Misplaced Pages

Bruker

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Bruker Corporation is an American manufacturer of scientific instruments for molecular and materials research, as well as for industrial and applied analysis. It is headquartered in Billerica, Massachusetts , and is the publicly traded parent company of Bruker Scientific Instruments (Bruker AXS, Bruker BioSpin, Bruker Daltonics and Bruker Optics) and Bruker Energy & Supercon Technologies (BEST) divisions.

#502497

69-613: In April 2010, Bruker created a Chemical Analysis Division (headquartered in Fremont, CA) under the Bruker Daltonics subsidiary. This division contains three former Varian product lines: ICPMS systems, laboratory gas chromatography (GC), and GC- triple quadrupole mass spectrometer (originally designed by Bear Instruments and acquired by Varian in 2001). In 2012, it sponsored the Fritz Feigl Prize , and since 1999

138-439: A mass spectrum , a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio. These spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules , and to elucidate

207-486: A mass spectrum , a record of ions as a function of m/Q . Typically, some type of electron multiplier is used, though other detectors including Faraday cups and ion-to-photon detectors are also used. Because the number of ions leaving the mass analyzer at a particular instant is typically quite small, considerable amplification is often necessary to get a signal. Microchannel plate detectors are commonly used in modern commercial instruments. In FTMS and Orbitraps ,

276-470: A spectrum of mass values on a photographic plate . A mass spectroscope is similar to a mass spectrograph except that the beam of ions is directed onto a phosphor screen. A mass spectroscope configuration was used in early instruments when it was desired that the effects of adjustments be quickly observed. Once the instrument was properly adjusted, a photographic plate was inserted and exposed. The term mass spectroscope continued to be used even though

345-400: A broad application, in practice have come instead to connote a specific or a limited number of instrument configurations. An example of this is isotope-ratio mass spectrometry (IRMS), which refers in practice to the use of a limited number of sector based mass analyzers; this name is used to refer to both the application and the instrument used for the application. An important enhancement to

414-443: A central, spindle shaped electrode. The electrode confines the ions so that they both orbit around the central electrode and oscillate back and forth along the central electrode's long axis. This oscillation generates an image current in the detector plates which is recorded by the instrument. The frequencies of these image currents depend on the mass-to-charge ratios of the ions. Mass spectra are obtained by Fourier transformation of

483-414: A mass filter, to transmit a particular fragment ion to the detector. If a quadrupole is made to rapidly and repetitively cycle through a range of mass filter settings, full spectra can be reported. Likewise, a triple quad can be made to perform various scan types characteristic of tandem mass spectrometry . The quadrupole ion trap works on the same physical principles as the quadrupole mass analyzer, but

552-775: A mass spectrometer. A collision cell then stabilizes the peptide ions while they collide with a gas, causing them to fragment by collision-induced dissociation (CID). A further mass analyzer then sorts the fragments produced from the peptides. Tandem MS can also be done in a single mass analyzer over time, as in a quadrupole ion trap . There are various methods for fragmenting molecules for tandem MS, including collision-induced dissociation (CID), electron capture dissociation (ECD), electron transfer dissociation (ETD), infrared multiphoton dissociation (IRMPD), blackbody infrared radiative dissociation (BIRD), electron-detachment dissociation (EDD) and surface-induced dissociation (SID). An important application using tandem mass spectrometry

621-471: A natural abundance of about 25 percent). The analyzer part of the spectrometer contains electric and magnetic fields, which exert forces on ions traveling through these fields. The speed of a charged particle may be increased or decreased while passing through the electric field, and its direction may be altered by the magnetic field. The magnitude of the deflection of the moving ion's trajectory depends on its mass-to-charge ratio. Lighter ions are deflected by

690-458: A professor. Bruker produced Nuclear Magnetic Resonance Spectroscopy (NMR) and EMR spectroscopy equipment then. In the early 1960s, the company had around 60 employees and was growing rapidly. One of the early success products was the HFX 90 NMR spectroscopy system, with three independent channels and which was also the first NMR system using only semiconductor transistors. In 1969, Bruker launched

759-435: A range of m/z to catalog the ions present. The time-of-flight (TOF) analyzer uses an electric field to accelerate the ions through the same potential , and then measures the time they take to reach the detector. If the particles all have the same charge , their kinetic energies will be identical, and their velocities will depend only on their masses . For example, ions with a lower mass will travel faster, reaching

SECTION 10

#1732783632503

828-413: A static electric and/or magnetic field to affect the path and/or velocity of the charged particles in some way. As shown above, sector instruments bend the trajectories of the ions as they pass through the mass analyzer, according to their mass-to-charge ratios, deflecting the more charged and faster-moving, lighter ions more. The analyzer can be used to select a narrow range of m/z or to scan through

897-460: A wide array of sample types. In this source, a plasma that is electrically neutral overall, but that has had a substantial fraction of its atoms ionized by high temperature, is used to atomize introduced sample molecules and to further strip the outer electrons from those atoms. The plasma is usually generated from argon gas, since the first ionization energy of argon atoms is higher than the first of any other elements except He, F and Ne, but lower than

966-466: A wide variety of professional and scientific analysis devices including mass spectrometers , single-Crystal and powder X-ray diffractometers , X-ray tomography devices , NMR spectroscopy devices , fluorescence microscopes , raman spectroscopes , atomic-force microscopes , and profilometers Bruker products are used globally in a variety of situations. The National High Magnetic Field Laboratory at Florida State University selected Bruker to build

1035-475: Is MALDI-TOF , which refers to a combination of a matrix-assisted laser desorption/ionization source with a time-of-flight mass analyzer. Other examples include inductively coupled plasma-mass spectrometry (ICP-MS) , accelerator mass spectrometry (AMS) , thermal ionization-mass spectrometry (TIMS) and spark source mass spectrometry (SSMS) . Certain applications of mass spectrometry have developed monikers that although strictly speaking would seem to refer to

1104-443: Is a wide variety of ionization techniques, depending on the phase (solid, liquid, gas) of the sample and the efficiency of various ionization mechanisms for the unknown species. An extraction system removes ions from the sample, which are then targeted through the mass analyzer and into the detector . The differences in masses of the fragments allows the mass analyzer to sort the ions by their mass-to-charge ratio. The detector measures

1173-492: Is an example of the linear ion trap. A toroidal ion trap can be visualized as a linear quadrupole curved around and connected at the ends or as a cross-section of a 3D ion trap rotated on edge to form the toroid, donut-shaped trap. The trap can store large volumes of ions by distributing them throughout the ring-like trap structure. This toroidal shaped trap is a configuration that allows the increased miniaturization of an ion trap mass analyzer. Additionally, all ions are stored in

1242-448: Is applied to the endcap electrodes, and the trapping voltage amplitude and/or excitation voltage frequency is varied to bring ions into a resonance condition in order of their mass/charge ratio. The cylindrical ion trap mass spectrometer (CIT) is a derivative of the quadrupole ion trap where the electrodes are formed from flat rings rather than hyperbolic shaped electrodes. The architecture lends itself well to miniaturization because as

1311-451: Is applied. This filament emits electrons which ionize the compounds. The ions can then further fragment, yielding predictable patterns. Intact ions and fragments pass into the mass spectrometer's analyzer and are eventually detected. However, the high temperatures (300 °C) used in the GC-MS injection port (and oven) can result in thermal degradation of injected molecules, thus resulting in

1380-407: Is designed to pass the untrapped ions rather than collect the trapped ones, and is for that reason referred to as a transmission quadrupole. A magnetically enhanced quadrupole mass analyzer includes the addition of a magnetic field, either applied axially or transversely. This novel type of instrument leads to an additional performance enhancement in terms of resolution and/or sensitivity depending upon

1449-474: Is in protein identification. Tandem mass spectrometry enables a variety of experimental sequences. Many commercial mass spectrometers are designed to expedite the execution of such routine sequences as selected reaction monitoring (SRM), precursor ion scanning, product ion scanning, and neutral loss scanning. Another type of tandem mass spectrometry used for radiocarbon dating is accelerator mass spectrometry (AMS), which uses very high voltages, usually in

SECTION 20

#1732783632503

1518-408: Is not suitable for coupling to HPLC , i.e. LC-MS , since at atmospheric pressure, the filaments used to generate electrons burn out rapidly. Thus EI is coupled predominantly with GC , i.e. GC-MS , where the entire system is under high vacuum. Hard ionization techniques are processes which impart high quantities of residual energy in the subject molecule invoking large degrees of fragmentation (i.e.

1587-485: Is the ratio of the m/z measurement error to the true m/z . Mass accuracy is usually measured in ppm or milli mass units . The mass range is the range of m/z amenable to analysis by a given analyzer. The linear dynamic range is the range over which ion signal is linear with analyte concentration. Speed refers to the time frame of the experiment and ultimately is used to determine the number of spectra per unit time that can be generated. A sector field mass analyzer uses

1656-636: Is used to dissociate stable gaseous molecules in a carrier gas of He or Ar. In instances where a synchrotron light source is utilized, a tuneable photon energy can be utilized to acquire a photoionization efficiency curve which can be used in conjunction with the charge ratio m/z to fingerprint molecular and ionic species. More recently atmospheric pressure photoionization (APPI) has been developed to ionize molecules mostly as effluents of LC-MS systems. Some applications for ambient ionization include environmental applications as well as clinical applications. In these techniques, ions form in an ion source outside

1725-702: The isotopes of uranium during the Manhattan Project . Calutron mass spectrometers were used for uranium enrichment at the Oak Ridge, Tennessee Y-12 plant established during World War II. In 1989, half of the Nobel Prize in Physics was awarded to Hans Dehmelt and Wolfgang Paul for the development of the ion trap technique in the 1950s and 1960s. In 2002, the Nobel Prize in Chemistry

1794-421: The (officially) dimensionless m/z , where z is the number of elementary charges ( e ) on the ion (z=Q/e). This quantity, although it is informally called the mass-to-charge ratio, more accurately speaking represents the ratio of the mass number and the charge number, z . There are many types of mass analyzers, using either static or dynamic fields, and magnetic or electric fields, but all operate according to

1863-501: The Wikimedia System Administrators, please include the details below. Request from 172.68.168.226 via cp1108 cp1108, Varnish XID 228304919 Upstream caches: cp1108 int Error: 429, Too Many Requests at Thu, 28 Nov 2024 08:47:12 GMT Mass spectrometry Mass spectrometry ( MS ) is an analytical technique that is used to measure the mass-to-charge ratio of ions . The results are presented as

1932-475: The above differential equation. Each analyzer type has its strengths and weaknesses. Many mass spectrometers use two or more mass analyzers for tandem mass spectrometry (MS/MS) . In addition to the more common mass analyzers listed below, there are others designed for special situations. There are several important analyzer characteristics. The mass resolving power is the measure of the ability to distinguish two peaks of slightly different m/z . The mass accuracy

2001-406: The above expressions for the force applied to the ion yields: This differential equation is the classic equation of motion for charged particles . Together with the particle's initial conditions, it completely determines the particle's motion in space and time in terms of m/Q . Thus mass spectrometers could be thought of as "mass-to-charge spectrometers". When presenting data, it is common to use

2070-494: The analyte is ionized by chemical ion-molecule reactions during collisions in the source. Two techniques often used with liquid and solid biological samples include electrospray ionization (invented by John Fenn ) and matrix-assisted laser desorption/ionization (MALDI, initially developed as a similar technique "Soft Laser Desorption (SLD)" by K. Tanaka for which a Nobel Prize was awarded and as MALDI by M. Karas and F. Hillenkamp ). In mass spectrometry, ionization refers to

2139-415: The central location of the peaks, since the starting velocity of ions is generally centered at zero. To fix this problem, time-lag focusing/ delayed extraction has been coupled with TOF-MS. Quadrupole mass analyzers use oscillating electrical fields to selectively stabilize or destabilize the paths of ions passing through a radio frequency (RF) quadrupole field created between four parallel rods. Only

Bruker - Misplaced Pages Continue

2208-556: The chemical identity or structure of molecules and other chemical compounds . In a typical MS procedure, a sample, which may be solid, liquid, or gaseous, is ionized , for example by bombarding it with a beam of electrons . This may cause some of the sample's molecules to break up into positively charged fragments or simply become positively charged without fragmenting. These ions (fragments) are then separated according to their mass-to-charge ratio, for example by accelerating them and subjecting them to an electric or magnetic field: ions of

2277-691: The company bought the NMR division of the Swiss Trüb-Täuber. Bruker made several offers to take over its supplier Oxford Instruments during the 1970s, but after almost a decade of negotiations, an acquisition was eventually rejected by Oxford Instruments. In 1997, the analytical X-ray division of Siemens was acquired by Bruker. In 2010, Bruker bought 3 product lines from Agilent , which Agilent had acquired from Varian . These included mass spectrometry and gas chromatography instruments. They have since divested these products to Scion Instruments with

2346-613: The company has also sponsored the Günther Laukien Prize . The company was founded on September 7, 1960, in Karlsruhe , Germany as Bruker-Physik AG by five people, one of them being Günther Laukien , who was a professor at the University of Karlsruhe at the time. The name Bruker originates from co-founder Emil Bruker, as Günther Laukien himself was formally not allowed to commercialize his research whilst being

2415-517: The detector consists of a pair of metal surfaces within the mass analyzer/ion trap region which the ions only pass near as they oscillate. No direct current is produced, only a weak AC image current is produced in a circuit between the electrodes. Other inductive detectors have also been used. A tandem mass spectrometer is one capable of multiple rounds of mass spectrometry, usually separated by some form of molecule fragmentation. For example, one mass analyzer can isolate one peptide from many entering

2484-439: The detector first. Ions usually are moving prior to being accelerated by the electric field , this causes particles with the same m/z to arrive at different times at the detector. This difference in initial velocities is often not dependent on the mass of the ion, and will turn into a difference in the final velocity. This distribution in velocities broadens the peaks shown on the count vs m/z plot, but will generally not change

2553-424: The detector is located. Ions of different mass are resolved according to impact time. The final element of the mass spectrometer is the detector. The detector records either the charge induced or the current produced when an ion passes by or hits a surface. In a scanning instrument, the signal produced in the detector during the course of the scan versus where the instrument is in the scan (at what m/Q ) will produce

2622-550: The direct illumination of a phosphor screen was replaced by indirect measurements with an oscilloscope . The use of the term mass spectroscopy is now discouraged due to the possibility of confusion with light spectroscopy . Mass spectrometry is often abbreviated as mass-spec or simply as MS . Modern techniques of mass spectrometry were devised by Arthur Jeffrey Dempster and F.W. Aston in 1918 and 1919 respectively. Sector mass spectrometers known as calutrons were developed by Ernest O. Lawrence and used for separating

2691-400: The discharge tube. English scientist J. J. Thomson later improved on the work of Wien by reducing the pressure to create the mass spectrograph. The word spectrograph had become part of the international scientific vocabulary by 1884. Early spectrometry devices that measured the mass-to-charge ratio of ions were called mass spectrographs which consisted of instruments that recorded

2760-565: The exception of the triple quadrupole In 2012, Bruker bought parts of Carestream Health , including their in-vivo imaging portfolio and related aspects. In 2019, Bruker bought Alicona, known for production of metrology equipment based on focus variation , to extend its analytics business in the industrial market. In November 2022, it was announced Bruker had acquired the Mountain View -headquartered miniaturized microscope / miniscope company, Inscopix, Inc. Bruker develops and delivers

2829-632: The first commercial Fourier transform NMR spectroscopy system (FT-NMR) and in the 1970s the company was the first to commercialize a superconducting FT-NMR. Later, the company would expand their product range with MRI , FTIR and FT- Raman spectrometers and with mass spectrometers . In 1968, Bruker shipped NMR systems to Yale University in Connecticut . After that, demand from the US grew, so Bruker opened an office in Elmsford, New York which marked

Bruker - Misplaced Pages Continue

2898-459: The identification of known molecules it is also useful for identifying unknowns using its similarity searching/analysis. All tandem mass spectrometry data comes from the experimental analysis of standards at multiple collision energies and in both positive and negative ionization modes. When a specific combination of source, analyzer, and detector becomes conventional in practice, a compound acronym may arise to designate it succinctly. One example

2967-411: The identified masses or through a characteristic fragmentation pattern. In 1886, Eugen Goldstein observed rays in gas discharges under low pressure that traveled away from the anode and through channels in a perforated cathode , opposite to the direction of negatively charged cathode rays (which travel from cathode to anode). Goldstein called these positively charged anode rays "Kanalstrahlen";

3036-403: The ions according to their mass-to-charge ratio . The following two laws govern the dynamics of charged particles in electric and magnetic fields in vacuum: Here F is the force applied to the ion, m is the mass of the ion, a is the acceleration, Q is the ion charge, E is the electric field, and v × B is the vector cross product of the ion velocity and the magnetic field Equating

3105-416: The ions are injected into a Penning trap (a static electric/magnetic ion trap ) where they effectively form part of a circuit. Detectors at fixed positions in space measure the electrical signal of ions which pass near them over time, producing a periodic signal. Since the frequency of an ion's cycling is determined by its mass-to-charge ratio, this can be deconvoluted by performing a Fourier transform on

3174-562: The ions are trapped and sequentially ejected. Ions are trapped in a mainly quadrupole RF field, in a space defined by a ring electrode (usually connected to the main RF potential) between two endcap electrodes (typically connected to DC or auxiliary AC potentials). The sample is ionized either internally (e.g. with an electron or laser beam), or externally, in which case the ions are often introduced through an aperture in an endcap electrode. There are many mass/charge separation and isolation methods but

3243-417: The ions in a certain range of mass/charge ratio are passed through the system at any time, but changes to the potentials on the rods allow a wide range of m/z values to be swept rapidly, either continuously or in a succession of discrete hops. A quadrupole mass analyzer acts as a mass-selective filter and is closely related to the quadrupole ion trap , particularly the linear quadrupole ion trap except that it

3312-502: The isotopic composition of its constituents (the ratio of Cl to Cl). The ion source is the part of the mass spectrometer that ionizes the material under analysis (the analyte). The ions are then transported by magnetic or electric fields to the mass analyzer. Techniques for ionization have been key to determining what types of samples can be analyzed by mass spectrometry. Electron ionization and chemical ionization are used for gases and vapors . In chemical ionization sources,

3381-408: The magnetic force to a greater degree than heavier ions (based on Newton's second law of motion , F = ma ). The streams of magnetically sorted ions pass from the analyzer to the detector, which records the relative abundance of each ion type. This information is used to determine the chemical element composition of the original sample (i.e. that both sodium and chlorine are present in the sample) and

3450-415: The magnitude and orientation of the applied magnetic field. A common variation of the transmission quadrupole is the triple quadrupole mass spectrometer. The "triple quad" has three consecutive quadrupole stages, the first acting as a mass filter to transmit a particular incoming ion to the second quadrupole, a collision chamber, wherein that ion can be broken into fragments. The third quadrupole also acts as

3519-430: The mass resolving and mass determining capabilities of mass spectrometry is using it in tandem with chromatographic and other separation techniques. A common combination is gas chromatography-mass spectrometry (GC/MS or GC-MS). In this technique, a gas chromatograph is used to separate different compounds. This stream of separated compounds is fed online into the ion source, a metallic filament to which voltage

SECTION 50

#1732783632503

3588-850: The mass spectrometer. Sampling becomes easy as the samples don't need previous separation nor preparation. Some examples of ambient ionization techniques are Direct Analysis in Real Time (DART), DESI , SESI , LAESI , desorption atmospheric-pressure chemical ionization (DAPCI), Soft Ionization by Chemical Reaction in Transfer (SICRT) and desorption atmospheric pressure photoionization DAPPI among others. Others include glow discharge , field desorption (FD), fast atom bombardment (FAB), thermospray , desorption/ionization on silicon (DIOS), atmospheric pressure chemical ionization (APCI), secondary ion mass spectrometry (SIMS), spark ionization and thermal ionization (TIMS). Mass analyzers separate

3657-467: The mega-volt range, to accelerate negative ions into a type of tandem mass spectrometer. The METLIN Metabolite and Chemical Entity Database is the largest repository of experimental tandem mass spectrometry data acquired from standards. The tandem mass spectrometry data on over 930,000 molecular standards (as of January 2024) is provided to facilitate the identification of chemical entities from tandem mass spectrometry experiments. In addition to

3726-407: The most commonly used is the mass instability mode in which the RF potential is ramped so that the orbit of ions with a mass a > b are stable while ions with mass b become unstable and are ejected on the z -axis onto a detector. There are also non-destructive analysis methods. Ions may also be ejected by the resonance excitation method, whereby a supplemental oscillatory excitation voltage

3795-617: The production of gas phase ions suitable for resolution in the mass analyser or mass filter. Ionization occurs in the ion source . There are several ion sources available; each has advantages and disadvantages for particular applications. For example, electron ionization (EI) gives a high degree of fragmentation, yielding highly detailed mass spectra which when skilfully analysed can provide important information for structural elucidation/characterisation and facilitate identification of unknown compounds by comparison to mass spectral libraries obtained under identical operating conditions. However, EI

3864-435: The recorded image currents. Orbitraps have a high mass accuracy, high sensitivity and a good dynamic range. Fourier-transform mass spectrometry (FTMS), or more precisely Fourier-transform ion cyclotron resonance MS, measures mass by detecting the image current produced by ions cyclotroning in the presence of a magnetic field. Instead of measuring the deflection of ions with a detector such as an electron multiplier ,

3933-416: The same mass-to-charge ratio will undergo the same amount of deflection. The ions are detected by a mechanism capable of detecting charged particles, such as an electron multiplier . Results are displayed as spectra of the signal intensity of detected ions as a function of the mass-to-charge ratio. The atoms or molecules in the sample can be identified by correlating known masses (e.g. an entire molecule) to

4002-633: The same trapping field and ejected together simplifying detection that can be complicated with array configurations due to variations in detector alignment and machining of the arrays. As with the toroidal trap, linear traps and 3D quadrupole ion traps are the most commonly miniaturized mass analyzers due to their high sensitivity, tolerance for mTorr pressure, and capabilities for single analyzer tandem mass spectrometry (e.g. product ion scans). Orbitrap instruments are similar to Fourier-transform ion cyclotron resonance mass spectrometers (see text below). Ions are electrostatically trapped in an orbit around

4071-423: The sample is vaporized (turned into gas ) and ionized (transformed into electrically charged particles) into sodium (Na ) and chloride (Cl ) ions. Sodium atoms and ions are monoisotopic , with a mass of about 23 daltons (symbol: Da or older symbol: u). Chloride atoms and ions come in two stable isotopes with masses of approximately 35 u (at a natural abundance of about 75 percent) and approximately 37 u (at

4140-403: The second ionization energy of all except the most electropositive metals. The heating is achieved by a radio-frequency current passed through a coil surrounding the plasma. Photoionization can be used in experiments which seek to use mass spectrometry as a means of resolving chemical kinetics mechanisms and isomeric product branching. In such instances a high energy photon, either X-ray or uv,

4209-410: The signal. FTMS has the advantage of high sensitivity (since each ion is "counted" more than once) and much higher resolution and thus precision. Ion cyclotron resonance (ICR) is an older mass analysis technique similar to FTMS except that ions are detected with a traditional detector. Ions trapped in a Penning trap are excited by an RF electric field until they impact the wall of the trap, where

SECTION 60

#1732783632503

4278-436: The size of a trap is reduced, the shape of the electric field near the center of the trap, the region where the ions are trapped, forms a shape similar to that of a hyperbolic trap. A linear quadrupole ion trap is similar to a quadrupole ion trap, but it traps ions in a two dimensional quadrupole field, instead of a three-dimensional quadrupole field as in a 3D quadrupole ion trap. Thermo Fisher's LTQ ("linear trap quadrupole")

4347-402: The standard translation of this term into English is " canal rays ". Wilhelm Wien found that strong electric or magnetic fields deflected the canal rays and, in 1899, constructed a device with perpendicular electric and magnetic fields that separated the positive rays according to their charge-to-mass ratio ( Q/m ). Wien found that the charge-to-mass ratio depended on the nature of the gas in

4416-1068: The start of their US activities. In 2008 after a corporate reorganization lasting 8 years, all divisions were merged in a unified Bruker Corporation. Günther Laukien died in 1997; one of his four sons Frank Laukien , is currently the CEO of Bruker. Another son, Jörg C. Laukien, also works for the company. Another son, Dirk D. Laukien, is a former company executive. Bruker acquisitions include GE NMR Instruments (1992), Siemens AXS (1997), Nonius (2001), MacScience (2002), Vacuumschmelze Hanau (2003), Röntec (2005), SOCABIM (2005), PGT (2005), Keymaster (2006), Quantron (2006), JuWe (2008), SIS (2008), ACCEL (2009), Michrom Bioresources (2011), Skyscan (2012), Prairie Technologies (2013), Oncovision (Preclinical PET imaging business, 2016), Oxford Instruments Superconducting Technology (2016), Hysitron Inc. (2017), XGLab (2017), Luxendo (2017), Alicona (2018), PMOD Technologies LLC (2019), Optimal Group (2022), Neurescence Inc (2022), and MIRO Analytical (majority 2023). In 1964,

4485-462: The subject molecule and as such result in little fragmentation. Examples include fast atom bombardment (FAB), chemical ionization (CI), atmospheric-pressure chemical ionization (APCI), atmospheric-pressure photoionization (APPI), electrospray ionization (ESI), desorption electrospray ionization (DESI), and matrix-assisted laser desorption/ionization (MALDI). Inductively coupled plasma (ICP) sources are used primarily for cation analysis of

4554-405: The systematic rupturing of bonds acts to remove the excess energy, restoring stability to the resulting ion). Resultant ions tend to have m/z lower than the molecular ion (other than in the case of proton transfer and not including isotope peaks). The most common example of hard ionization is electron ionization (EI). Soft ionization refers to the processes which impart little residual energy onto

4623-401: The value of an indicator quantity and thus provides data for calculating the abundances of each ion present. Some detectors also give spatial information, e.g., a multichannel plate. The following describes the operation of a spectrometer mass analyzer, which is of the sector type. (Other analyzer types are treated below.) Consider a sample of sodium chloride (table salt). In the ion source,

4692-645: The world's first 21.0 tesla FT-ICR MS . The Total Carbon Column Observing Network uses high resolution FT-IR spectrometers made by Bruker to measure various greenhouse gases across the globe. In May, 2004, Frost & Sullivan selected the Company's Bruker Daltonics subsidiary for their 2004 Product Line Innovation Award for the Life Sciences. Bruker Daltonics received this award for its innovative development of sophisticated mass spectrometers. ICPMS Too Many Requests If you report this error to

4761-425: Was awarded to John Bennett Fenn for the development of electrospray ionization (ESI) and Koichi Tanaka for the development of soft laser desorption (SLD) and their application to the ionization of biological macromolecules , especially proteins . A mass spectrometer consists of three components: an ion source, a mass analyzer, and a detector. The ionizer converts a portion of the sample into ions. There

#502497