Blue Mesa Dam is a 390-foot-tall (120 m) zoned earthfill dam on the Gunnison River in Colorado . It creates Blue Mesa Reservoir , and is within Curecanti National Recreation Area just before the river enters the Black Canyon of the Gunnison . The dam is upstream of the Morrow Point Dam . Blue Mesa Dam and reservoir are part of the Bureau of Reclamation's Wayne N. Aspinall Unit of the Colorado River Storage Project , which retains the waters of the Colorado River and its tributaries for agricultural and municipal use in the American Southwest. Although the dam does produce hydroelectric power, its primary purpose is water storage . State Highway 92 passes over the top of the dam. Blue Mesa Dam houses two turbine generators and produces an average of 264,329,000 kilowatt-hours each year.
69-552: The dam stands in an area where sandstone and shale overlay pre-Cambrian granite , schist and gneiss . It is situated at a narrows in the river valley where the Gunnison enters the upper reaches of the Black Canyon of the Gunnison . The dam has a volume of 3,080,000 cubic yards (2,350,000 m) and the spillway intake structure has two radial gates. These discharge into a concrete-lined tunnel which in turn discharges through
138-563: A basaltic magma to a granitic magma, but the quantities produced are small. For example, granitic rock makes up just 4% of the exposures in the South Sandwich Islands . In continental arc settings, granitic rocks are the most common plutonic rocks, and batholiths composed of these rock types extend the entire length of the arc. There are no indication of magma chambers where basaltic magmas differentiate into granites, or of cumulates produced by mafic crystals settling out of
207-520: A diapir it would expend far too much energy in heating wall rocks, thus cooling and solidifying before reaching higher levels within the crust. Fracture propagation is the mechanism preferred by many geologists as it largely eliminates the major problems of moving a huge mass of magma through cold brittle crust. Magma rises instead in small channels along self-propagating dykes which form along new or pre-existing fracture or fault systems and networks of active shear zones. As these narrow conduits open,
276-571: A flip bucket into a stilling basin. The Curecanti Project (later renamed the Wayne N. Aspinall Project) was conceived in 1955, initially with four dams. It was approved by the Secretary of the Interior in 1959, comprising Blue Mesa Dam and Morrow Point Dam. Crystal Dam's design was unfinished and was approved in 1962. Plans for a fourth dam were dropped as uneconomical. The project was restricted to
345-610: A granite that is derived from partial melting of metasedimentary rocks may have more alkali feldspar, whereas a granite derived from partial melting of metaigneous rocks may be richer in plagioclase. It is on this basis that the modern "alphabet" classification schemes are based. The letter-based Chappell & White classification system was proposed initially to divide granites into I-type (igneous source) granite and S-type (sedimentary sources). Both types are produced by partial melting of crustal rocks, either metaigneous rocks or metasedimentary rocks. I-type granites are characterized by
414-565: A high content of sodium and calcium, and by a strontium isotope ratio, Sr/ Sr, of less than 0.708. Sr is produced by radioactive decay of Rb, and since rubidium is concentrated in the crust relative to the mantle, a low ratio suggests origin in the mantle. The elevated sodium and calcium favor crystallization of hornblende rather than biotite. I-type granites are known for their porphyry copper deposits. I-type granites are orogenic (associated with mountain building) and usually metaluminous. S-type granites are sodium-poor and aluminum-rich. As
483-452: A horizontal line representing 37.5% quartz and then plotting a point on it 60% of the way across from the A side to the P side. For this example the rock can be classified as a Monzogranite. And, a plutonic rock that contains no feldspathoids (F group), no alkali feldspar (A group), but contains plagioclase-feldspar (P group), many pyroxenes (not labeled in a QAPF diagram), and few quartz grains (Q group)—is probably gabbro; (see right edge of
552-824: A much higher proportion of clay with the Cecil soil series a prime example of the consequent Ultisol great soil group. Granite is a natural source of radiation , like most natural stones. Potassium-40 is a radioactive isotope of weak emission, and a constituent of alkali feldspar , which in turn is a common component of granitic rocks, more abundant in alkali feldspar granite and syenites . Some granites contain around 10 to 20 parts per million (ppm) of uranium . By contrast, more mafic rocks, such as tonalite, gabbro and diorite , have 1 to 5 ppm uranium, and limestones and sedimentary rocks usually have equally low amounts. Many large granite plutons are sources for palaeochannel -hosted or roll front uranium ore deposits , where
621-536: A peculiar mineralogy and geochemistry, with particularly high silicon and potassium at the expense of calcium and magnesium and a high content of high field strength cations (cations with a small radius and high electrical charge, such as zirconium , niobium , tantalum , and rare earth elements .) They are not orogenic, forming instead over hot spots and continental rifting, and are metaluminous to mildly peralkaline and iron-rich. These granites are produced by partial melting of refractory lithology such as granulites in
690-568: A range of hills, formed by the metamorphic aureole or hornfels . Granite often occurs as relatively small, less than 100 km stock masses ( stocks ) and in batholiths that are often associated with orogenic mountain ranges. Small dikes of granitic composition called aplites are often associated with the margins of granitic intrusions . In some locations, very coarse-grained pegmatite masses occur with granite. Granite forms from silica-rich ( felsic ) magmas. Felsic magmas are thought to form by addition of heat or water vapor to rock of
759-415: A result, they contain micas such as biotite and muscovite instead of hornblende. Their strontium isotope ratio is typically greater than 0.708, suggesting a crustal origin. They also commonly contain xenoliths of metamorphosed sedimentary rock, and host tin ores. Their magmas are water-rich, and they readily solidify as the water outgasses from the magma at lower pressure, so they less commonly make it to
SECTION 10
#1732772524142828-407: A rock identified as having, say, 20% mica, 30% quartz (Q), 30% alkali feldspar (A), and 20% plagioclase (P), the mica is disregarded, and the normalized ratios (proportions) of the Q, A, and P groups are calculated as 37.5%, 37.5% and 25% = 100%. Of these, the (again) normalised relative proportions of A and P are 37.5/62.5 = 60% and 25/62.5 = 40%. The rock can now be plotted on the diagram by finding
897-466: Is grus , which is often made up of coarse-grained fragments of disintegrated granite. Climatic variations also influence the weathering rate of granites. For about two thousand years, the relief engravings on Cleopatra's Needle obelisk had survived the arid conditions of its origin before its transfer to London. Within two hundred years, the red granite has drastically deteriorated in the damp and polluted air there. Soil development on granite reflects
966-545: Is microgranite . The extrusive igneous rock equivalent of granite is rhyolite . Granitic rock is widely distributed throughout the continental crust . Much of it was intruded during the Precambrian age; it is the most abundant basement rock that underlies the relatively thin sedimentary veneer of the continents. Outcrops of granite tend to form tors , domes or bornhardts , and rounded massifs . Granites sometimes occur in circular depressions surrounded by
1035-517: Is 3–6·10 Pa·s. The melting temperature of dry granite at ambient pressure is 1215–1260 °C (2219–2300 °F); it is strongly reduced in the presence of water, down to 650 °C at a few hundred megapascals of pressure. Granite has poor primary permeability overall, but strong secondary permeability through cracks and fractures if they are present. A worldwide average of the chemical composition of granite, by weight percent, based on 2485 analyses: The medium-grained equivalent of granite
1104-410: Is an excess of aluminum beyond what can be taken up in feldspars (Al 2 O 3 > CaO + K 2 O + Na 2 O) are described as peraluminous , and they contain aluminum-rich minerals such as muscovite . The average density of granite is between 2.65 and 2.75 g/cm (165 and 172 lb/cu ft), its compressive strength usually lies above 200 MPa (29,000 psi), and its viscosity near STP
1173-637: Is believed to have a mass of around 81 tonnes. It was the tallest temple in south India. Imperial Roman granite was quarried mainly in Egypt, and also in Turkey, and on the islands of Elba and Giglio . Granite became "an integral part of the Roman language of monumental architecture". The quarrying ceased around the third century AD. Beginning in Late Antiquity the granite was reused, which since at least
1242-434: Is called a binary or two-mica granite. Two-mica granites are typically high in potassium and low in plagioclase, and are usually S-type granites or A-type granites, as described below . Another aspect of granite classification is the ratios of metals that potentially form feldspars. Most granites have a composition such that almost all their aluminum and alkali metals (sodium and potassium) are combined as feldspar. This
1311-410: Is common in the continental crust of Earth, where it is found in igneous intrusions . These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers. Granite is typical of a larger family of granitic rocks , or granitoids , that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by
1380-475: Is drawn as two mutually exclusive triangle plots , i.e., QAP and FAP. These are joined along one side such that, between them, each of the two triangle plots exclude either the Q group or F group minerals. (Other mineral groups may occur in samples, but they are disregarded in this classification method.) To use this classification method, the concentrations (the modes) of the four mineral groups must be determined or estimated, and then normalized to 100%. Thus, for
1449-433: Is limited by the amount of thermal energy available, which must be replenished by crystallization of higher-melting minerals in the magma. Thus, the magma is melting crustal rock at its roof while simultaneously crystallizing at its base. This results in steady contamination with crustal material as the magma rises. This may not be evident in the major and minor element chemistry, since the minerals most likely to crystallize at
SECTION 20
#17327725241421518-415: Is located above ground at the toe of the dam. It operates as a peaking plant . Granite Granite ( / ˈ ɡ r æ n ɪ t / GRAN -it ) is a coarse-grained ( phaneritic ) intrusive igneous rock composed mostly of quartz , alkali feldspar , and plagioclase . It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It
1587-404: Is permeated by sheets and channels of light granitic rock (the leucosome ). The leucosome is interpreted as partial melt of a parent rock that has begun to separate from the remaining solid residue (the melanosome). If enough partial melt is produced, it will separate from the source rock, become more highly evolved through fractional crystallization during its ascent toward the surface, and become
1656-454: Is relieved when overlying material is removed by erosion or other processes. Chemical weathering of granite occurs when dilute carbonic acid , and other acids present in rain and soil waters, alter feldspar in a process called hydrolysis . As demonstrated in the following reaction, this causes potassium feldspar to form kaolinite , with potassium ions, bicarbonate, and silica in solution as byproducts. An end product of granite weathering
1725-411: Is some concern that some granite sold as countertops or building material may be hazardous to health. Dan Steck of St. Johns University has stated that approximately 5% of all granite is of concern, with the caveat that only a tiny percentage of the tens of thousands of granite slab types have been tested. Resources from national geological survey organizations are accessible online to assist in assessing
1794-479: Is that magma will rise through the crust as a single mass through buoyancy . As it rises, it heats the wall rocks , causing them to behave as a power-law fluid and thus flow around the intrusion allowing it to pass without major heat loss. This is entirely feasible in the warm, ductile lower crust where rocks are easily deformed, but runs into problems in the upper crust which is far colder and more brittle. Rocks there do not deform so easily: for magma to rise as
1863-410: Is the case when K 2 O + Na 2 O + CaO > Al 2 O 3 > K 2 O + Na 2 O. Such granites are described as normal or metaluminous . Granites in which there is not enough aluminum to combine with all the alkali oxides as feldspar (Al 2 O 3 < K 2 O + Na 2 O) are described as peralkaline , and they contain unusual sodium amphiboles such as riebeckite . Granites in which there
1932-459: Is typically orthoclase or microcline and is often perthitic . The plagioclase is typically sodium-rich oligoclase . Phenocrysts are usually alkali feldspar. Granitic rocks are classified according to the QAPF diagram for coarse grained plutonic rocks and are named according to the percentage of quartz , alkali feldspar ( orthoclase , sanidine , or microcline ) and plagioclase feldspar on
2001-428: Is uncommon, is classified simply as quartz-rich granitoid or, if composed almost entirely of quartz, as quartzolite . True granites are further classified by the percentage of their total feldspar that is alkali feldspar. Granites whose feldspar is 65% to 90% alkali feldspar are syenogranites , while the feldspar in monzogranite is 35% to 65% alkali feldspar. A granite containing both muscovite and biotite micas
2070-458: The TAS classification (Total-Alkali-Silica) is used. TAS is also used if volcanic rock contains volcanic glass (such as obsidian ). QAPF diagrams are not used if mafic minerals make up more than 90% of the rock composition (for example: peridotites and pyroxenites ). Instead, an alternate triangle plot diagram is used; (see Streckeisen diagram, lower right.) An exact name can be given only if
2139-571: The A-Q-P half of the diagram. True granite (according to modern petrologic convention) contains between 20% and 60% quartz by volume, with 35% to 90% of the total feldspar consisting of alkali feldspar . Granitic rocks poorer in quartz are classified as syenites or monzonites , while granitic rocks dominated by plagioclase are classified as granodiorites or tonalites . Granitic rocks with over 90% alkali feldspar are classified as alkali feldspar granites . Granitic rock with more than 60% quartz, which
Blue Mesa Dam - Misplaced Pages Continue
2208-615: The European Union safety standards (section 4.1.1.1 of the National Health and Engineering study) and radon emission levels well below the average outdoor radon concentrations in the US. Granite and related marble industries are considered one of the oldest industries in the world, existing as far back as Ancient Egypt . Major modern exporters of granite include China, India, Italy, Brazil, Canada, Germany, Sweden, Spain and
2277-639: The Mohs hardness scale) , and tough. These properties have made granite a widespread construction stone throughout human history. The word "granite" comes from the Latin granum , a grain, in reference to the coarse-grained structure of such a completely crystalline rock. Granitic rocks mainly consist of feldspar , quartz , mica , and amphibole minerals , which form an interlocking, somewhat equigranular matrix of feldspar and quartz with scattered darker biotite mica and amphibole (often hornblende ) peppering
2346-492: The Streckeisen diagram, at side P). This diagram makes no distinction between rock types at the same QAPF plot position and classification, but of different bulk chemical compositions with respect to other minerals such as olivine, pyroxenes, amphiboles or micas. For example, because non-Q, -A, -P and -F minerals are disregarded the system does not distinguish between gabbro , diorite , and anorthosite . The QAPF diagram
2415-511: The United States. The Red Pyramid of Egypt ( c. 2590 BC ), named for the light crimson hue of its exposed limestone surfaces, is the third largest of Egyptian pyramids . Pyramid of Menkaure , likely dating 2510 BC, was constructed of limestone and granite blocks. The Great Pyramid of Giza (c. 2580 BC ) contains a huge granite sarcophagus fashioned of "Red Aswan Granite". The mostly ruined Black Pyramid dating from
2484-419: The base of the chamber are the same ones that would crystallize anyway, but crustal assimilation is detectable in isotope ratios. Heat loss to the country rock means that ascent by assimilation is limited to distance similar to the height of the magma chamber. Physical weathering occurs on a large scale in the form of exfoliation joints , which are the result of granite's expanding and fracturing as pressure
2553-418: The big difference in rheology between mafic and felsic magmas makes this process problematic in nature. Granitization is an old, and largely discounted, hypothesis that granite is formed in place through extreme metasomatism . The idea behind granitization was that fluids would supposedly bring in elements such as potassium, and remove others, such as calcium, to transform a metamorphic rock into granite. This
2622-573: The dam's foundation started in March 1963. The Gunnison was diverted through its tunnel in October, with excavation of the foundation to bedrock immediately after. Placement of the dam embankments started in 1964, and continued through the year, with the dam embankment completed at the end of 1965. The diversion tunnel was partly closed in December and the reservoir began to fill, with the final closure of
2691-490: The damage, while a uniform and largely cosmetic covering of riprap was applied to the dam face. The Blue Mesa Powerplant is fed by one 16-foot (4.9 m) diameter penstock , which supplies two turbines, as well as feeding the outlet works. The laterals feeding the Francis turbines are controlled by 156-inch (4.0 m) butterfly valves. The initial generating capacity was 60 MW, increased in 1988 to 86.4 MW. The powerplant
2760-425: The diagrams in classifying igneous, especially plutonic rocks. QAPF diagrams are mostly used to classify plutonic rocks ( phaneritic rocks), and can be used to classify volcanic rocks ( aphanitic rocks ) if modal mineralogical compositions have been determined. But QAPF diagrams are not used to classify pyroclastic rocks or volcanic rocks if modal mineralogical compositions are not determined . There
2829-536: The diversion tunnel on February 7, 1966. The dam project was declared complete on October 19, 1966. The powerplant project was delayed by a delivery accident to a transformer, which was damaged in an accident in September 1966 near Monarch Pass and had to be shipped back to its manufacturer in Sweden for repair. The powerplant was completed on February 16, 1968. Spillway modifications took place in 1984-85 to repair
Blue Mesa Dam - Misplaced Pages Continue
2898-404: The division between S-type (produced by underplating) and I-type (produced by injection and differentiation) granites, discussed below. The composition and origin of any magma that differentiates into granite leave certain petrological evidence as to what the granite's parental rock was. The final texture and composition of a granite are generally distinctive as to its parental rock. For instance,
2967-473: The early 16th century became known as spolia . Through the process of case-hardening , granite becomes harder with age. The technology required to make tempered metal chisels was largely forgotten during the Middle Ages. As a result, Medieval stoneworkers were forced to use saws or emery to shorten ancient columns or hack them into discs. Giorgio Vasari noted in the 16th century that granite in quarries
3036-579: The first magma to enter solidifies and provides a form of insulation for later magma. These mechanisms can operate in tandem. For example, diapirs may continue to rise through the brittle upper crust through stoping , where the granite cracks the roof rocks, removing blocks of the overlying crust which then sink to the bottom of the diapir while the magma rises to take their place. This can occur as piecemeal stopping (stoping of small blocks of chamber roof), as cauldron subsidence (collapse of large blocks of chamber roof), or as roof foundering (complete collapse of
3105-570: The four mineral groups used for classification in a QAPF diagram. The percentages (ratios) of the Q, A, P and F groups are normalized, i.e., recalculated so that their sum is 100%. QAPF diagrams are created by the International Union of Geological Sciences (IUGS): Subcommission on the Systematics of Igneous Rocks as fostered by Albert Streckeisen (whence their alternative name: Streckeisen diagrams). Geologists worldwide use
3174-713: The grotto is a highly regarded piece of Buddhist art , and along with the temple complex to which it belongs, Seokguram was added to the UNESCO World Heritage List in 1995. Rajaraja Chola I of the Chola Dynasty in South India built the world's first temple entirely of granite in the 11th century AD in Tanjore , India . The Brihadeeswarar Temple dedicated to Lord Shiva was built in 1010. The massive Gopuram (ornate, upper section of shrine)
3243-570: The lighter color minerals. Occasionally some individual crystals ( phenocrysts ) are larger than the groundmass , in which case the texture is known as porphyritic . A granitic rock with a porphyritic texture is known as a granite porphyry . Granitoid is a general, descriptive field term for lighter-colored, coarse-grained igneous rocks. Petrographic examination is required for identification of specific types of granitoids. Granites can be predominantly white, pink, or gray in color, depending on their mineralogy . The alkali feldspar in granites
3312-474: The lower crust , rather than by decompression of mantle rock, as is the case with basaltic magmas. It has also been suggested that some granites found at convergent boundaries between tectonic plates , where oceanic crust subducts below continental crust, were formed from sediments subducted with the oceanic plate. The melted sediments would have produced magma intermediate in its silica content, which became further enriched in silica as it rose through
3381-729: The lower continental crust at high thermal gradients. This leads to significant extraction of hydrous felsic melts from granulite-facies resitites. A-type granites occur in the Koettlitz Glacier Alkaline Province in the Royal Society Range, Antarctica. The rhyolites of the Yellowstone Caldera are examples of volcanic equivalents of A-type granite. M-type granite was later proposed to cover those granites that were clearly sourced from crystallized mafic magmas, generally sourced from
3450-435: The magma is inevitable once enough magma has accumulated. However, the question of precisely how such large quantities of magma are able to shove aside country rock to make room for themselves (the room problem ) is still a matter of research. Two main mechanisms are thought to be important: Of these two mechanisms, Stokes diapirism has been favoured for many years in the absence of a reasonable alternative. The basic idea
3519-426: The magma. Other processes must produce these great volumes of felsic magma. One such process is injection of basaltic magma into the lower crust, followed by differentiation, which leaves any cumulates in the mantle. Another is heating of the lower crust by underplating basaltic magma, which produces felsic magma directly from crustal rock. The two processes produce different kinds of granites, which may be reflected in
SECTION 50
#17327725241423588-408: The magmatic parent of granitic rock. The residue of the source rock becomes a granulite . The partial melting of solid rocks requires high temperatures and the addition of water or other volatiles which lower the solidus temperature (temperature at which partial melting commences) of these rocks. It was long debated whether crustal thickening in orogens (mountain belts along convergent boundaries )
3657-405: The mantle. Although the fractional crystallisation of basaltic melts can yield small amounts of granites, which are sometimes found in island arcs, such granites must occur together with large amounts of basaltic rocks. H-type granites were suggested for hybrid granites, which were hypothesized to form by mixing between mafic and felsic from different sources, such as M-type and S-type. However,
3726-557: The mineralogical composition is established, which cannot be determined in the field. The QAPF diagram presents for use the proportions (ratios) of four plutonic mineral(s) or mineral groups, which are: quartz (Q), the Alkali feldspars (A), the plagioclase feldspars (P), and the feldspathoids (F). Because F and Q groups cannot simultaneously form in plutonic rocks—due to the difference in their respective silica contents—the QAPF diagram
3795-441: The overlying crust. Early fractional crystallisation serves to reduce a melt in magnesium and chromium, and enrich the melt in iron, sodium, potassium, aluminum, and silicon. Further fractionation reduces the content of iron, calcium, and titanium. This is reflected in the high content of alkali feldspar and quartz in granite. The presence of granitic rock in island arcs shows that fractional crystallization alone can convert
3864-736: The reign of Amenemhat III once had a polished granite pyramidion or capstone, which is now on display in the main hall of the Egyptian Museum in Cairo (see Dahshur ). Other uses in Ancient Egypt include columns , door lintels , sills , jambs , and wall and floor veneer. How the Egyptians worked the solid granite is still a matter of debate. Tool marks described by the Egyptologist Anna Serotta indicate
3933-420: The relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification ), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites ) contain almost no dark minerals. Granite is nearly always massive (lacking any internal structures), hard (falling between 6 and 7 on
4002-564: The risk factors in granite country and design rules relating, in particular, to preventing accumulation of radon gas in enclosed basements and dwellings. A study of granite countertops was done (initiated and paid for by the Marble Institute of America) in November 2008 by National Health and Engineering Inc. of USA. In this test, all of the 39 full-size granite slabs that were measured for the study showed radiation levels well below
4071-418: The rock's high quartz content and dearth of available bases, with the base-poor status predisposing the soil to acidification and podzolization in cool humid climates as the weather-resistant quartz yields much sand. Feldspars also weather slowly in cool climes, allowing sand to dominate the fine-earth fraction. In warm humid regions, the weathering of feldspar as described above is accelerated so as to allow
4140-414: The rocks often bear a close resemblance. Under these conditions, granitic melts can be produced in place through the partial melting of metamorphic rocks by extracting melt-mobile elements such as potassium and silicon into the melts but leaving others such as calcium and iron in granulite residues. This may be the origin of migmatites . A migmatite consists of dark, refractory rock (the melanosome ) that
4209-492: The roof of a shallow magma chamber accompanied by a caldera eruption.) There is evidence for cauldron subsidence at the Mt. Ascutney intrusion in eastern Vermont. Evidence for piecemeal stoping is found in intrusions that are rimmed with igneous breccia containing fragments of country rock. Assimilation is another mechanism of ascent, where the granite melts its way up into the crust and removes overlying material in this way. This
SECTION 60
#17327725241424278-512: The stretch of the Gunnison above Black Canyon of the Gunnison National Monument (later designated a national park), a 40 miles (64 km) length of the river. Initially planned as a concrete dam, the project was changed to an earth-fill design. Work on the dam started in 1961, with foundation drilling and survey work. Construction of the reservoir required the relocation of US 50 and State Highway 149 . This relocation
4347-435: The surface than magmas of I-type granites, which are thus more common as volcanic rock (rhyolite). They are also orogenic but range from metaluminous to strongly peraluminous. Although both I- and S-type granites are orogenic, I-type granites are more common close to the convergent boundary than S-type. This is attributed to thicker crust further from the boundary, which results in more crustal melting. A-type granites show
4416-502: The uranium washes into the sediments from the granite uplands and associated, often highly radioactive pegmatites. Cellars and basements built into soils over granite can become a trap for radon gas, which is formed by the decay of uranium. Radon gas poses significant health concerns and is the number two cause of lung cancer in the US behind smoking. Thorium occurs in all granites. Conway granite has been noted for its relatively high thorium concentration of 56±6 ppm. There
4485-617: The use of flint tools on finer work with harder stones, e.g. when producing the hieroglyphic inscriptions. Patrick Hunt has postulated that the Egyptians used emery , which has greater hardness. The Seokguram Grotto in Korea is a Buddhist shrine and part of the Bulguksa temple complex. Completed in 774 AD, it is an artificial grotto constructed entirely of granite. The main Buddha of
4554-555: Was "far softer and easier to work than after it has lain exposed" while ancient columns, because of their "hardness and solidity have nothing to fear from fire or sword, and time itself, that drives everything to ruin, not only has not destroyed them but has not even altered their colour." QAPF diagram A QAPF diagram is a doubled-triangle plot diagram used to classify intrusive igneous rocks based on their mineralogy . The acronym QAPF stands for " Quartz , Alkali feldspar , Plagioclase , Feldspathoid (Foid) ", which are
4623-498: Was among the first work to be performed, starting in 1962 and continuing through 1964. The Sapinero Cemetery was also relocated. The primary construction contract for the dam was awarded to the Tecon Corporation of Dallas, Texas , with notice to proceed on April 23, 1962. The diversion tunnel was holed through on September 7, 1962, with the excavation of the spillway tunnel completed by April 1963. Drilling and grouting for
4692-405: Was sufficient to produce granite melts by radiogenic heating , but recent work suggests that this is not a viable mechanism. In-situ granitization requires heating by the asthenospheric mantle or by underplating with mantle-derived magmas. Granite magmas have a density of 2.4 Mg/m , much less than the 2.8 Mg/m of high-grade metamorphic rock. This gives them tremendous buoyancy, so that ascent of
4761-564: Was supposed to occur across a migrating front. However, experimental work had established by the 1960s that granites were of igneous origin. The mineralogical and chemical features of granite can be explained only by crystal-liquid phase relations, showing that there must have been at least enough melting to mobilize the magma. However, at sufficiently deep crustal levels, the distinction between metamorphism and crustal melting itself becomes vague. Conditions for crystallization of liquid magma are close enough to those of high-grade metamorphism that
#141858