Misplaced Pages

Great Red Spot

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter , producing an anticyclonic storm that is the largest in the Solar System . It is the most recognizable feature on Jupiter, owing to its red-orange color whose origin is still unknown. Located 22 degrees south of Jupiter 's equator , it produces wind-speeds up to 432 km/h (268 mph). It was first observed in September 1831, with 60 recorded observations between then and 1878, when continuous observations began. A similar spot was observed from 1665 to 1713; if this is the same storm, it has existed for at least 359 years, but a study from 2024 suggests this is not the case.

#348651

166-449: The Great Red Spot may have existed before 1665, but it could be that the present spot was first seen only in 1830, and was well studied only after a prominent appearance in 1879. The storm that was seen in the 17th century may have been different from the storm that exists today. A long gap separates its period of current study after 1830 from its 17th century discovery. Whether the original spot dissipated and reformed, whether it faded, or if

332-580: A spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs, these three instruments used photon -counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego , and Martin Marietta Corporation built

498-732: A 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages. Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, use Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also used an RCA 1802 microprocessor (or possibly

664-457: A South Tropical Disturbance. Jupiter's Great Red Spot (GRS) is an elliptical shaped anticyclone, occurring at 22 degrees below the equator, in Jupiter's southern hemisphere. The largest anticyclonic storm (~16,000 km) in our solar system, little is known about its internal depth and structure. Visible imaging and cloud-tracking from in-situ observation determined the velocity and vorticity of

830-488: A back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other's work, which would have almost certainly caught the polishing error that later caused problems .) The Kodak mirror is now on permanent display at the National Air and Space Museum . An Itek mirror built as part of

996-555: A balance-controlled watch before the Royal Society, may support Hooke's claim to priority for the idea. Nevertheless, it is Huygens who is credited with building the first watch to use a balance spring. Hooke's announcement of his law of elasticity using an anagram was a method scientists, such as Hooke, Huygens and Galileo , sometimes used to establish priority for a discovery without revealing details. Hooke used mechanical analogues to understand fundamental processes such as

1162-499: A curator to furnish the society with experiments, and this was unanimously passed and Hooke was named on Boyle's recommendation. The Society did not have a reliable income to fully fund the post of Curator of Experiments but in 1664, John Cutler settled an annual gratuity of £50 on the Society to found a "Mechanick" lectureship at Gresham College on the understanding the Society would appoint Hooke to this task. On 27 June 1664, Hooke

1328-419: A different point from the light reflecting off its center. The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced

1494-421: A disgruntled, selfish, anti-social curmudgeon. For example, Arthur Berry said Hooke "claimed credit for most of the scientific discoveries of the time". Sullivan wrote he was "positively unscrupulous" and had an "uneasy apprehensive vanity" in dealings with Newton. Manuel described Hooke as "cantankerous, envious, vengeful". According to More, Hooke had both a "cynical temperament" and a "caustic tongue". Andrade

1660-490: A dog could be kept alive with its thorax opened, provided air was pumped in and out of its lungs. He noted the difference between venous and arterial blood, and thus demonstrated that the Pabulum vitae ("food of life") and flammae [flames] were the same thing. There were also experiments on gravity, the falling of objects, the weighing of bodies, the measurement of barometric pressure at different heights, and

1826-586: A father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky —published Die Rakete zu den Planetenräumen ("The Rocket into Planetary Space"), which mentioned how a telescope could be propelled into Earth orbit by a rocket. The history of the Hubble Space Telescope can be traced to 1946, to astronomer Lyman Spitzer 's paper "Astronomical advantages of an extraterrestrial observatory". In it, he discussed

SECTION 10

#1732765993349

1992-437: A final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1  arcseconds (485 n rad ) in diameter, as had been specified in the design criteria. Analysis of the flawed images revealed that the primary mirror had been polished to

2158-546: A full-up start. There was some opposition on [Capitol] Hill to getting a new start on [Hubble]. It was driven, in large part as I recall, by the budget situation. Jim Fletcher proposed that we put in $ 5 million as a placeholder. I didn't like that idea. It was, in today's vernacular, a "sop" to the astronomy community. "There's something in there, so all is well". I figured in my own little head that to get that community energized we'd be better off zeroing it out. Then they would say, "Whoa, we're in deep trouble", and it would marshal

2324-425: A height of 800 km (500 mi) above the storm where they break in the upper atmosphere, converting wave energy into heat. This creates a region of upper atmosphere that is 1,600 K (1,330 °C; 2,420 °F)—several hundred kelvins warmer than the rest of the planet at this altitude. The effect is described as like "crashing [...] ocean waves on a beach". Careful tracking of atmospheric features revealed

2490-618: A medium for transmitting attraction and repulsion between separated celestial bodies, Hooke argued for an attracting principle of gravitation in Micrographia (1665). In a communication to the Royal Society in 1666, he wrote: I will explain a system of the world very different from any yet received. It is founded on the following positions. 1. That all the heavenly bodies have not only a gravitation of their parts to their own proper centre, but that they also mutually attract each other within their spheres of action. 2. That all bodies having

2656-461: A nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually, the Senate agreed to half the budget that had originally been approved by Congress. The funding issues led to

2822-517: A new hypothesis from Paris about planetary motions, which he described at length; efforts to carry out or improve national surveys; and the difference of latitude between London and Cambridge. Newton's reply offered "a fansy of my own" about a terrestrial experiment rather than a proposal about celestial motions that might detect the Earth's motion; the experiment would use a body suspended in air and then dropped. Hooke wanted to discern how Newton thought

2988-554: A possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch. Following the resumption of shuttle flights, Space Shuttle Discovery successfully launched the Hubble on April 24, 1990, as part of the STS-31 mission. At launch, NASA had spent approximately US$ 4.7 billion in inflation-adjusted 2010 dollars on

3154-449: A project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as "unsettled and changing daily", NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer's schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA

3320-551: A reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4 ft 11 in) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency (ESA). ESA agreed to provide funding and supply one of

3486-565: A resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification. The Goddard High Resolution Spectrograph (GHRS) was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve

SECTION 20

#1732765993349

3652-435: A simple motion, will continue to move in a straight line, unless continually deflected from it by some extraneous force, causing them to describe a circle, an ellipse, or some other curve. 3. That this attraction is so much the greater as the bodies are nearer. As to the proportion in which those forces diminish by an increase of distance, I own I have not discovered it. ... Hooke's 1674 Gresham lecture, An Attempt to Prove

3818-628: A single-system account of repetition and priming; and the power law of forgetting can be derived from the model's assumption in a straightforward way. On 8 July 1680, Hooke observed the nodal patterns associated with the modes of vibration of glass plates. He ran a bow along the edge of a flour-covered glass plate and saw the nodal patterns emerge. In acoustics, in 1681, Hooke showed the Royal Society that musical tones can be generated using spinning brass cogs cut with teeth in particular proportions. Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble )

3984-507: A space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that

4150-624: A spinal deformity that was consistent with a diagnosis of Scheuermann's kyphosis , giving him in middle and later years a "thin and crooked body, over-large head and protruding eyes". Approaching these in a scientific spirit, he experimented with self-medication, diligently recording symptoms, substances and effects in his diary. He regularly used sal ammoniac , emetics, laxatives and opiates, which appear to have had an increasing effect on his physical and mental health over time. Hooke died in London on 3 March 1703, having been blind and bedridden during

4316-718: A team of professional astronomers beginning in April 2006 to study the storms using the Hubble Space Telescope ; on 20 July 2006, the two storms were photographed passing each other by the Gemini Observatory without converging. In May 2008, a third storm turned red. The Juno spacecraft , which entered into a polar orbit around Jupiter in 2016, flew over the Great Red Spot upon its close approach to Jupiter on 11 July 2017, taking several images of

4482-478: A tenth of the wavelength of visible light , but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end,

4648-403: A theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8 ft 2 in) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere of Earth . Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by

4814-435: A transiting moon, most likely Callisto . Far more convincing is Giovanni Cassini 's description of a "permanent spot" the following year. With fluctuations in visibility, Cassini's spot was observed from 1665 to 1713, but the 48-year observational gap makes the identity of the two spots inconclusive. The older spot's shorter observational history and slower motion than the modern spot makes it difficult to conclude that they are

4980-418: A vacuum might exist despite Aristotle 's maxim " Nature abhors a vacuum " had just begun to be considered . Hooke developed an air pump for Boyle's experiments rather than use Ralph Greatorex 's pump, which Hooke considered as "too gross to perform any great matter". Hooke's engine enabled the development of the eponymous law that was subsequently attributed to Boyle; Hooke had a particularly keen eye and

5146-732: A very small scale following World War II , as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and NASA launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962. An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel programme , and in 1966 NASA launched

Great Red Spot - Misplaced Pages Continue

5312-406: A way that is not accurately predictable. The density of the upper atmosphere varies according to many factors, and this means Hubble's predicted position for six weeks' time could be in error by up to 4,000 km (2,500 mi). Observation schedules are typically finalized only a few days in advance, as a longer lead time would mean there was a chance the target would be unobservable by the time it

5478-462: Is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope , but it is one of the largest and most versatile, renowned as a vital research tool and as a public relations boon for astronomy . The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA's Great Observatories . The Space Telescope Science Institute (STScI) selects Hubble's targets and processes

5644-546: Is also a feature in the atmosphere of Neptune called the Great Dark Spot . The latter feature was imaged by Voyager 2 in 1989 and may have been an atmospheric hole rather than a storm. It was no longer present as of 1994, although a similar spot had appeared farther to the north. Jupiter's Great Red Spot rotates counterclockwise, with a period of about 4.5 Earth days, or 11 Jovian days, as of 2008. Measuring 16,350 km (10,160 mi) in width as of 3 April 2017,

5810-482: Is apparently coupled to the SEB; when the belt is bright white, the spot tends to be dark, and when it is dark, the spot is usually light. These periods when the spot is dark or light occur at irregular intervals; from 1947 to 1997, the spot was darkest in the periods 1961–1966, 1968–1975, 1989–1990, and 1992–1993. Robert Hooke Robert Hooke FRS ( / h ʊ k / ; 18 July 1635 – 3 March 1703)

5976-401: Is not known how long the spot will last, or whether the change is a result of normal fluctuations. In 2019, the Great Red Spot began "flaking" at its edge, with fragments of the storm breaking off and dissipating. The shrinking and "flaking" fueled speculation from some astronomers that the Great Red Spot could dissipate within 20 years. However, other astronomers believe that the apparent size of

6142-827: Is physically located in Baltimore , Maryland on the Homewood campus of Johns Hopkins University , one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility (ST-ECF), established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to

6308-453: Is still no logical reason that it is 200–500 km in depth, but the jet streams that supply the force that powers the GRS vortex are well below the structure base. It is not known what causes the Great Red Spot's reddish color. Hypotheses supported by laboratory experiments suppose that it may be caused by chemical products created from the solar ultraviolet irradiation of ammonium hydrosulfide and

6474-551: Is used for latitudes of more than 10 degrees and was originally based on the average rotational period of the Great Red Spot of 9h 55m 42s. Despite this, however, the spot has "lapped" the planet in System II at least 10 times since the early 19th century. Its drift rate has changed dramatically over the years and has been linked to the brightness of the South Equatorial Belt and the presence or absence of

6640-565: Is usually painted of Hooke as a morose ... recluse is completely false". He interacted with noted artisans such as clock-maker Thomas Tompion and instrument-maker Christopher Cocks (Cox). Hooke often met Christopher Wren, with whom he shared many interests, and had a lasting friendship with John Aubrey. His diaries also make frequent reference to meetings at coffeehouses and taverns, as well as to dinners with Robert Boyle. On many occasions, Hooke took tea with his lab assistant Harry Hunt. Although he largely lived alone – apart from

6806-585: The Challenger disaster brought the U.S. space program to a halt, grounded the Shuttle fleet, and forced the launch to be postponed for several years. During this delay the telescope was kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$ 6 million per month) pushed the overall costs of the project higher. However, this delay allowed time for engineers to perform extensive tests, swap out

Great Red Spot - Misplaced Pages Continue

6972-461: The Great Fire of London in 1666, Hooke (as a surveyor and architect) attained wealth and esteem by performing more than half of the property line surveys and assisting with the city's rapid reconstruction. Often vilified by writers in the centuries after his death, his reputation was restored at the end of the twentieth century and he has been called "England's Leonardo [da Vinci] ". Hooke

7138-587: The Great Red Spot of Jupiter for two hours as it moved across the planet's face. In March 1665, he published his findings and from them, the Italian astronomer Giovanni Cassini calculated the rotation period of Jupiter to be nine hours and fifty-five minutes. One of the most-challenging problems Hooke investigated was the measurement of the distance from Earth to a star other than the Sun. Hooke selected

7304-413: The balance spring or hairspring, which for the first time enabled a portable timepiece – a watch – to keep time with reasonable accuracy. A bitter dispute between Hooke and Christiaan Huygens on the priority of this invention was to continue for centuries after the death of both but a note dated 23 June 1670 in the journals of the Royal Society, describing a demonstration of

7470-406: The organ and began his lifelong study of mechanics. He remained an accomplished draughtsman, as he was later to demonstrate in his drawings that illustrate the work of Robert Boyle and Hooke's own Micrographia . In 1653, Hooke secured a place at Christ Church , Oxford , receiving free tuition and accommodation as an organist and a chorister , and a basic income as a servitor , despite

7636-613: The "notion" of "the rule of the decrease of Gravity, being reciprocally as the squares of the distances from the Center". At the same time, according to Edmond Halley 's contemporaneous report, Hooke agreed "the Demonstration of the Curves generated thereby" was wholly Newton's. According to a 2002 assessment of the early history of the inverse square law: "by the late 1660s, the assumption of an 'inverse proportion between gravity and

7802-572: The "permanent spot" observed from 1665 to 1713 may not be the same as the modern Great Red Spot observed since 1831. It is suggested that the original spot disappeared, and later another spot formed, which is the one seen today. On 25 February 1979, when the Voyager 1 spacecraft was 9,200,000 km (5,700,000 mi) from Jupiter, it transmitted the first detailed image of the Great Red Spot. Cloud details as small as 160 km (100 mi) across were visible. The colorful, wavy cloud pattern seen to

7968-465: The 1991 comedy The Naked Gun 2½: The Smell of Fear , in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg . Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for

8134-670: The Attraction always is in a duplicate proportion to the Distance from the Center Reciprocall, and Consequently that the Velocity will be in a subduplicate proportion to the Attraction and Consequently as Kepler Supposes Reciprocall to the Distance". (Hooke's inference about the velocity is incorrect. ) In 1686, when the first book of Newton's Principia was presented to the Royal Society, Hooke said he had given Newton

8300-477: The Dutch scientist Antonie van Leeuwenhoek went on to develop increased magnification and so reveal protozoa , blood cells and spermatozoa . Micrographia also contains Hooke's, or perhaps Boyle's and Hooke's, ideas on combustion. Hooke's experiments led him to conclude combustion involves a component of air, a statement with which modern scientists would agree but that was not understood widely, if at all, in

8466-641: The European Space Astronomy Centre. One complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, which results in most astronomical targets being occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around

SECTION 50

#1732765993349

8632-584: The FOS. The final instrument was the HSP, designed and built at the University of Wisconsin–Madison . It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better. HST's guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep

8798-608: The Faint Object Spectrograph (FOS). WF/PC used a radial instrument bay, and the other four instruments were each installed in an axial instrument bay. WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA's Jet Propulsion Laboratory , and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has

8964-553: The GRS to determine how far the GRS extended toward the surface of the condensed H 2 O layer. These MWR scans suggested that the GRS vertical depth extended to about 240 km below cloud level, with an estimated drop in atmospheric pressure to 100 bar. Two methods of analysis that constrain the data collected were the mascon approach, which found a depth of ~290 km, and the Slepian approach showing wind extending to ~310 km. These methods, along with gravity signature MWR data, suggest that

9130-413: The GRS zonal winds still increase at a rate of 50% of the velocity of the viable cloud level, before the wind decay starts at lower levels. This rate of wind decay and gravity data suggest the depth of the GRS is between 200 and 500 km. Galileo and Cassini's thermal infrared imaging and spectroscopy of the GRS were conducted during 1995–2008, in order to find evidence of thermal inhomogeneities within

9296-482: The GRS, which is located in a thin anticyclonic ring at 70–85% of the radius and is located along Jupiter's fastest westward moving jet stream. During NASA's 2016 Juno mission, gravity signature and thermal infrared data were obtained that offered insight into the structural dynamics and depth of the GRS. During July 2017, the Juno spacecraft conducted a second pass of the GRS to collect Microwave Radiometer (MWR) scans of

9462-456: The Great Red Spot is 1.3 times the diameter of Earth. The cloud-tops of this storm are about 8 km (5 mi) above the surrounding cloud-tops. The storm has continued to exist for centuries because there is no planetary surface (only a mantle of hydrogen ) to provide friction; circulating gas eddies persist for a very long time in the atmosphere because there is nothing to oppose their angular momentum. Infrared data has long indicated that

9628-400: The Great Red Spot is colder (and thus higher in altitude) than most of the other clouds on the planet. The upper atmosphere above the storm, however, has substantially higher temperatures than the rest of the planet. Acoustic (sound) waves rising from the turbulence of the storm below have been proposed as an explanation for the heating of this region. The acoustic waves travel vertically up to

9794-484: The Great Red Spot reflects its cloud coverage and not the size of the actual, underlying vortex, and they also believe that the flaking events can be explained by interactions with other cyclones or anticyclones, including incomplete absorptions of smaller systems; if this is the case, this would mean that the Great Red Spot is not in danger of dissipating. A smaller spot, designated Oval BA , which formed in March 2000 from

9960-505: The Great Red Spot's counterclockwise circulation as far back as 1966, observations dramatically confirmed by the first time-lapse movies from the Voyager fly-bys. The spot is confined by a modest eastward jet stream to its south and a very strong westward one to its north. Though winds around the edge of the spot peak at about 432 km/h (268 mph), currents inside it seem stagnant, with little inflow or outflow. The rotation period of

10126-561: The HST is a Cassegrain reflector of Ritchey–Chrétien design , as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about

SECTION 60

#1732765993349

10292-486: The Jovian northern hemisphere due to an optical inversion inherent to the era's telescopes). No Jovian feature was explicitly described in writing as red before the late 19th century. The Great Red Spot has been observed since 5 September 1831. By 1879, over 60 observations had been recorded. Since it came into prominence in 1879, it has been under continuous observation. A 2024 study of historical observations suggests that

10458-702: The Motion of the Earth by Observations (published 1679), said gravitation applies to "all celestial bodies" and restated these three propositions. Hooke's statements up to 1674 make no mention, however, that an inverse square law applies or might apply to these attractions. His model of gravitation was also not yet universal, though it approached universality more closely than previous hypotheses. Hooke did not provide accompanying evidence or mathematical demonstration; he stated in 1674: "Now what these several degrees [of gravitational attraction] are I have not yet experimentally verified", indicating he did not yet know what law

10624-515: The OTA was not designed with optimum infrared performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble's performance as an infrared telescope. Perkin-Elmer (PE) intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct

10790-427: The Royal Society's correspondence; Hooke therefore wanted to hear from members about their research or their views about the research of others. Hooke asked Newton's opinions about various matters. Among other items, Hooke mentioned "compounding the celestial motions of the planets of a direct motion by the tangent and an attractive motion towards the central body"; his "hypothesis of the lawes or causes of springinesse";

10956-425: The Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the four axial instrument bays. Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future. Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in

11122-725: The Smithsonian National Air and Space Museum . The FOC is in the Dornier museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison . The first WFPC was dismantled, and some components were then re-used in WFC3. Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve

11288-519: The Society could scarcely have survived, or, at least, would have developed in a quite different way. It is scarcely an exaggeration to say that he was, historically, the creator of the Royal Society. The Royal Society for the Improvement of Natural Knowledge by Experiment was founded in 1660 and given its Royal Charter in July 1662. On 5 November 1661, Robert Moray proposed the appointment of

11454-526: The Sun (precluding observations of Mercury ), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for

11620-415: The U.S. National Academy of Sciences recommended development of a space telescope as part of the space program , and in 1965, Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope. Also crucial was the work of Nancy Grace Roman , the "Mother of Hubble". Well before it became an official NASA project, she gave public lectures touting

11786-641: The VISIR (VLT Mid-Infrared Imager Spectrometer on the ESO Very Large Telescope) imaging obtained in 2006; this revealed that the GRS was physically present at a wide range of altitudes that occur within the atmospheric pressure range of 80–600 mbar, and confirms the thermal infrared mapping result. To develop a model of the internal structure of the GRS the Cassini mission Composite Infrared Spectrometer (CIRS) and ground based spatial imaging mapped

11952-745: The WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), within roughly 24° of Hubble's orbital poles , in which targets are not occulted for long periods. Due to the precession of the orbit, the location of the CVZ moves slowly over a period of eight weeks. Because the limb of the Earth is always within about 30° of regions within the CVZ, the brightness of scattered earthshine may be elevated for long periods during CVZ observations. Hubble orbits in low Earth orbit at an altitude of approximately 540 kilometers (340 mi) and an inclination of 28.5°. The position along its orbit changes over time in

12118-551: The age of 13, he took this to London to become an apprentice to the celebrated painter Peter Lely . Hooke also had "some instruction in drawing" from the limner Samuel Cowper but "the smell of the Oil Colours did not agree with his Constitution, increasing his Head-ache to which he was ever too much subject", and he became a pupil at Westminster School , living with its master Richard Busby . Hooke quickly mastered Latin, Greek and Euclid's Elements ; he also learnt to play

12284-493: The composition of the phosphine and ammonia aerosols (PH 3 , NH 3 ) and para-hydroxybenzoic acid within the anticyclonic circulation of the GRS. The images that were collected from the CIRS and ground-based imaging trace the vertical motion in the Jovian atmosphere by PH 3 and NH 3 spectra. The highest concentrations of PH 3 and NH 3 were found to the north of the GRS peripheral rotation. They aided in determining

12450-618: The construction. The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387 math co-processor. The DF-224 and its 386 co-processor were replaced by

12616-440: The deaths of both Newton and Hooke, Alexis Clairaut , mathematical astronomer eminent in his own right in the field of gravitational studies, reviewed Hooke's published work on gravitation. According to Stephen Peter Rigaud , Clairaut wrote: "The example of Hooke and that of Kepler [serves] to show what a distance there is between a truth that is glimpsed and a truth that is demonstrated". I. Bernard Cohen said: "Hooke's claim to

12782-498: The defective mirror by using sophisticated image processing techniques such as deconvolution . A commission headed by Lew Allen , director of the Jet Propulsion Laboratory , was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector , a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens

12948-510: The diversion he gave me from my other studies to think on these things & for his dogmaticalness in writing as if he had found the motion in the Ellipsis, which inclined me to try it. Whilst Newton was primarily a pioneer in mathematical analysis and its applications, and optical experimentation, Hooke was a creative experimenter of such great range who left some of his ideas, such as those about gravitation, undeveloped. In 1759, decades after

13114-759: The earliest-recorded observation of a microorganism, the microfungus Mucor . Hooke coined the term " cell ", suggesting a resemblance between plant structures and honeycomb cells. The hand-crafted, leather-and-gold-tooled microscope he designed and used to make the observations for Micrographia , which Christopher Cock made for him in London, is on display at the National Museum of Health and Medicine in Maryland . Hooke's work developed from that of Henry Power , who published his microscopy work in Experimental Philosophy (1663); in turn,

13280-420: The east and west of the GRS. The vertical temperature of the structure of the GRS is constrained between the 100–600 mbar range, with the vertical temperature of the GRS core is approximately 400 mbar of pressure, being 1.0–1.5 K, much warmer than regions of the GRS to the east–west, and 3.0–3.5 K warmer than regions to the north–south of the structures edge. This structure is consistent with the data collected by

13446-573: The effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory . Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror's weight to a minimum it consisted of top and bottom plates, each 25 mm (0.98 in) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting

13612-432: The extinction of species, and argued hills and mountains had become elevated by geological processes. By identifying fossils of extinct species, Hooke presaged the theory of biological evolution . Much of what is known of Hooke's early life comes from an autobiography he commenced in 1696 but never completed; Richard Waller FRS mentions it in his introduction to The Posthumous Works of Robert Hooke, M.D. S.R.S. , which

13778-521: The fact he did not officially matriculate until 1658. In 1662, Hooke was awarded a Master of Arts degree. While a student at Oxford, Hooke was also employed as an assistant to Dr Thomas Willis  – a physician, chemist and member of the Oxford Philosophical Club . The Philosophical Club had been founded by John Wilkins , Warden of Wadham College , who led this important group of scientists who went on to form

13944-482: The falling body could experimentally reveal the Earth's motion by its direction of deviation from the vertical but Hooke went on hypothetically to consider how its motion could continue if the solid Earth had not been in the way, on a spiral path to the centre. Hooke disagreed with Newton's idea of the body's continuing motion. A further short correspondence developed; towards the end of it, writing on 6 January 1680 to Newton, Hooke communicated his "supposition ... that

14110-501: The first Orbiting Astronomical Observatory (OAO) mission. OAO-1's battery failed after three days, terminating the mission. It was followed by Orbiting Astronomical Observatory 2 (OAO-2), which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year. The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for

14276-528: The first generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$ 36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983,

14442-465: The first practical Gregorian telescope that used a silvered glass mirror. In 1660, Hooke discovered the law of elasticity that bears his name and describes the linear variation of tension with extension in an elastic spring. Hooke first described this discovery in an anagram "ceiiinosssttuv", whose solution he published in 1678 as Ut tensio, sic vis ("As the extension, so the force"). His work on elasticity culminated in his development of

14608-424: The formation of these craters and concluded their existence meant the Moon must have its own gravity, a radical departure from the contemporaneous Aristotelian celestial model . He also was an early observer of the rings of Saturn , and discovered one of the first-observed double-star systems Gamma Arietis in 1664. To achieve these discoveries, Hooke needed better instruments than those that were available at

14774-463: The foundation of his lifelong passion for science. The friends he made there, particularly Christopher Wren , were important to him throughout his career. Willis introduced Hooke to Robert Boyle , who the Club sought to attract to Oxford. In 1655, Boyle moved to Oxford and Hooke became nominally his assistant but in practice his co-experimenter. Boyle had been working on gas pressures; the possibility

14940-446: The gravitation might follow; and about his whole proposal, he said: "This I only hint at present ... having my self many other things in hand which I would first compleat, and therefore cannot so well attend it" (i.e. "prosecuting this Inquiry"). In November 1679, Hooke initiated a notable exchange of letters with Newton that was published in 1960. Hooke's ostensible purpose was to tell Newton he (Hooke) had been appointed to manage

15106-453: The history of life on Earth and, despite the objections of contemporary naturalists like John Ray  – who found the concept of extinction theologically unacceptable – that in some cases they might represent species that had become extinct through some geological disaster. In a series of lectures in 1668, Hooke proposed the then-heretical idea the Earth's surface had been formed by volcanoes and earthquakes, and that

15272-467: The intended −1.00230 . The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror. Because of the way the HST's instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace

15438-416: The internal structure vortex of the GRS. Previous thermal infrared temperature maps from the Voyager , Galileo, and Cassini missions suggested the GRS is a structure of an anticyclonic vortex with a cold core within a upwelling warmer annulus; this data shows a gradient in the temperature of the GRS. Better understanding of Jupiter's atmospheric temperature, aerosol particle opacity, and ammonia gas composition

15604-428: The invention was, by Hooke's death, in constant use among clock makers. Hooke announced he conceived a way to build a marine chronometer to determine longitude. and with the help of Boyle and others, he attempted to patent it. In the process, Hooke demonstrated a pocket-watch of his own devising that was fitted with a coil spring attached to the arbour of the balance. Hooke's refusal to accept an escape clause in

15770-472: The inverse-square law has masked Newton's far more fundamental debt to him, the analysis of curvilinear orbital motion. In asking for too much credit, Hooke effectively denied to himself the credit due him for a seminal idea". Hooke made important contributions to the science of timekeeping and was intimately involved in the advances of his time; these included refinement of the pendulum as a better regulator for clocks, increased precision of clock mechanisms and

15936-477: The last year of his life. A chest containing £8,000 in money and gold was found in his room at Gresham College . His library contained over 3,000 books in Latin, French, Italian and English. Although he had talked of leaving a generous bequest to the Royal Society, which would have given his name to a library, laboratory and lectures, no will was found and the money passed to a cousin named Elizabeth Stephens. Hooke

16102-533: The latter were responsible for shell fossils being found far above sea level. In 1835, Charles Lyell , the Scottish geologist and associate of Charles Darwin , wrote of Hooke in Principles of Geology : "His treatise ... is the most philosophical production of that age, in regard to the causes of former changes in the organic and inorganic kingdoms of nature". Hooke's scientific model of human memory

16268-413: The launch date of the telescope to October 1984. The mirror was completed by the end of 1981; it was washed using 9,100 L (2,000 imp gal; 2,400 US gal) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride . Doubts continued to be expressed about Perkin-Elmer's competence on

16434-504: The left (west) of the Red Spot is a region of extraordinarily complex and variable wave motion. In the 21st century, the major diameter of the Great Red Spot has been observed to be shrinking in size. At the start of 2004, its length was about half that of a century earlier, when it reached a size of 40,000 km (25,000 mi), about three times the diameter of Earth. At the present rate of reduction, it will become circular by 2040. It

16600-497: The love of his life, and he was devastated when she died in 1687. Inwood also mentions "The age difference between him and Grace was commonplace and would not have upset his contemporaries as it does us". The incestous relationship would nevertheless have been frowned upon and tried by an ecclesiastical court had it been discovered, it was not however a capital felony after 1660. Since childhood, Hooke suffered from migraine , tinnitus , dizziness and bouts of insomnia ; he also had

16766-673: The merging of three white ovals, has turned reddish in color. Astronomers have named it the Little Red Spot or Red Jr. As of 5 June 2006, the Great Red Spot and Oval BA appeared to be approaching convergence. The storms pass each other about every two years, but the passing of 2002 and 2004 were of little significance. Amy Simon-Miller , of the Goddard Space Flight Center , predicted the storms would have their closest passing on 4 July 2006. She worked with Imke de Pater and Phil Marcus of UC Berkeley as well as

16932-415: The mirror being ground very precisely but to the wrong shape. During fabrication, a few tests using conventional null correctors correctly reported spherical aberration . But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate. The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and

17098-414: The mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror's final shape would be correct and to specification when deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer's managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and moved

17264-427: The mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument. Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to

17430-499: The most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics , such as determining the rate of expansion of the universe . Space telescopes were proposed as early as 1923, and the Hubble telescope was funded and built in the 1970s by the United States space agency NASA with contributions from the European Space Agency . Its intended launch

17596-513: The most ingenious book that ever I read in my life". One of the observations in Micrographia is of fossil wood , the microscopic structure of which Hooke compared to that of ordinary wood. This led him to conclude that fossilised objects like petrified wood and fossil shells such as ammonites were the remains of living things that had been soaked in mineral-laden petrifying water. He believed that such fossils provided reliable clues about

17762-556: The motion of a spherical pendulum and of a ball in a hollow cone, to demonstrate central force due to gravity, and a hanging chain net with point loads to provide the optimum shape for a dome with heavy cross on top. Despite continuing reports to the contrary, Hooke did not influence Thomas Newcomen 's invention of the steam engine ; this myth, which originated in an article in the third edition of " Encyclopædia Britannica ", has been found to be mistaken. While many of Hooke's contemporaries, such as Isaac Newton, believed in aether as

17928-440: The movement of pendulums up to 200 ft long (61 m). His biographer Margaret 'Espinasse described him as England's first meteorologist , in her description of his essay Method for making a history of the weather . (Hooke specifies that a thermometer, a hygrometer , a wind gauge and a record sheet be used for proper weather records. ) In May 1664, using a 12 ft (3.7 m) refracting telescope , Hooke observed

18094-452: The next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for

18260-561: The nucleus of the Royal Society . In 1659, Hooke described to the Club some elements of a method of heavier-than-air flight but concluded human muscles were insufficient to the task. Through the Club, Hooke met Seth Ward (the University's Savilian Professor of Astronomy ) and developed for Ward a mechanism that improved the regularity of pendulum clocks used for astronomical time-keeping. Hooke characterised his Oxford days as

18426-533: The observational record was simply poor is unknown. The first sighting of the Great Red Spot is often credited to Robert Hooke , who described a spot on the planet in May 1664. However, it is likely that Hooke's spot was not only in another belt altogether (the North Equatorial Belt, as opposed to the current Great Red Spot's location in the South Equatorial Belt ), but also that it was in the shadow of

18592-666: The older 1801 version). The WFPC-1 was replaced by the WFPC-2 during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) during Servicing Mission 4 in 2009. The upgrade extended Hubble's capability of seeing deeper into the universe and providing images in three broad regions of the spectrum. When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and

18758-411: The optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of

18924-511: The organic compound acetylene , which produces a reddish material—likely complex organic compounds called tholins . The high altitude of the compounds may also contribute to the coloring. The Great Red Spot varies greatly in hue, from almost brick-red to pale salmon or even white. The spot occasionally disappears, becoming evident only through the Red Spot Hollow, which is its location in the South Equatorial Belt (SEB). Its visibility

19090-425: The problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly

19256-636: The project. Hubble's cumulative costs are estimated to be about US$ 11.3 billion in 2015 dollars, which include all subsequent servicing costs, but not ongoing operations, making it the most expensive science mission in NASA history. Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors , which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during

19422-698: The proposed exclusive contract for the use of this idea resulted in its abandonment. Hooke developed the principle of the balance spring independently of Huygens and at least five years beforehand. Huygens published his own work in Journal de Scavans in February 1675 and built the first functioning watch to use a balance spring. In 1663 and 1664, Hooke made his microscopic, and some astronomic, observations, which he collated in Micrographia in 1665. His book, which describes observations with microscopes and telescopes, as well as original work in biology, contains

19588-500: The resulting data, while the Goddard Space Flight Center (GSFC) controls the spacecraft. Hubble features a 2.4 m (7 ft 10 in) mirror, and its five main instruments observe in the ultraviolet , visible , and near-infrared regions of the electromagnetic spectrum . Hubble's orbit outside the distortion of Earth's atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of

19754-576: The rotations of Mars and Jupiter . Hooke's 1665 book Micrographia , in which he coined the term cell , encouraged microscopic investigations. Investigating optics  – specifically light refraction  – Hooke inferred a wave theory of light . His is the first-recorded hypothesis of the cause of the expansion of matter by heat, of air's composition by small particles in constant motion that thus generate its pressure, and of heat as energy. In physics, Hooke inferred that gravity obeys an inverse square law and arguably

19920-409: The same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as " spectacles " to correct the spherical aberration. The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390 ± 0.0002 , instead of

20086-472: The same. A minor mystery concerns a Jovian spot depicted in a 1711 canvas by Donato Creti , which is exhibited in the Vatican . Part of a series of panels in which different (magnified) heavenly bodies serve as backdrops for various Italian scenes, and all overseen by the astronomer Eustachio Manfredi for accuracy, Creti's painting is the first known depiction of the Great Red Spot as red (albeit raised to

20252-439: The scientific value of the telescope. After it was approved, she became the program scientist, setting up the steering committee in charge of making astronomer needs feasible to implement and writing testimony to Congress throughout the 1970s to advocate continued funding of the telescope. Her work as project scientist helped set the standards for NASA's operation of large scientific projects. Space-based astronomy had begun on

20418-498: The servants who ran his home – his niece Grace Hooke and his cousin Tom Giles lived with him for some years as children. Hooke never married. According to his diary, Hooke had a sexual relationship with his niece Grace, after she had turned 16. Grace was in his custody since the age of 10. He also had sexual relations with several maids and housekeepers. Hooke's biographer Stephen Inwood considers Grace to have been

20584-467: The seventeenth century. He also concluded respiration and combustion involve a specific and limited component of air. According to Partington, if "Hooke had continued his experiments on combustion, it is probable that he would have discovered oxygen". Samuel Pepys wrote of the book in his diary on 21 January 16 ⁠ 64 / 65 ⁠ : "Before I went to bed I sat up till two o’clock in my chamber reading of Mr. Hooke's Microscopicall Observations,

20750-468: The southward jet movement and showed evidence of an increase in altitude of the column of aerosols with pressures ranging from 200–500 mbar. However, the NH 3 composition data shows that there is a major depletion of NH 3 below the visible cloud layer at the southern peripheral ring of the GRS; this lower opacity is relative to a narrow band of atmospheric subsidence. The low mid-IR aerosol opacity, along with

20916-405: The spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed experienced some budget and schedule slippage, and by the summer 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in

21082-826: The spectrum are covered by the Compton Gamma Ray Observatory , the Chandra X-ray Observatory , and the Spitzer Space Telescope (which covers the infrared bands). The mid-IR-to-visible band successor to the Hubble telescope is the James Webb Space Telescope (JWST), which was launched on December 25, 2021, with the Nancy Grace Roman Space Telescope due to follow in 2027. In 1923, Hermann Oberth —considered

21248-501: The spot has decreased with time, perhaps as a direct result of its steady reduction in size. The Great Red Spot's latitude has been stable for the duration of good observational records, typically varying by about a degree. Its longitude , however, is subject to constant variation, including a 90-day longitudinal oscillation with an amplitude of ~1°. Because Jupiter does not rotate uniformly at all latitudes, astronomers have defined three different systems for defining longitude. System II

21414-400: The square of distance' was rather common and had been advanced by a number of different people for different reasons". In the 1660s, Newton had shown for planetary motion under a circular assumption, force in the radial direction had an inverse-square relation with distance from the centre. Newton, who in May 1686 was presented with Hooke's claim to priority on the inverse square law, denied he

21580-455: The star Gamma Draconis and chose the method of parallax determination. In 1669, after several months of observing, Hooke believed the desired result had been achieved. It is now known his equipment was far too imprecise to obtain an accurate measurement. Hooke's Micrographia contains illustrations of the Pleiades star cluster and lunar craters . He conducted experiments to investigate

21746-593: The storm from a distance of about 8,000 km (5,000 mi) above the surface. Over the duration of the Juno mission, the spacecraft continued to study the composition and evolution of Jupiter's atmosphere, especially its Great Red Spot. The Great Red Spot should not be confused with the Great Dark Spot, a feature observed near the northern pole of Jupiter in 2000 with the Cassini–Huygens spacecraft. There

21912-826: The supposition, could only guess it was approximately valid "at great distances from the centre". Newton did accept and acknowledge, in all editions of the Principia , Hooke and others had separately appreciated the inverse square law in the solar system. Newton acknowledged Wren, Hooke and Halley in this connection in his "Scholium to Proposition 4" in Book   1. In a letter to Halley, Newton also acknowledged his correspondence with Hooke in 1679–1680 had reawakened his dormant interest in astronomical matters but that did not mean, according to Newton, Hooke had told Newton anything new or original. Newton wrote: Yet am I not beholden to him for any light into that business ... but only for

22078-468: The technology to allow this was soon to become available. The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established,

22244-560: The telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry ; measurements accurate to within 0.0003 arcseconds have been achieved. The Space Telescope Science Institute (STScI) is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy (AURA) and

22410-418: The telescope project. In 1977, then NASA Administrator James C. Fletcher proposed a token $ 5 million for Hubble in NASA's budget. Then NASA Associate Administrator for Space Science, Noel Hinners , instead cut all funding for Hubble, gambling that this would galvanize the scientific community into fighting for full funding. As Hinners recalls: It was clear that year that we weren't going to be able to get

22576-422: The telescope was named after Edwin Hubble , who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaître , that the universe is expanding . Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. Marshall Space Flight Center (MSFC) was given responsibility for the design, development, and construction of

22742-523: The telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but after NASA administrator Michael D. Griffin approved it, the servicing mission was completed in 2009. Hubble completed 30 years of operation in April 2020 and is predicted to last until 2030 to 2040. Hubble is the visible light telescope in NASA's Great Observatories program ; other parts of

22908-436: The telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the optical telescope assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed. Optically,

23074-501: The telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic , there was a risk that water vapor absorbed by the truss while in Lockheed's clean room would later be expressed in

23240-456: The temperature gradients, the altitude difference, and the vertical movement of the zonal winds, are involved with the development and sustainability of the vorticity. The stronger atmospheric subsidence and compositional asymmetries of the GRS suggest that the structure exhibits a degree of tilt from the northern edge to the southern edge of the structure. The GRS depth and internal structure has been constantly changing over decades; however there

23406-459: The time. Accordingly, he invented three new mechanisms: the Hooke joint , a sophisticated universal joint that allowed his instruments to smoothly follow the apparent motion of the observed body; the first clockwork drive to automate the process; and a micrometer screw that allowed him to achieve a precision of ten seconds of arc . Hooke was dissatisfied with refracting telescopes so he built

23572-436: The troops. So I advocated that we not put anything in. I don't remember any of the detailed discussions or whether there were any, but Jim went along with that so we zeroed it out. It had, from my perspective, the desired impact of stimulating the astronomy community to renew their efforts on the lobbying front. While I like to think in hindsight it was a brilliant political move, I'm not sure I thought it through all that well. It

23738-455: The two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction , rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing . At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds , compared to

23904-432: The type in which he was involved seem almost to be the rule rather than the exception. And Hooke's reaction to such controversy involving his own discoveries and inventions seems mild in comparison to the behaviour of some of his contemporaries". The publication of Hooke's diary in 1935 revealed previously unknown details about his social and familial relationships. His biographer Margaret 'Espinasse said: "the picture which

24070-415: The use of the balance spring to improve the timekeeping of watches. Galileo had observed the regularity of a pendulum and Huygens first incorporated it in a clock; in 1668, Hooke demonstrated his new device to keep a pendulum swinging regularly in unsteady conditions. His invention of a tooth-cutting machine enabled a substantial improvement in the accuracy and precision of timepieces. Waller reported

24236-409: The usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA's competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope. In

24402-535: The vacuum of space; resulting in the telescope's instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space. As well as electrical power systems, the Pointing Control System controls HST orientation using five types of sensors (magnetic sensors, optical sensors, and six gyroscopes) and two types of actuators ( reaction wheels and magnetic torquers ). While construction of

24568-406: The wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1 ⁄ 450 mm or 1 ⁄ 11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on

24734-453: Was a Fellow of the Royal Society and from 1662, he was its first Curator of Experiments. From 1665 to 1703, he was also Professor of Geometry at Gresham College . Hooke began his scientific career as an assistant to the physical scientist Robert Boyle . Hooke built the vacuum pumps that were used in Boyle's experiments on gas law and also conducted experiments. In 1664, Hooke identified

24900-435: Was an English polymath who was active as a physicist ("natural philosopher"), astronomer, geologist, meteorologist and architect. He is credited as one of the first scientists to investigate living things at microscopic scale in 1665, using a compound microscope that he designed. Hooke was an impoverished scientific inquirer in young adulthood who went on to become one of the most important scientists of his time. After

25066-404: Was an adept mathematician, neither of which applied to Boyle. Hooke taught Boyle Euclid's Elements and Descartes 's Principles of Philosophy ; it also caused them to recognise fire as a chemical reaction and not, as Aristotle taught, a fundamental element of nature. According to Henry Robinson, Librarian of The Royal Society in 1935: Without his weekly experiments and prolific work

25232-520: Was appointed its Joint Secretary. Although John Aubrey described Hooke as a person of "great virtue and goodness". much has been written about the unpleasant side of Hooke's personality. According to his first biographer Richard Waller, Hooke was "in person, but despicable", and "melancholy, mistrustful, and jealous". Waller's comments influenced other writers for more than 200 years such that many books and articles – especially biographies of Isaac Newton  – portray Hooke as

25398-471: Was buried at St Helen's Church, Bishopsgate , in the City of London but the precise location of his grave is unknown. Hooke's role at the Royal Society was to demonstrate experiments from his own methods or at the suggestion of members. Among his earliest demonstrations were discussions of the nature of air and the implosion of glass bubbles that had been sealed with enclosed hot air. He also demonstrated that

25564-436: Was confirmed to the office and on 11 January 1665, he was named Curator by Office for life with an annual salary of £80, which consisting of £30 from the Society and Cutler's £50 annuity. In June 1663, Hooke was elected a Fellow of the Royal Society (FRS). On 20 March 1665, he was also appointed Gresham Professor of Geometry . On 13 September 1667, Hooke became acting Secretary of the Society and on 19 December 1677, he

25730-534: Was due to be observed. Engineering support for HST is provided by NASA and contractor personnel at the Goddard Space Flight Center in Greenbelt, Maryland , 48 km (30 mi) south of the STScI. Hubble's operation is monitored 24 hours per day by four teams of flight controllers who make up Hubble's Flight Operations Team. By January 1986, the planned launch date for Hubble that October looked feasible, but

25896-480: Was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$ 1.175 billion. The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth's shadow , which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of

26062-545: Was frail and not expected to live. Although his father gave him some instruction in English, (Latin) Grammar and Divinity , Robert's education was largely neglected. Left to his own devices, he made little mechanical toys; seeing a brass clock dismantled, he built a wooden replica that "would go". Hooke's father died in October 1648, leaving £40 in his will to Robert (plus another £10 held over from his grandmother). At

26228-529: Was in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster . Hubble was finally launched in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope's capabilities. The optics were corrected to their intended quality by a servicing mission in 1993. Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on

26394-485: Was more sympathetic but still described Hooke as "difficult", "suspicious" and "irritable". In October 1675, the Council of the Royal Society considered a motion to expel Hooke because of an attack he made on Christiaan Huygens over scientific priority in watch design but it did not pass. According to Hooke's biographer Ellen Drake: if one studies the intellectual milieu of the time, the controversies and rivalries of

26560-646: Was one of the first of its kind. In a 1682 lecture to the Royal Society, Hooke proposed a mechanical analogue model of human memory that bore little resemblance to the mainly philosophical models of earlier writers. This model addressed the components of encoding, memory capacity, repetition, retrieval, and forgetting – some with surprisingly modern accuracy. According to psychology professor Douglas Hintzman, Hooke's model's most-interesting points are that it allows for attention and other top-down influences on encoding; it uses resonance to implement parallel, cue-dependent retrieval; it explains memory for recency; it offers

26726-414: Was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step ( figuring ), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in

26892-645: Was printed in 1705. The work of Waller, along with John Ward 's Lives of the Gresham Professors , and John Aubrey 's Brief Lives form the major near-contemporaneous biographical accounts of his life. Hooke was born in 1635 in Freshwater, Isle of Wight , to Cecily Gyles and the Anglican priest John Hooke, who was the curate of All Saints' Church, Freshwater . Robert was the youngest, by seven years, of four siblings (two boys and two girls); he

27058-405: Was provided by thermal-IR imaging: a direct correlation of the visible cloud layers reactions, thermal gradient and compositional mapping to observational data were collected over decades. During December 2000, high spatial resolution images from Galileo, of an atmospheric turbulent area to the northwest of the GRS, showed a thermal contrast between the warmest region of the anticyclone and regions to

27224-510: Was something that was spur of the moment. [...] $ 5 million would let them think that all is well anyway, but it's not. So let's give them a message. My own thinking, get them stimulated to get into action. Zeroing it out would certainly give that message. I think it was as simple as that. Didn't talk to anybody else about doing it first, just, "Let's go do that". Voila, it worked. Don't know whether I'd do that again. The political ploy worked. In response to Hubble being zeroed out of NASA's budget,

27390-515: Was the first to hypothesise such a relation in planetary motion, a principle Isaac Newton furthered and formalised in Newton's law of universal gravitation . Priority over this insight contributed to the rivalry between Hooke and Newton. In geology and palaeontology , Hooke originated the theory of a terraqueous globe, thus disputing the Biblical view of the Earth's age; he also hypothesised

27556-509: Was to be credited as author of the idea, giving reasons including the citation of prior work by others. Newton also said that, even if he had first heard of the inverse square proportion from Hooke (which Newton said he had not), he would still have some rights to it because of his mathematical developments and demonstrations. These, he said, enabled observations to be relied upon as evidence of its accuracy while according to Newton, Hooke, without mathematical demonstrations and evidence in favour of

#348651