The Eocene ( IPA : / ˈ iː ə s iː n , ˈ iː oʊ -/ EE -ə-seen, EE -oh- ) is a geological epoch that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the Paleogene Period in the modern Cenozoic Era . The name Eocene comes from the Ancient Greek Ἠώς ( Ēṓs , " Dawn ") and καινός ( kainós , "new") and refers to the "dawn" of modern ('new') fauna that appeared during the epoch.
134-579: Butterflies are winged insects from the lepidopteran suborder Rhopalocera , characterized by large, often brightly coloured wings that often fold together when at rest, and a conspicuous, fluttering flight. The group comprises the superfamilies Hedyloidea (moth-butterflies in the Americas) and Papilionoidea (all others). The oldest butterfly fossils have been dated to the Paleocene , about 56 million years ago, though molecular likely originated in
268-633: A diapause (resting) stage, and the hatching may take place only in spring. Some temperate region butterflies, such as the Camberwell beauty , lay their eggs in the spring and have them hatch in the summer. Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their time searching for and eating food. Although most caterpillars are herbivorous, a few species are predators : Spalgis epius eats scale insects , while lycaenids such as Liphyra brassolis are myrmecophilous , eating ant larvae. Some larvae, especially those of
402-492: A butterfly cannot fly until the wings are unfolded. A newly emerged butterfly needs to spend some time inflating its wings with hemolymph and letting them dry, during which time it is extremely vulnerable to predators. The colourful patterns on many butterfly wings tell potential predators that they are toxic. Hence, the genetic basis of wing pattern formation can illuminate both the evolution of butterflies as well as their developmental biology . The colour of butterfly wings
536-570: A butterfly through metamorphosis has held great appeal to mankind. To transform from the miniature wings visible on the outside of the pupa into large structures usable for flight, the pupal wings undergo rapid mitosis and absorb a great deal of nutrients. If one wing is surgically removed early on, the other three will grow to a larger size. In the pupa, the wing forms a structure that becomes compressed from top to bottom and pleated from proximal to distal ends as it grows, so that it can rapidly be unfolded to its full adult size. Several boundaries seen in
670-415: A common family. In some species, such as the great spangled fritillary , the eggs are deposited close to but not on the food plant. This most likely happens when the egg overwinters before hatching and where the host plant loses its leaves in winter, as do violets in this example. The egg stage lasts a few weeks in most butterflies, but eggs laid close to winter, especially in temperate regions, go through
804-575: A few butterflies (e.g., harvesters ) eat harmful insects, and a few are predators of ants , while others live as mutualists in association with ants. Culturally, butterflies are a popular motif in the visual and literary arts. The Smithsonian Institution says "butterflies are certainly one of the most appealing creatures in nature". The Oxford English Dictionary derives the word straightforwardly from Old English butorflēoge , butter-fly; similar names in Old Dutch and Old High German show that
938-441: A few species. Some butterflies have organs of hearing and some species make stridulatory and clicking sounds. Many species of butterfly maintain territories and actively chase other species or individuals that may stray into them. Some species will bask or perch on chosen perches. The flight styles of butterflies are often characteristic and some species have courtship flight displays. Butterflies can only fly when their temperature
1072-605: A hard-ridged outer layer of shell, called the chorion . This is lined with a thin coating of wax which prevents the egg from drying out before the larva has had time to fully develop. Each egg contains a number of tiny funnel-shaped openings at one end, called micropyles ; the purpose of these holes is to allow sperm to enter and fertilize the egg. Butterfly eggs vary greatly in size and shape between species, but are usually upright and finely sculptured. Some species lay eggs singly, others in batches. Many females produce between one hundred and two hundred eggs. Butterfly eggs are fixed to
1206-431: A large body of water is also present. In an attempt to try to mitigate the cooling polar temperatures, large lakes were proposed to mitigate seasonal climate changes. To replicate this case, a lake was inserted into North America and a climate model was run using varying carbon dioxide levels. The model runs concluded that while the lake did reduce the seasonality of the region greater than just an increase in carbon dioxide,
1340-505: A leaf before eggs are laid on it. Many butterflies use chemical signals, pheromones ; some have specialized scent scales ( androconia ) or other structures ( coremata or "hair pencils" in the Danaidae). Vision is well developed in butterflies and most species are sensitive to the ultraviolet spectrum. Many species show sexual dimorphism in the patterns of UV reflective patches. Colour vision may be widespread but has been demonstrated in only
1474-416: A leaf with a special glue which hardens rapidly. As it hardens it contracts, deforming the shape of the egg. This glue is easily seen surrounding the base of every egg forming a meniscus. The nature of the glue has been little researched but in the case of Pieris brassicae , it begins as a pale yellow granular secretion containing acidophilic proteins. This is viscous and darkens when exposed to air, becoming
SECTION 10
#17327718691441608-637: A long-term gradual cooling trend resulted in a glacial maximum at the late Eocene/early Oligocene boundary. The end of the Eocene was also marked by the Eocene–Oligocene extinction event , also known as the Grande Coupure . The Eocene is conventionally divided into early (56–47.8 Ma), middle (47.8–38 Ma), and late (38–33.9 Ma) subdivisions. The corresponding rocks are referred to as lower, middle, and upper Eocene. The Ypresian Stage constitutes
1742-546: A longer lifespan of several months as adults. The thorax of the butterfly is devoted to locomotion. Each of the three thoracic segments has two legs (among nymphalids , the first pair is reduced and the insects walk on four legs). The second and third segments of the thorax bear the wings. The leading edges of the forewings have thick veins to strengthen them, and the hindwings are smaller and more rounded and have fewer stiffening veins. The forewings and hindwings are not hooked together ( as they are in moths ) but are coordinated by
1876-474: A necessity for their successful establishment. Many butterflies, such as the painted lady , monarch, and several danaine migrate for long distances. These migrations take place over a number of generations and no single individual completes the whole trip. The eastern North American population of monarchs can travel thousands of miles south-west to overwintering sites in Mexico . There is a reverse migration in
2010-511: A role in triggering the ETM2 and ETM3. An enhancement of the biological pump proved effective at sequestering excess carbon during the recovery phases of these hyperthermals. These hyperthermals led to increased perturbations in planktonic and benthic foraminifera , with a higher rate of fluvial sedimentation as a consequence of the warmer temperatures. Unlike the PETM, the lesser hyperthermals of
2144-410: A segmented palp. Adjoining these is the labium-hypopharynx which houses a tubular spinneret which is able to extrude silk. Caterpillars such as those in the genus Calpodes (family Hesperiidae) have a specialized tracheal system on the 8th segment that function as a primitive lung. Butterfly caterpillars have three pairs of true legs on the thoracic segments and up to six pairs of prolegs arising from
2278-533: A significant amount of water vapor is released. Another requirement for polar stratospheric clouds is cold temperatures to ensure condensation and cloud production. Polar stratospheric cloud production, since it requires the cold temperatures, is usually limited to nighttime and winter conditions. With this combination of wetter and colder conditions in the lower stratosphere, polar stratospheric clouds could have formed over wide areas in Polar Regions. To test
2412-433: A silken girdle may be spun to keep the pupa in a head-up position. Most of the tissues and cells of the larva are broken down inside the pupa, as the constituent material is rebuilt into the imago. The structure of the transforming insect is visible from the exterior, with the wings folded flat on the ventral surface and the two halves of the proboscis, with the antennae and the legs between them. The pupal transformation into
2546-553: A similar assemblage of rather ancient hemimetabolous insects among the Neoptera like the Palaeoptera are among insects as a whole. The holometabolous Endopterygota seem to be very close relatives, indeed, but nonetheless appear to contain several clades of related orders, the status of which is not agreed upon. The following scheme uses finer divisions than the one above, which is not well-suited to correctly accommodating
2680-406: A time-compensated sun compass. They can see polarized light and therefore orient even in cloudy conditions. The polarized light near the ultraviolet spectrum appears to be particularly important. Many migratory butterflies live in semi-arid areas where breeding seasons are short. The life histories of their host plants also influence butterfly behaviour. Butterflies in their adult stage can live from
2814-541: A total of about 20,000 species. Traditionally, butterflies have been divided into the superfamilies Papilionoidea and the moth-like Hedyloidea . Recent work has discovered that Hedylidae, the only family within Hedyloidea, is nested within the Papilionoidea, meaning that Papilionoidea would be synonymous with Rhopalocera. The relationships between the rest of the 6 families are extremely well resolved, which
SECTION 20
#17327718691442948-467: A trend towards multivoltinism . Courtship is often aerial and often involves pheromones . Butterflies then land on the ground or on a perch to mate. Copulation takes place tail-to-tail and may last from minutes to hours. Simple photoreceptor cells located at the genitals are important for this and other adult behaviours. The male passes a spermatophore to the female; to reduce sperm competition, he may cover her with his scent, or in some species such as
3082-484: A tubular proboscis which is curled up at rest and expanded when needed to feed. The first and second maxillae bear palps which function as sensory organs. Some species have a reduced proboscis or maxillary palps and do not feed as adults. Many Heliconius butterflies also use their proboscis to feed on pollen; in these species only 20% of the amino acids used in reproduction come from larval feeding, which allow them to develop more quickly as caterpillars, and gives them
3216-435: A water-insoluble, rubbery material which soon sets solid. Butterflies in the genus Agathymus do not fix their eggs to a leaf; instead, the newly laid eggs fall to the base of the plant. Eggs are almost invariably laid on plants. Each species of butterfly has its own host plant range and while some species of butterfly are restricted to just one species of plant, others use a range of plant species, often including members of
3350-420: A week to nearly a year depending on the species. Many species have long larval life stages while others can remain dormant in their pupal or egg stages and thereby survive winters. The Melissa Arctic ( Oeneis melissa ) overwinters twice as a caterpillar. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing
3484-722: A wide variety of climate conditions that includes the warmest climate in the Cenozoic Era , and arguably the warmest time interval since the Permian-Triassic mass extinction and Early Triassic, and ends in an icehouse climate. The evolution of the Eocene climate began with warming after the end of the Paleocene–Eocene Thermal Maximum (PETM) at 56 Ma to a maximum during the Eocene Optimum at around 49 Ma. During this period of time, little to no ice
3618-576: Is a subclass of insects that includes all winged insects and groups who lost them secondarily. Pterygota group comprises 99.9% of all insects. The orders not included are the Archaeognatha (jumping bristletails) and the Zygentoma ( silverfishes and firebrats ), two primitively wingless insect orders. Unlike Archaeognatha and Zygentoma, the pterygotes do not have styli or vesicles on their abdomen (also absent in some zygentomans), and with
3752-449: Is above 27 °C (81 °F); when it is cool, they can position themselves to expose the underside of the wings to the sunlight to heat themselves up. If their body temperature reaches 40 °C (104 °F), they can orientate themselves with the folded wings edgewise to the sun. Basking is an activity which is more common in the cooler hours of the morning. Some species have evolved dark wingbases to help in gathering more heat and this
3886-459: Is an important factor in the creation of the primary Type II polar stratospheric clouds that were created in the early Eocene. Since water vapor is the only supporting substance used in Type II polar stratospheric clouds, the presence of water vapor in the lower stratosphere is necessary where in most situations the presence of water vapor in the lower stratosphere is rare. When methane is oxidized,
4020-638: Is considered to be primarily due to carbon dioxide increases, because carbon isotope signatures rule out major methane release during this short-term warming. A sharp increase in atmospheric carbon dioxide was observed with a maximum of 4,000 ppm: the highest amount of atmospheric carbon dioxide detected during the Eocene. Other studies suggest a more modest rise in carbon dioxide levels. The increase in atmospheric carbon dioxide has also been hypothesised to have been driven by increased seafloor spreading rates and metamorphic decarbonation reactions between Australia and Antarctica and increased amounts of volcanism in
4154-458: Is derived from tiny structures called scales, each of which have their own pigments . In Heliconius butterflies, there are three types of scales: yellow/white, black, and red/orange/brown scales. Some mechanism of wing pattern formation are now being solved using genetic techniques. For instance, a gene called cortex determines the colour of scales: deleting cortex turned black and red scales yellow. Mutations, e.g. transposon insertions of
Butterfly - Misplaced Pages Continue
4288-402: Is especially evident in alpine forms. As in many other insects, the lift generated by butterflies is more than can be accounted for by steady-state, non-transitory aerodynamics . Studies using Vanessa atalanta in a wind tunnel show that they use a wide variety of aerodynamic mechanisms to generate force. These include wake capture , vortices at the wing edge, rotational mechanisms and
4422-409: Is extruded and inserted into the female's vagina. A spermatophore is deposited in the female, following which the sperm make their way to a seminal receptacle where they are stored for later use. In both sexes, the genitalia are adorned with various spines, teeth, scales and bristles, which act to prevent the butterfly from mating with an insect of another species. After it emerges from its pupal stage,
4556-451: Is good, especially in some species in the blue/violet range. The antennae are composed of many segments and have clubbed tips (unlike moths that have tapering or feathery antennae). The sensory receptors are concentrated in the tips and can detect odours. Taste receptors are located on the palps and on the feet. The mouthparts are adapted to sucking and the mandibles are usually reduced in size or absent. The first maxillae are elongated into
4690-581: Is native to the Americas, but in the nineteenth century or before, spread across the world, and is now found in Australia, New Zealand, other parts of Oceania, and the Iberian Peninsula . It is not clear how it dispersed; adults may have been blown by the wind or larvae or pupae may have been accidentally transported by humans, but the presence of suitable host plants in their new environment was
4824-419: Is now Chesapeake Bay . As with other geologic periods , the strata that define the start and end of the epoch are well identified, though their exact dates are slightly uncertain. The term "Eocene" is derived from Ancient Greek Ἠώς ( Ēṓs ) meaning "Dawn", and καινός kainos meaning "new" or "recent", as the epoch saw the dawn of recent, or modern, life. Scottish geologist Charles Lyell (ignoring
4958-463: Is restricted to the males, and studies have suggested that the nutrients collected may be provided as a nuptial gift , along with the spermatophore, during mating. In hilltopping , males of some species seek hilltops and ridge tops, which they patrol in search for females. Since it usually occurs in species with low population density, it is assumed these landscape points are used as meeting places to find mates. Butterflies use their antennae to sense
5092-720: Is short lived, as benthic oxygen isotope records indicate a return to cooling at ~40 Ma. At the end of the MECO, the MLEC resumed. Cooling and the carbon dioxide drawdown continued through the late Eocene and into the Eocene–Oligocene transition around 34 Ma. The post-MECO cooling brought with it a major aridification trend in Asia, enhanced by retreating seas. A monsoonal climate remained predominant in East Asia. The cooling during
5226-695: Is summarized in the below cladogram. Papilionidae [REDACTED] Hedylidae [REDACTED] Hesperiidae [REDACTED] Pieridae [REDACTED] Nymphalidae [REDACTED] Lycaenidae [REDACTED] Riodinidae [REDACTED] Butterfly adults are characterized by their four scale-covered wings, which give the Lepidoptera their name ( Ancient Greek λεπίς lepís, scale + πτερόν pterón, wing). These scales give butterfly wings their colour: they are pigmented with melanins that give them blacks and browns, as well as uric acid derivatives and flavones that give them yellows, but many of
5360-404: Is taken up by the gut, but there may also be large silk glands, and special glands which secrete distasteful or toxic substances. The developing wings are present in later stage instars and the gonads start development in the egg stage. When the larva is fully grown, hormones such as prothoracicotropic hormone (PTTH) are produced. At this point the larva stops feeding, and begins "wandering" in
5494-535: Is the period of time when the Antarctic ice sheet began to rapidly expand. Greenhouse gases, in particular carbon dioxide and methane , played a significant role during the Eocene in controlling the surface temperature. The end of the PETM was met with very large sequestration of carbon dioxide into the forms of methane clathrate , coal , and crude oil at the bottom of the Arctic Ocean , that reduced
Butterfly - Misplaced Pages Continue
5628-459: The Cretaceous . Butterflies have a four-stage life cycle , and like other holometabolous insects they undergo complete metamorphosis . Winged adults lay eggs on the food plant on which their larvae , known as caterpillars , will feed. The caterpillars grow, sometimes very rapidly, and when fully developed, pupate in a chrysalis . When metamorphosis is complete, the pupal skin splits,
5762-771: The Laramide Orogeny came to an end in the Eocene, and compression was replaced with crustal extension that ultimately gave rise to the Basin and Range Province . The Kishenehn Basin, around 1.5 km in elevation during the Lutetian, was uplifted to an altitude of 2.5 km by the Priabonian. Huge lakes formed in the high flat basins among uplifts, resulting in the deposition of the Green River Formation lagerstätte . At about 35 Ma, an asteroid impact on
5896-477: The Lycaenidae , form mutual associations with ants. They communicate with the ants using vibrations that are transmitted through the substrate as well as using chemical signals. The ants provide some degree of protection to these larvae and they in turn gather honeydew secretions . Large blue ( Phengaris arion ) caterpillars trick Myrmica ants into taking them back to the ant colony where they feed on
6030-713: The Middle Eocene Climatic Optimum (MECO). At around 41.5 Ma, stable isotopic analysis of samples from Southern Ocean drilling sites indicated a warming event for 600,000 years. A similar shift in carbon isotopes is known from the Northern Hemisphere in the Scaglia Limestones of Italy. Oxygen isotope analysis showed a large negative change in the proportion of heavier oxygen isotopes to lighter oxygen isotopes, which indicates an increase in global temperatures. The warming
6164-473: The Weis-Fogh ' clap-and-fling ' mechanism. Butterflies are able to change from one mode to another rapidly. Butterflies are threatened in their early stages by parasitoids and in all stages by predators, diseases and environmental factors. Braconid and other parasitic wasps lay their eggs in lepidopteran eggs or larvae and the wasps' parasitoid larvae devour their hosts, usually pupating inside or outside
6298-452: The ZW sex-determination system where females are the heterogametic sex (ZW) and males homogametic (ZZ). Butterflies are distributed worldwide except Antarctica, totalling some 18,500 species. Of these, 775 are Nearctic ; 7,700 Neotropical ; 1,575 Palearctic ; 3,650 Afrotropical ; and 4,800 are distributed across the combined Oriental and Australian / Oceania regions. The monarch butterfly
6432-458: The amount of oxygen in the Earth's atmosphere more or less doubled. During the warming in the early Eocene between 55 and 52 Ma, there were a series of short-term changes of carbon isotope composition in the ocean. These isotope changes occurred due to the release of carbon from the ocean into the atmosphere that led to a temperature increase of 4–8 °C (7.2–14.4 °F) at the surface of
6566-402: The monarch and the painted lady , migrate over long distances. Many butterflies are attacked by parasites or parasitoids , including wasps , protozoans , flies , and other invertebrates, or are preyed upon by other organisms. Some species are pests because in their larval stages they can damage domestic crops or trees; other species are agents of pollination of some plants. Larvae of
6700-597: The non-coding DNA around the cortex gene can turn a black-winged butterfly into a butterfly with a yellow wing band. When the butterfly Bicyclus anynana is subjected to repeated inbreeding in the laboratory, there is a dramatic decrease in egg hatching. This severe inbreeding depression is considered to be likely due to a relatively high mutation rate to recessive alleles with substantial damaging effects and infrequent episodes of inbreeding in nature that might otherwise purge such mutations. Although B. anynana experiences inbreeding depression when forcibly inbred in
6834-417: The proxy data . Using all different ranges of greenhouse gasses that occurred during the early Eocene, models were unable to produce the warming that was found at the poles and the reduced seasonality that occurs with winters at the poles being substantially warmer. The models, while accurately predicting the tropics, tend to produce significantly cooler temperatures of up to 20 °C (36 °F) colder than
SECTION 50
#17327718691446968-666: The southeast United States . After the Paleocene–Eocene Thermal Maximum, members of the Equoidea arose in North America and Europe, giving rise to some of the earliest equids such as Sifrhippus and basal European equoids such as the palaeothere Hyracotherium . Some of the later equoids were especially species-rich; Palaeotherium , ranging from small to very large in size, is known from as many as 16 species. Established large-sized mammals of
7102-538: The Apollos ( Parnassius ) plugs her genital opening to prevent her from mating again. The vast majority of butterflies have a four-stage life cycle: egg , larva (caterpillar), pupa (chrysalis) and imago (adult). In the genera Colias , Erebia , Euchloe , and Parnassius , a small number of species are known that reproduce semi-parthenogenetically ; when the female dies, a partially developed larva emerges from her abdomen. Butterfly eggs are protected by
7236-671: The Azolla Event. This cooling trend at the end of the EECO has also been proposed to have been caused by increased siliceous plankton productivity and marine carbon burial, which also helped draw carbon dioxide out of the atmosphere. Cooling after this event, part of a trend known as the Middle-Late Eocene Cooling (MLEC), continued due to continual decrease in atmospheric carbon dioxide from organic productivity and weathering from mountain building . Many regions of
7370-404: The EECO. Relative to present-day values, bottom water temperatures are 10 °C (18 °F) higher according to isotope proxies. With these bottom water temperatures, temperatures in areas where deep water forms near the poles are unable to be much cooler than the bottom water temperatures. An issue arises, however, when trying to model the Eocene and reproduce the results that are found with
7504-609: The Early Eocene had negligible consequences for terrestrial mammals. These Early Eocene hyperthermals produced a sustained period of extremely hot climate known as the Early Eocene Climatic Optimum (EECO). During the early and middle EECO, the superabundance of the euryhaline dinocyst Homotryblium in New Zealand indicates elevated ocean salinity in the region. One of the unique features of
7638-440: The Earth including the poles. Tropical forests extended across much of modern Africa, South America, Central America, India, South-east Asia and China. Paratropical forests grew over North America, Europe and Russia, with broad-leafed evergreen and broad-leafed deciduous forests at higher latitudes. Polar forests were quite extensive. Fossils and even preserved remains of trees such as swamp cypress and dawn redwood from
7772-566: The Eocene have been found on Ellesmere Island in the Arctic . Even at that time, Ellesmere Island was only a few degrees in latitude further south than it is today. Fossils of subtropical and even tropical trees and plants from the Eocene also have been found in Greenland and Alaska . Tropical rainforests grew as far north as northern North America and Europe . Palm trees were growing as far north as Alaska and northern Europe during
7906-619: The Eocene include the Uintatherium , Arsinoitherium , and brontotheres , in which the former two, unlike the latter, did not belong to ungulates but groups that became extinct shortly after their establishments. Large terrestrial mammalian predators had already existed since the Paleocene, but new forms now arose like Hyaenodon and Daphoenus (the earliest lineage of a once-successful predatory family known as bear dogs ). Entelodonts meanwhile established themselves as some of
8040-544: The Eocene's climate as mentioned before was the equable and homogeneous climate that existed in the early parts of the Eocene. A multitude of proxies support the presence of a warmer equable climate being present during this period of time. A few of these proxies include the presence of fossils native to warm climates, such as crocodiles , located in the higher latitudes, the presence in the high latitudes of frost-intolerant flora such as palm trees which cannot survive during sustained freezes, and fossils of snakes found in
8174-491: The Eocene, the continents continued to drift toward their present positions. At the beginning of the period, Australia and Antarctica remained connected, and warm equatorial currents may have mixed with colder Antarctic waters, distributing the heat around the planet and keeping global temperatures high. When Australia split from the southern continent around 45 Ma, the warm equatorial currents were routed away from Antarctica. An isolated cold water channel developed between
SECTION 60
#17327718691448308-466: The Eocene-Oligocene transition is the timing of the creation of the circulation is uncertain. For Drake Passage , sediments indicate the opening occurred ~41 Ma while tectonics indicate that this occurred ~32 Ma. Solar activity did not change significantly during the greenhouse-icehouse transition across the Eocene-Oligocene boundary. During the early-middle Eocene, forests covered most of
8442-679: The MECO. Both groups of modern ungulates (hoofed animals) became prevalent because of a major radiation between Europe and North America, along with carnivorous ungulates like Mesonyx . Early forms of many other modern mammalian orders appeared, including horses (most notably the Eohippus ), bats , proboscidians (elephants), primates, and rodents . Older primitive forms of mammals declined in variety and importance. Important Eocene land fauna fossil remains have been found in western North America, Europe, Patagonia , Egypt , and southeast Asia . Marine fauna are best known from South Asia and
8576-469: The North American continent, and it reduced the seasonal variation of temperature by up to 75%. While orbital parameters did not produce the warming at the poles, the parameters did show a great effect on seasonality and needed to be considered. Another method considered for producing the warm polar temperatures were polar stratospheric clouds . Polar stratospheric clouds are clouds that occur in
8710-415: The PETM event in the sea floor or wetland environments. For contrast, today the carbon dioxide levels are at 400 ppm or 0.04%. During the early Eocene, methane was another greenhouse gas that had a drastic effect on the climate. Methane has 30 times more of a warming effect than carbon dioxide on a 100-year scale (i.e., methane has a global warming potential of 29.8±11). Most of the methane released to
8844-747: The Quaternary) divided the Tertiary Epoch into the Eocene, Miocene , Pliocene , and New Pliocene ( Holocene ) Periods in 1833. British geologist John Phillips proposed the Cenozoic in 1840 in place of the Tertiary, and Austrian paleontologist Moritz Hörnes introduced the Paleogene for the Eocene and Neogene for the Miocene and Pliocene in 1853. After decades of inconsistent usage,
8978-428: The abdomen, generally with short prolegs on segments 3–6 and 10; the three pairs of true legs on the thorax have five segments each. Many are well camouflaged; others are aposematic with bright colours and bristly projections containing toxic chemicals obtained from their food plants. The pupa or chrysalis, unlike that of moths, is not wrapped in a cocoon. Many butterflies are sexually dimorphic . Most butterflies have
9112-404: The abdominal segments. These prolegs have rings of tiny hooks called crochets that are engaged hydrostatically and help the caterpillar grip the substrate. The epidermis bears tufts of setae , the position and number of which help in identifying the species. There is also decoration in the form of hairs, wart-like protuberances, horn-like protuberances and spines. Internally, most of the body cavity
9246-405: The actual determined temperature at the poles. This error has been classified as the "equable climate problem". To solve this problem, the solution would involve finding a process to warm the poles without warming the tropics. Some hypotheses and tests which attempt to find the process are listed below. Due to the nature of water as opposed to land, less temperature variability would be present if
9380-410: The addition of a large lake was unable to reduce the seasonality to the levels shown by the floral and faunal data. The transport of heat from the tropics to the poles, much like how ocean heat transport functions in modern times, was considered a possibility for the increased temperature and reduced seasonality for the poles. With the increased sea surface temperatures and the increased temperature of
9514-501: The adult colour pattern are marked by changes in the expression of particular transcription factors in the early pupa. The reproductive stage of the insect is the winged adult or imago . The surface of both butterflies and moths is covered by scales, each of which is an outgrowth from a single epidermal cell. The head is small and dominated by the two large compound eyes . These are capable of distinguishing flower shapes or motion but cannot view distant objects clearly. Colour perception
9648-431: The adult insect climbs out, expands its wings to dry, and flies off. Some butterflies, especially in the tropics, have several generations in a year, while others have a single generation, and a few in cold locations may take several years to pass through their entire life cycle. Butterflies are often polymorphic , and many species make use of camouflage , mimicry , and aposematism to evade their predators. Some, like
9782-467: The air for wind and scents. The antennae come in various shapes and colours; the hesperiids have a pointed angle or hook to the antennae, while most other families show knobbed antennae. The antennae are richly covered with sensory organs known as sensillae . A butterfly's sense of taste is coordinated by chemoreceptors on the tarsi , or feet, which work only on contact, and are used to determine whether an egg-laying insect's offspring will be able to feed on
9916-422: The amount of polar stratospheric clouds. While the polar stratospheric clouds could explain the reduction of the equator to pole temperature gradient and the increased temperatures at the poles during the early Eocene, there are a few drawbacks to maintaining polar stratospheric clouds for an extended period of time. Separate model runs were used to determine the sustainability of the polar stratospheric clouds. It
10050-433: The ant eggs and larvae in a parasitic relationship. Caterpillars mature through a series of developmental stages known as instars . Near the end of each stage, the larva undergoes a process called apolysis , mediated by the release of a series of neurohormones . During this phase, the cuticle , a tough outer layer made of a mixture of chitin and specialized proteins , is released from the softer epidermis beneath, and
10184-456: The atmosphere during this period of time would have been from wetlands, swamps, and forests. The atmospheric methane concentration today is 0.000179% or 1.79 ppmv . As a result of the warmer climate and the sea level rise associated with the early Eocene, more wetlands, more forests, and more coal deposits would have been available for methane release. If we compare the early Eocene production of methane to current levels of atmospheric methane,
10318-524: The atmospheric carbon dioxide. This event was similar in magnitude to the massive release of greenhouse gasses at the beginning of the PETM, and it is hypothesized that the sequestration was mainly due to organic carbon burial and weathering of silicates. For the early Eocene there is much discussion on how much carbon dioxide was in the atmosphere. This is due to numerous proxies representing different atmospheric carbon dioxide content. For example, diverse geochemical and paleontological proxies indicate that at
10452-653: The blues, greens, reds and iridescent colours are created by structural coloration produced by the micro-structures of the scales and hairs. As in all insects, the body is divided into three sections: the head, thorax , and abdomen . The thorax is composed of three segments, each with a pair of legs. In most families of butterfly the antennae are clubbed, unlike those of moths which may be threadlike or feathery. The long proboscis can be coiled when not in use for sipping nectar from flowers. Nearly all butterflies are diurnal , have relatively bright colours, and hold their wings vertically above their bodies when at rest, unlike
10586-413: The decline into an icehouse climate and the rapid expansion of the Antarctic ice sheet . The transition from a warming climate into a cooling climate began at around 49 Ma. Isotopes of carbon and oxygen indicate a shift to a global cooling climate. The cause of the cooling has been attributed to a significant decrease of >2,000 ppm in atmospheric carbon dioxide concentrations. One proposed cause of
10720-437: The deep ocean water during the early Eocene, one common hypothesis was that due to these increases there would be a greater transport of heat from the tropics to the poles. Simulating these differences, the models produced lower heat transport due to the lower temperature gradients and were unsuccessful in producing an equable climate from only ocean heat transport. While typically seen as a control on ice growth and seasonality,
10854-410: The deep ocean. On top of that, MECO warming caused an increase in the respiration rates of pelagic heterotrophs , leading to a decreased proportion of primary productivity making its way down to the seafloor and causing a corresponding decline in populations of benthic foraminifera. An abrupt decrease in lakewater salinity in western North America occurred during this warming interval. This warming
10988-439: The desiccated husk. Most wasps are very specific about their host species and some have been used as biological controls of pest butterflies like the large white butterfly . When the small cabbage white was accidentally introduced to New Zealand, it had no natural enemies. In order to control it, some pupae that had been parasitised by a chalcid wasp were imported, and natural control was thus regained. Some flies lay their eggs on
11122-411: The early Eocene would have produced triple the amount of methane. The warm temperatures during the early Eocene could have increased methane production rates, and methane that is released into the atmosphere would in turn warm the troposphere, cool the stratosphere, and produce water vapor and carbon dioxide through oxidation. Biogenic production of methane produces carbon dioxide and water vapor along with
11256-901: The early Eocene, although they became less abundant as the climate cooled. Dawn redwoods were far more extensive as well. The earliest definitive Eucalyptus fossils were dated from 51.9 Ma, and were found in the Laguna del Hunco deposit in Chubut province in Argentina . Cooling began mid-period, and by the end of the Eocene continental interiors had begun to dry, with forests thinning considerably in some areas. The newly evolved grasses were still confined to river banks and lake shores, and had not yet expanded into plains and savannas . The cooling also brought seasonal changes. Deciduous trees, better able to cope with large temperature changes, began to overtake evergreen tropical species. By
11390-639: The eastern coast of North America formed the Chesapeake Bay impact crater . The Tethys Ocean finally closed with the collision of Africa and Eurasia, while the uplift of the Alps isolated its final remnant, the Mediterranean , and created another shallow sea with island archipelagos to the north. Planktonic foraminifera in the northwestern Peri-Tethys are very similar to those of the Tethys in
11524-544: The end of the period, deciduous forests covered large parts of the northern continents, including North America, Eurasia and the Arctic, and rainforests held on only in equatorial South America , Africa , India and Australia . Antarctica began the Eocene fringed with a warm temperate to sub-tropical rainforest . Pollen found in Prydz Bay from the Eocene suggest taiga forest existed there. It became much colder as
11658-508: The enhanced burial of azolla could have had a significant effect on the world atmospheric carbon content and may have been the event to begin the transition into an ice house climate. The azolla event could have led to a draw down of atmospheric carbon dioxide of up to 470 ppm. Assuming the carbon dioxide concentrations were at 900 ppmv prior to the Azolla Event they would have dropped to 430 ppmv, or 30 ppmv more than they are today, after
11792-472: The enhanced carbon dioxide levels found in the early Eocene. The isolation of the Arctic Ocean, evidenced by euxinia that occurred at this time, led to stagnant waters and as the azolla sank to the sea floor, they became part of the sediments on the seabed and effectively sequestered the carbon by locking it out of the atmosphere for good. The ability for the azolla to sequester carbon is exceptional, and
11926-418: The epidermis begins to form a new cuticle. At the end of each instar, the larva moults , the old cuticle splits and the new cuticle expands, rapidly hardening and developing pigment. Development of butterfly wing patterns begins by the last larval instar. Caterpillars have short antennae and several simple eyes . The mouthparts are adapted for chewing with powerful mandibles and a pair of maxillae, each with
12060-526: The exception of the majority of mayflies, are also missing the median terminal filament which is present in the ancestrally wingless insects. The oldest known representatives of the group appeared during the mid-Carboniferous, around 328–324 million years ago, and the group subsequently underwent rapid diversification. Claims that they originated substantially earlier during the Silurian or Devonian based on molecular clock estimates are unlikely based on
12194-551: The expansion of the ice sheet was the creation of the Antarctic Circumpolar Current . The creation of the Antarctic circumpolar current would isolate the cold water around the Antarctic, which would reduce heat transport to the Antarctic along with creating ocean gyres that result in the upwelling of colder bottom waters. The issue with this hypothesis of the consideration of this being a factor for
12328-734: The family Hesperiidae (skippers). Molecular clock estimates suggest that butterflies originated sometime in the Late Cretaceous , but only significantly diversified during the Cenozoic, with one study suggesting a North American origin for the group. The oldest American butterfly is the Late Eocene Prodryas persephone from the Florissant Fossil Beds , approximately 34 million years old. Butterflies are divided into seven families that contain
12462-528: The fossil groups. (probably paraphyletic) Superorder Exopterygota Superorder Endopterygota Neoptera orders incertae sedis Late Eocene The Eocene spans the time from the end of the Paleocene Epoch to the beginning of the Oligocene Epoch. The start of the Eocene is marked by a brief period in which the concentration of the carbon isotope C in the atmosphere
12596-429: The fossil record, and are likely analytical artefacts. Traditionally, this group was divided into the infraclasses Paleoptera and Neoptera . The former are nowadays strongly suspected of being paraphyletic , and better treatments (such as dividing or dissolving the group) are presently being discussed . In addition, it is not clear how exactly the neopterans are related among each other. The Exopterygota might be
12730-636: The four were given informal early/late substages. Wolfe tentatively deemed the Franklinian as Early Eocene, the Fultonian as Middle Eocene, the Ravenian as Late, and the Kummerian as Early Oligocene. The beginning of the Kummerian was refined by Gregory Retallack et al (2004) as 40 Mya, with a refined end at the Eocene-Oligocene boundary where the younger Angoonian floral stage starts. During
12864-408: The friction of their overlapping parts. The front two segments have a pair of spiracles which are used in respiration. The abdomen consists of ten segments and contains the gut and genital organs. The front eight segments have spiracles and the terminal segment is modified for reproduction. The male has a pair of clasping organs attached to a ring structure, and during copulation, a tubular structure
12998-552: The grass was growing. The earliest Lepidoptera fossils date to the Triassic - Jurassic boundary, around 200 million years ago. Butterflies evolved from moths, so while the butterflies are monophyletic (forming a single clade ), the moths are not. The oldest known butterfly is Protocoeliades kristenseni from the Palaeocene aged Fur Formation of Denmark, approximately 55 million years old, which belongs to
13132-588: The initial stages of the opening of the Drake Passage ~38.5 Ma was not global, as evidenced by an absence of cooling in the North Atlantic. During the cooling period, benthic oxygen isotopes show the possibility of ice creation and ice increase during this later cooling. The end of the Eocene and beginning of the Oligocene is marked with the massive expansion of area of the Antarctic ice sheet that
13266-1025: The laboratory it recovers within a few generation when allowed to breed freely. During mate selection, adult females do not innately avoid or learn to avoid siblings, implying that such detection may not be critical to reproductive fitness. Inbreeding may persist in B anynana because the probability of encountering close relatives is rare in nature; that is, movement ecology may mask the deleterious effect of inbreeding resulting in relaxation of selection for active inbreeding avoidance behaviors. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen , tree sap, rotting fruit, dung, decaying flesh, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants. In general, they do not carry as much pollen load as bees , but they are capable of moving pollen over greater distances. Flower constancy has been observed for at least one species of butterfly. Adult butterflies consume only liquids, ingested through
13400-516: The largest omnivores. The first nimravids , including Dinictis , established themselves as amongst the first feliforms to appear. Their groups became highly successful and continued to live past the Eocene. Basilosaurus is a very well-known Eocene whale , but whales as a group had become very diverse during the Eocene, which is when the major transitions from being terrestrial to fully aquatic in cetaceans occurred. The first sirenians were evolving at this time, and would eventually evolve into
13534-556: The lower stratosphere at very low temperatures. Polar stratospheric clouds have a great impact on radiative forcing. Due to their minimal albedo properties and their optical thickness, polar stratospheric clouds act similar to a greenhouse gas and trap outgoing longwave radiation. Different types of polar stratospheric clouds occur in the atmosphere: polar stratospheric clouds that are created due to interactions with nitric or sulfuric acid and water (Type I) or polar stratospheric clouds that are created with only water ice (Type II). Methane
13668-626: The lower, the Priabonian Stage the upper; and the Lutetian and Bartonian stages are united as the middle Eocene. The Western North American floras of the Eocene were divided into four floral "stages" by Jack Wolfe ( 1968 ) based on work with the Puget Group fossils of King County, Washington . The four stages, Franklinian , Fultonian , Ravenian , and Kummerian covered the Early Eocene through early Oligocene, and three of
13802-503: The majority of moths which fly by night, are often cryptically coloured (well camouflaged), and either hold their wings flat (touching the surface on which the moth is standing) or fold them closely over their bodies. Some day-flying moths, such as the hummingbird hawk-moth , are exceptions to these rules. Butterfly larvae , caterpillars , have a hard ( sclerotised ) head with strong mandibles used for cutting their food, most often leaves. They have cylindrical bodies, with ten segments to
13936-610: The maximum of global warmth the atmospheric carbon dioxide values were at 700–900 ppm , while model simulations suggest a concentration of 1,680 ppm fits best with deep sea, sea surface, and near-surface air temperatures of the time. Other proxies such as pedogenic (soil building) carbonate and marine boron isotopes indicate large changes of carbon dioxide of over 2,000 ppm over periods of time of less than 1 million years. This large influx of carbon dioxide could be attributed to volcanic out-gassing due to North Atlantic rifting or oxidation of methane stored in large reservoirs deposited from
14070-530: The members of the new mammal orders were small, under 10 kg; based on comparisons of tooth size, Eocene mammals were only 60% of the size of the primitive Palaeocene mammals that preceded them. They were also smaller than the mammals that followed them. It is assumed that the hot Eocene temperatures favored smaller animals that were better able to manage the heat. Rodents were widespread. East Asian rodent faunas declined in diversity when they shifted from ctenodactyloid-dominant to cricetid–dipodid-dominant after
14204-480: The methane, as well as yielding infrared radiation. The breakdown of methane in an atmosphere containing oxygen produces carbon monoxide, water vapor and infrared radiation. The carbon monoxide is not stable, so it eventually becomes carbon dioxide and in doing so releases yet more infrared radiation. Water vapor traps more infrared than does carbon dioxide. At about the beginning of the Eocene Epoch (55.8–33.9 Ma)
14338-569: The middle Lutetian but become completely disparate in the Bartonian, indicating biogeographic separation. Though the North Atlantic was opening, a land connection appears to have remained between North America and Europe since the faunas of the two regions are very similar. Eurasia was separated in three different landmasses 50 Ma; Western Europe, Balkanatolia and Asia. About 40 Ma, Balkanatolia and Asia were connected, while Europe
14472-399: The modern mammal orders appear within a brief period during the early Eocene . At the beginning of the Eocene, several new mammal groups arrived in North America. These modern mammals, like artiodactyls , perissodactyls , and primates , had features like long, thin legs , feet, and hands capable of grasping, as well as differentiated teeth adapted for chewing. Dwarf forms reigned. All
14606-401: The name is ancient, but modern Dutch and German use different words ( vlinder and Schmetterling ) and the common name often varies substantially between otherwise closely related languages. A possible source of the name is the bright yellow male of the brimstone ( Gonepteryx rhamni ); another is that butterflies were on the wing in meadows during the spring and summer butter season while
14740-709: The newly formed International Commission on Stratigraphy (ICS), in 1969, standardized stratigraphy based on the prevailing opinions in Europe: the Cenozoic Era subdivided into the Tertiary and Quaternary sub-eras, and the Tertiary subdivided into the Paleogene and Neogene periods. In 1978, the Paleogene was officially defined as the Paleocene, Eocene, and Oligocene epochs; and the Neogene as the Miocene and Pliocene epochs. In 1989, Tertiary and Quaternary were removed from
14874-664: The ocean. Recent analysis of and research into these hyperthermals in the early Eocene has led to hypotheses that the hyperthermals are based on orbital parameters, in particular eccentricity and obliquity. The hyperthermals in the early Eocene, notably the Palaeocene–Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2), and the Eocene Thermal Maximum 3 (ETM3), were analyzed and found that orbital control may have had
15008-416: The orbital parameters were theorized as a possible control on continental temperatures and seasonality. Simulating the Eocene by using an ice free planet, eccentricity , obliquity , and precession were modified in different model runs to determine all the possible different scenarios that could occur and their effects on temperature. One particular case led to warmer winters and cooler summer by up to 30% in
15142-425: The outside of caterpillars and the newly hatched fly larvae bore their way through the skin and feed in a similar way to the parasitoid wasp larvae. Predators of butterflies include ants, spiders, wasps, and birds. Winged insects Pterygota ( / ˌ t ɛ r ə ˈ ɡ oʊ t ə / terrə- GOH -tə Ancient Greek : πτερυγωτός , romanized : pterugōtós , lit. 'winged')
15276-416: The period progressed; the heat-loving tropical flora was wiped out, and by the beginning of the Oligocene, the continent hosted deciduous forests and vast stretches of tundra . During the Eocene, plants and marine faunas became quite modern. Many modern bird orders first appeared in the Eocene. The Eocene oceans were warm and teeming with fish and other sea life. The oldest known fossils of most of
15410-438: The polar stratospheric clouds effects on the Eocene climate, models were run comparing the effects of polar stratospheric clouds at the poles to an increase in atmospheric carbon dioxide. The polar stratospheric clouds had a warming effect on the poles, increasing temperatures by up to 20 °C in the winter months. A multitude of feedbacks also occurred in the models due to the polar stratospheric clouds' presence. Any ice growth
15544-529: The proboscis. They sip water from damp patches for hydration and feed on nectar from flowers, from which they obtain sugars for energy, and sodium and other minerals vital for reproduction. Several species of butterflies need more sodium than that provided by nectar and are attracted by sodium in salt; they sometimes land on people, attracted by the salt in human sweat. Some butterflies also visit dung and scavenge rotting fruit or carcasses to obtain minerals and nutrients. In many species, this mud-puddling behaviour
15678-431: The quest for a suitable pupation site, often the underside of a leaf or other concealed location. There it spins a button of silk which it uses to fasten its body to the surface and moults for a final time. While some caterpillars spin a cocoon to protect the pupa, most species do not. The naked pupa, often known as a chrysalis, usually hangs head down from the cremaster, a spiny pad at the posterior end, but in some species
15812-458: The reduction in carbon dioxide during the warming to cooling transition was the azolla event . With the equable climate during the early Eocene, warm temperatures in the arctic allowed for the growth of azolla , which is a floating aquatic fern, on the Arctic Ocean . The significantly high amounts of carbon dioxide also acted to facilitate azolla blooms across the Arctic Ocean. Compared to current carbon dioxide levels, these azolla grew rapidly in
15946-459: The region. One possible cause of atmospheric carbon dioxide increase could have been a sudden increase due to metamorphic release due to continental drift and collision of India with Asia and the resulting formation of the Himalayas ; however, data on the exact timing of metamorphic release of atmospheric carbon dioxide is not well resolved in the data. Recent studies have mentioned, however, that
16080-410: The release of carbon en masse into the atmosphere and ocean systems, which led to a mass extinction of 30–50% of benthic foraminifera (single-celled species which are used as bioindicators of the health of a marine ecosystem)—one of the largest in the Cenozoic. This event happened around 55.8 Ma, and was one of the most significant periods of global change during the Cenozoic. The middle Eocene
16214-445: The removal of the ocean between Asia and India could have released significant amounts of carbon dioxide. Another hypothesis still implicates a diminished negative feedback of silicate weathering as a result of continental rocks having become less weatherable during the warm Early and Middle Eocene, allowing volcanically released carbon dioxide to persist in the atmosphere for longer. Yet another explanation hypothesises that MECO warming
16348-629: The spring. It has recently been shown that the British painted lady undertakes a 9,000-mile round trip in a series of steps by up to six successive generations, from tropical Africa to the Arctic Circle — almost double the length of the famous migrations undertaken by monarch. Spectacular large-scale migrations associated with the monsoon are seen in peninsular India. Migrations have been studied in more recent times using wing tags and also using stable hydrogen isotopes . Butterflies navigate using
16482-418: The time scale due to the arbitrary nature of their boundary, but Quaternary was reinstated in 2009. The Eocene is a dynamic epoch that represents global climatic transitions between two climatic extremes, transitioning from the hot house to the cold house. The beginning of the Eocene is marked by the Paleocene–Eocene Thermal Maximum , a short period of intense warming and ocean acidification brought about by
16616-399: The tropics that would require much higher average temperatures to sustain them. TEX 86 BAYSPAR measurements indicate extremely high sea surface temperatures of 40 °C (104 °F) to 45 °C (113 °F) at low latitudes, although clumped isotope analyses point to a maximum low latitude sea surface temperature of 36.3 °C (97.3 °F) ± 1.9 °C (35.4 °F) during
16750-524: The two continents. However, modeling results call into question the thermal isolation model for late Eocene cooling, and decreasing carbon dioxide levels in the atmosphere may have been more important. Once the Antarctic region began to cool down, the ocean surrounding Antarctica began to freeze, sending cold water and icefloes north and reinforcing the cooling. The northern supercontinent of Laurasia began to fragment, as Europe , Greenland and North America drifted apart. In western North America,
16884-463: The world became more arid and cold over the course of the stage, such as the Fushun Basin. In East Asia, lake level changes were in sync with global sea level changes over the course of the MLEC. Global cooling continued until there was a major reversal from cooling to warming in the Bartonian. This warming event, signifying a sudden and temporary reversal of the cooling conditions, is known as
17018-528: Was a major step into the icehouse climate. Multiple proxies, such as oxygen isotopes and alkenones , indicate that at the Eocene–Oligocene transition, the atmospheric carbon dioxide concentration had decreased to around 750–800 ppm, approximately twice that of present levels . Along with the decrease of atmospheric carbon dioxide reducing the global temperature, orbital factors in ice creation can be seen with 100,000-year and 400,000-year fluctuations in benthic oxygen isotope records. Another major contribution to
17152-476: Was caused by the simultaneous occurrence of minima in both the 400 kyr and 2.4 Myr eccentricity cycles. During the MECO, sea surface temperatures in the Tethys Ocean jumped to 32–36 °C, and Tethyan seawater became more dysoxic. A decline in carbonate accumulation at ocean depths of greater than three kilometres took place synchronously with the peak of the MECO, signifying ocean acidification took place in
17286-417: Was characterized by the shift towards a cooler climate at the end of the EECO, around 47.8 Ma, which was briefly interrupted by another warming event called the middle Eocene climatic optimum (MECO). Lasting for about 400,000 years, the MECO was responsible for a globally uniform 4° to 6°C warming of both the surface and deep oceans, as inferred from foraminiferal stable oxygen isotope records. The resumption of
17420-465: Was connected 34 Ma. The Fushun Basin contained large, suboxic lakes known as the paleo-Jijuntun Lakes. India collided with Asia , folding to initiate formation of the Himalayas . The incipient subcontinent collided with the Kohistan–Ladakh Arc around 50.2 Ma and with Karakoram around 40.4 Ma, with the final collision between Asia and India occurring ~40 Ma. The Eocene Epoch contained
17554-402: Was determined that in order to maintain the lower stratospheric water vapor, methane would need to be continually released and sustained. In addition, the amounts of ice and condensation nuclei would need to be high in order for the polar stratospheric cloud to sustain itself and eventually expand. The Eocene is not only known for containing the warmest period during the Cenozoic; it also marked
17688-461: Was exceptionally low in comparison with the more common isotope C . The average temperature of Earth at the beginning of the Eocene was about 27 degrees Celsius. The end is set at a major extinction event called the Grande Coupure (the "Great Break" in continuity) or the Eocene–Oligocene extinction event , which may be related to the impact of one or more large bolides in Siberia and in what
17822-401: Was present on Earth with a smaller difference in temperature from the equator to the poles . Because of this the maximum sea level was 150 meters higher than current levels. Following the maximum was a descent into an icehouse climate from the Eocene Optimum to the Eocene–Oligocene transition at 34 Ma. During this decrease, ice began to reappear at the poles, and the Eocene–Oligocene transition
17956-437: Was slowed immensely and would lead to any present ice melting. Only the poles were affected with the change in temperature and the tropics were unaffected, which with an increase in atmospheric carbon dioxide would also cause the tropics to increase in temperature. Due to the warming of the troposphere from the increased greenhouse effect of the polar stratospheric clouds, the stratosphere would cool and would potentially increase
#143856