that use 1024 instead of 1000 as the main radix: The JEDEC memory standard JESD88F notes that the definitions of kilo (K), giga (G), and mega (M) based on powers of two are included only to reflect common usage, but are otherwise deprecated. Several other units of information storage have been named: Some of these names are jargon , obsolete, or used only in very restricted contexts. Electricity Electricity
8112-411: The current varies in time. Direct current, as produced by example from a battery and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative. If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction. Alternating current is any current that reverses direction repeatedly; almost always this takes
8216-516: The design and construction of electronic circuits to solve practical problems are part of electronics engineering . Faraday's and Ampère's work showed that a time-varying magnetic field created an electric field, and a time-varying electric field created a magnetic field. Thus, when either field is changing in time, a field of the other is always induced. These variations are an electromagnetic wave . Electromagnetic waves were analysed theoretically by James Clerk Maxwell in 1864. Maxwell developed
8320-478: The early 19th century had seen rapid progress in electrical science, the late 19th century would see the greatest progress in electrical engineering . Through such people as Alexander Graham Bell , Ottó Bláthy , Thomas Edison , Galileo Ferraris , Oliver Heaviside , Ányos Jedlik , William Thomson, 1st Baron Kelvin , Charles Algernon Parsons , Werner von Siemens , Joseph Swan , Reginald Fessenden , Nikola Tesla and George Westinghouse , electricity turned from
8424-413: The early 21st century, retail personal or server computers have a word size of 32 or 64 bits. The International System of Units defines a series of decimal prefixes for multiples of standardized units which are commonly also used with the bit and the byte. The prefixes kilo (10) through yotta (10) increment by multiples of one thousand, and the corresponding units are the kilobit (kbit) through
8528-427: The effect was reciprocal: a current exerts a force on a magnet, and a magnetic field exerts a force on a current. The phenomenon was further investigated by Ampère , who discovered that two parallel current-carrying wires exerted a force upon each other: two wires conducting currents in the same direction are attracted to each other, while wires containing currents in opposite directions are forced apart. The interaction
8632-448: The electronic electrometer . The movement of electric charge is known as an electric current , the intensity of which is usually measured in amperes . Current can consist of any moving charged particles; most commonly these are electrons, but any charge in motion constitutes a current. Electric current can flow through some things, electrical conductors , but will not flow through an electrical insulator . By historical convention,
8736-416: The electrons. However, depending on the conditions, an electric current can consist of a flow of charged particles in either direction, or even in both directions at once. The positive-to-negative convention is widely used to simplify this situation. The process by which electric current passes through a material is termed electrical conduction , and its nature varies with that of the charged particles and
8840-428: The elementary charge, and any amount of charge an object may carry is a multiple of the elementary charge. An electron has an equal negative charge, i.e. −1.602 176 634 × 10 coulombs . Charge is possessed not just by matter , but also by antimatter , each antiparticle bearing an equal and opposite charge to its corresponding particle. The presence of charge gives rise to an electrostatic force: charges exert
8944-495: The form of a sine wave . Alternating current thus pulses back and forth within a conductor without the charge moving any net distance over time. The time-averaged value of an alternating current is zero, but it delivers energy in first one direction, and then the reverse. Alternating current is affected by electrical properties that are not observed under steady state direct current, such as inductance and capacitance . These properties however can become important when circuitry
9048-409: The level of manipulating bits rather than manipulating data interpreted as an aggregate of bits. In the 1980s, when bitmapped computer displays became popular, some computers provided specialized bit block transfer instructions to set or copy the bits that corresponded to a given rectangular area on the screen. In most computers and programming languages, when a bit within a group of bits, such as
9152-400: The material through which they are travelling. Examples of electric currents include metallic conduction, where electrons flow through a conductor such as metal, and electrolysis , where ions (charged atoms ) flow through liquids, or through plasmas such as electrical sparks. While the particles themselves can move quite slowly, sometimes with an average drift velocity only fractions of
9256-649: The nat, in particular, is often used in information theory, because natural logarithms are mathematically more convenient than logarithms in other bases. Several conventional names are used for collections or groups of bits. Historically, a byte was the number of bits used to encode a character of text in the computer, which depended on computer hardware architecture, but today it almost always means eight bits – that is, an octet . An 8-bit byte can represent 256 (2 ) distinct values, such as non-negative integers from 0 to 255, or signed integers from −128 to 127. The IEEE 1541-2002 standard specifies "B" (upper case) as
9360-473: The output of a device are represented by no higher than 0.4 V and no lower than 2.6 V, respectively; while TTL inputs are specified to recognize 0.8 V or below as 0 and 2.2 V or above as 1 . Bits are transmitted one at a time in serial transmission , and by a multiple number of bits in parallel transmission . A bitwise operation optionally processes bits one at a time. Data transfer rates are usually measured in decimal SI multiples of
9464-443: The physical states of the underlying storage or device is a matter of convention, and different assignments may be used even within the same device or program . It may be physically implemented with a two-state device. A contiguous group of binary digits is commonly called a bit string , a bit vector, or a single-dimensional (or multi-dimensional) bit array . A group of eight bits is called one byte , but historically
9568-428: The principle, now known as Faraday's law of induction , that the potential difference induced in a closed circuit is proportional to the rate of change of magnetic flux through the loop. Exploitation of this discovery enabled him to invent the first electrical generator in 1831, in which he converted the mechanical energy of a rotating copper disc to electrical energy. Faraday's disc was inefficient and of no use as
9672-420: The size of the byte is not strictly defined. Frequently, half, full, double and quadruple words consist of a number of bytes which is a low power of two. A string of four bits is usually a nibble . In information theory , one bit is the information entropy of a random binary variable that is 0 or 1 with equal probability, or the information that is gained when the value of such a variable becomes known. As
9776-454: The special property that it is conservative , which means that the path taken by the test charge is irrelevant: all paths between two specified points expend the same energy, and thus a unique value for potential difference may be stated. The volt is so strongly identified as the unit of choice for measurement and description of electric potential difference that the term voltage sees greater everyday usage. For practical purposes, defining
9880-415: The states of electrical relays which could be either "open" or "closed". When relays were replaced by vacuum tubes , starting in the 1940s, computer builders experimented with a variety of storage methods, such as pressure pulses traveling down a mercury delay line , charges stored on the inside surface of a cathode-ray tube , or opaque spots printed on glass discs by photolithographic techniques. In
9984-553: The symbol for binary digit should be 'bit', and this should be used in all multiples, such as 'kbit', for kilobit. However, the lower-case letter 'b' is widely used as well and was recommended by the IEEE 1541 Standard (2002) . In contrast, the upper case letter 'B' is the standard and customary symbol for byte. Multiple bits may be expressed and represented in several ways. For convenience of representing commonly reoccurring groups of bits in information technology, several units of information have traditionally been used. The most common
10088-511: The symbol for byte ( IEC 80000-13 uses "o" for octet in French, but also allows "B" in English). Bytes, or multiples thereof, are almost always used to specify the sizes of computer files and the capacity of storage units. Most modern computers and peripheral devices are designed to manipulate data in whole bytes or groups of bytes, rather than individual bits. A group of four bits, or half
10192-418: The two forces of nature then known. The force on the compass needle did not direct it to or away from the current-carrying wire, but acted at right angles to it. Ørsted's words were that "the electric conflict acts in a revolving manner." The force also depended on the direction of the current, for if the flow was reversed, then the force did too. Ørsted did not fully understand his discovery, but he observed
10296-556: The two possible values of one bit of storage are not equally likely, that bit of storage contains less than one bit of information. If the value is completely predictable, then the reading of that value provides no information at all (zero entropic bits, because no resolution of uncertainty occurs and therefore no information is available). If a computer file that uses n bits of storage contains only m < n bits of information, then that information can in principle be encoded in about m bits, at least on
10400-507: The unit bit per second (bit/s), such as kbit/s. In the earliest non-electronic information processing devices, such as Jacquard's loom or Babbage's Analytical Engine , a bit was often stored as the position of a mechanical lever or gear, or the presence or absence of a hole at a specific point of a paper card or tape . The first electrical devices for discrete logic (such as elevator and traffic light control circuits , telephone switches , and Konrad Zuse's computer) represented bits as
10504-417: The vector direction of the field is the line of greatest slope of potential, and where the equipotentials lie closest together. Ørsted's discovery in 1821 that a magnetic field existed around all sides of a wire carrying an electric current indicated that there was a direct relationship between electricity and magnetism. Moreover, the interaction seemed different from gravitational and electrostatic forces,
10608-574: Was also used in Morse code (1844) and early digital communications machines such as teletypes and stock ticker machines (1870). Ralph Hartley suggested the use of a logarithmic measure of information in 1928. Claude E. Shannon first used the word "bit" in his seminal 1948 paper " A Mathematical Theory of Communication ". He attributed its origin to John W. Tukey , who had written a Bell Labs memo on 9 January 1947 in which he contracted "binary information digit" to simply "bit". A bit can be stored by
10712-543: Was forced to move within the field; they are however an imaginary concept with no physical existence, and the field permeates all the intervening space between the lines. Field lines emanating from stationary charges have several key properties: first, that they originate at positive charges and terminate at negative charges; second, that they must enter any good conductor at right angles, and third, that they may never cross nor close in on themselves. A hollow conducting body carries all its charge on its outer surface. The field
10816-541: Was used in the punched cards invented by Basile Bouchon and Jean-Baptiste Falcon (1732), developed by Joseph Marie Jacquard (1804), and later adopted by Semyon Korsakov , Charles Babbage , Herman Hollerith , and early computer manufacturers like IBM . A variant of that idea was the perforated paper tape . In all those systems, the medium (card or tape) conceptually carried an array of hole positions; each position could be either punched through or not, thus carrying one bit of information. The encoding of text by bits
#462537