Misplaced Pages

Common rail

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Common rail direct fuel injection is a direct fuel injection system built around a high- pressure (over 2,000  bar or 200  MPa or 29,000  psi ) fuel rail feeding solenoid valves , as opposed to a low-pressure fuel pump feeding unit injectors (or pump nozzles). High-pressure injection delivers power and fuel consumption benefits over earlier lower pressure fuel injection, by injecting fuel as a larger number of smaller droplets, giving a much higher ratio of surface area to volume. This provides improved vaporization from the surface of the fuel droplets, and so more efficient combining of atmospheric oxygen with vaporized fuel delivering more complete combustion .

#848151

91-517: Common rail injection is widely used in diesel engines . It is also the basis of gasoline direct injection systems used on petrol engines . In 1916 Vickers pioneered the use of mechanical common rail systems in G-class submarine engines. For every 90° of rotation, four plunger pumps allowed a constant injection pressure of 3,000 pounds per square inch (210 bar; 21 MPa), with fuel delivery to individual cylinders being shut off by valves in

182-414: A carcinogen or "probable carcinogen" and is known to increase the risk of heart and respiratory diseases. In principle, a diesel engine does not require any sort of electrical system. However, most modern diesel engines are equipped with an electrical fuel pump, and an electronic engine control unit. However, there is no high-voltage electrical ignition system present in a diesel engine. This eliminates

273-445: A gas engine (using a gaseous fuel like natural gas or liquefied petroleum gas ). Diesel engines work by compressing only air, or air combined with residual combustion gases from the exhaust (known as exhaust gas recirculation , "EGR"). Air is inducted into the chamber during the intake stroke, and compressed during the compression stroke. This increases air temperature inside the cylinder so that atomised diesel fuel injected into

364-452: A diesel engine drops at lower loads, however, it does not drop quite as fast as the Otto (spark ignition) engine's. Diesel engines are combustion engines and, therefore, emit combustion products in their exhaust gas . Due to incomplete combustion, diesel engine exhaust gases include carbon monoxide , hydrocarbons , particulate matter , and nitrogen oxides pollutants. About 90 per cent of

455-402: A diesel engine, particularly at idling speeds, is sometimes called "diesel clatter". This noise is largely caused by the sudden ignition of the diesel fuel when injected into the combustion chamber, which causes a pressure wave that sounds like knocking. Denso DENSO Corporation ( 株式会社デンソー , Kabushiki-Gaisha Densō ) is a global automotive components manufacturer headquartered in

546-516: A few degrees releasing the pressure and is controlled by a mechanical governor, consisting of weights rotating at engine speed constrained by springs and a lever. The injectors are held open by the fuel pressure. On high-speed engines the plunger pumps are together in one unit. The length of fuel lines from the pump to each injector is normally the same for each cylinder in order to obtain the same pressure delay. Direct injected diesel engines usually use orifice-type fuel injectors. Electronic control of

637-407: A finite area, and the net output of work during a cycle is positive. The fuel efficiency of diesel engines is better than most other types of combustion engines, due to their high compression ratio, high air–fuel equivalence ratio (λ) , and the lack of intake air restrictions (i.e. throttle valves). Theoretically, the highest possible efficiency for a diesel engine is 75%. However, in practice

728-452: A fuel consumption of 519 g·kW ·h . However, despite proving the concept, the engine caused problems, and Diesel could not achieve any substantial progress. Therefore, Krupp considered rescinding the contract they had made with Diesel. Diesel was forced to improve the design of his engine and rushed to construct a third prototype engine. Between 8 November and 20 December 1895, the second prototype had successfully covered over 111 hours on

819-409: A full set of valves, two-stroke diesel engines have simple intake ports, and exhaust ports (or exhaust valves). When the piston approaches bottom dead centre, both the intake and the exhaust ports are "open", which means that there is atmospheric pressure inside the cylinder. Therefore, some sort of pump is required to blow the air into the cylinder and the combustion gasses into the exhaust. This process

910-470: A game of shogi against professional players. In June 2020, DENSO announced the opening of its "Electrification Innovation Center" at its plant in Anjō . The facility will support the company's development of products and technologies for electric and hybrid vehicles. In 2014, DENSO's global sales were distributed as follows: DENSO is a global company focused on advanced mobility that positively changes how

1001-420: A high-pressure pump stores a reservoir of fuel at high pressure — up to and above 2,000 bars (200 MPa; 29,000 psi). The term "common rail" refers to the fact that all of the fuel injectors are supplied by a common fuel rail which is nothing more than a pressure accumulator where the fuel is stored at high pressure. This accumulator supplies multiple fuel injectors with high-pressure fuel. This simplifies

SECTION 10

#1732791876849

1092-403: A low-pressure loop at the bottom of the diagram. At 1 it is assumed that the exhaust and induction strokes have been completed, and the cylinder is again filled with air. The piston-cylinder system absorbs energy between 1 and 2 – this is the work needed to compress the air in the cylinder, and is provided by mechanical kinetic energy stored in the flywheel of the engine. Work output is done by

1183-795: A member of the Japan Robot Association , and support the ORiN standard. QR Code® is a two-dimensional code developed by DENSO WAVE in 1994. QR stands for Quick Response and refers to the extremely fast decoding of information. Originally developed for marking assemblies and components for logistics in the automotive production of the Toyota Groups . Denso International America is the American subsidiary of Denso. In 1970, DENSO Corporation decided to expand overseas from Kariya, Japan, to North America . DENSO Sales California, Inc.,

1274-681: A notable exception being the EMD 567 , 645 , and 710 engines, which are all two-stroke. The power output of medium-speed diesel engines can be as high as 21,870 kW, with the effective efficiency being around 47-48% (1982). Most larger medium-speed engines are started with compressed air direct on pistons, using an air distributor, as opposed to a pneumatic starting motor acting on the flywheel, which tends to be used for smaller engines. Medium-speed engines intended for marine applications are usually used to power ( ro-ro ) ferries, passenger ships or small freight ships. Using medium-speed engines reduces

1365-423: A peak power of almost 100 MW each. Diesel engines may be designed with either two-stroke or four-stroke combustion cycles . They were originally used as a more efficient replacement for stationary steam engines . Since the 1910s, they have been used in submarines and ships. Use in locomotives , buses, trucks, heavy equipment , agricultural equipment and electricity generation plants followed later. In

1456-535: A petroleum engine with glow-tube ignition in the early 1890s; he claimed against his own better judgement that his glow-tube ignition engine worked the same way Diesel's engine did. His claims were unfounded and he lost a patent lawsuit against Diesel. Other engines, such as the Akroyd engine and the Brayton engine , also use an operating cycle that is different from the diesel engine cycle. Friedrich Sass says that

1547-415: A poorer power-to-mass ratio than an equivalent petrol engine. The lower engine speeds (RPM) of typical diesel engines results in a lower power output. Also, the mass of a diesel engine is typically higher, since the higher operating pressure inside the combustion chamber increases the internal forces, which requires stronger (and therefore heavier) parts to withstand these forces. The distinctive noise of

1638-408: A regular trunk-piston. Two-stroke engines have a limited rotational frequency and their charge exchange is more difficult, which means that they are usually bigger than four-stroke engines and used to directly power a ship's propeller. Four-stroke engines on ships are usually used to power an electric generator. An electric motor powers the propeller. Both types are usually very undersquare , meaning

1729-800: A service center in Cedar Falls, Iowa . This was opened due to an agricultural parts contract with John Deere that included starter motors and meters. DENSO International America employs over 17,000 people at 38 locations between North, Central, and South America. At year end, on March 31, 2008, combined sales totaled $ 8.3 billion for all American locations. As Denso is a part of the Toyota Group, it also assists Toyota in participating and developing their cars for different motorsports categories. Denso manufactures customised electronics and different auto-parts specifically for Toyota-Lexus motorsports development divisions Toyota Racing Development and

1820-435: A simple mechanical injection system since exact injection timing is not as critical. Most modern automotive engines are DI which have the benefits of greater efficiency and easier starting; however, IDI engines can still be found in the many ATV and small diesel applications. Indirect injected diesel engines use pintle-type fuel injectors. Early diesel engines injected fuel with the assistance of compressed air, which atomised

1911-536: A single orifice injector. The pre-chamber has the disadvantage of lowering efficiency due to increased heat loss to the engine's cooling system, restricting the combustion burn, thus reducing the efficiency by 5–10%. IDI engines are also more difficult to start and usually require the use of glow plugs. IDI engines may be cheaper to build but generally require a higher compression ratio than the DI counterpart. IDI also makes it easier to produce smooth, quieter running engines with

SECTION 20

#1732791876849

2002-527: A single speed for long periods. Two-stroke engines use a combustion cycle which is completed in two strokes instead of four strokes. Filling the cylinder with air and compressing it takes place in one stroke, and the power and exhaust strokes are combined. The compression in a two-stroke diesel engine is similar to the compression that takes place in a four-stroke diesel engine: As the piston passes through bottom centre and starts upward, compression commences, culminating in fuel injection and ignition. Instead of

2093-426: A small chamber called a swirl chamber, precombustion chamber, pre chamber or ante-chamber, which is connected to the cylinder by a narrow air passage. Generally the goal of the pre chamber is to create increased turbulence for better air / fuel mixing. This system also allows for a smoother, quieter running engine, and because fuel mixing is assisted by turbulence, injector pressures can be lower. Most IDI systems use

2184-530: A source of radio frequency emissions (which can interfere with navigation and communication equipment), which is why only diesel-powered vehicles are allowed in some parts of the American National Radio Quiet Zone . To control the torque output at any given time (i.e. when the driver of a car adjusts the accelerator pedal ), a governor adjusts the amount of fuel injected into the engine. Mechanical governors have been used in

2275-400: A spark plug ( compression ignition rather than spark ignition ). In the diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15:1 and 23:1. This high compression causes the temperature of the air to rise. At about the top of the compression stroke, fuel is injected directly into the compressed air in

2366-417: A swirl chamber or pre-chamber are called indirect injection (IDI) engines. Most direct injection diesel engines have a combustion cup in the top of the piston where the fuel is sprayed. Many different methods of injection can be used. Usually, an engine with helix-controlled mechanic direct injection has either an inline or a distributor injection pump. For each engine cylinder, the corresponding plunger in

2457-401: A temperature near 130 °C). Common rail engines have been used in marine and locomotive applications for some time. The Cooper-Bessemer GN-8 ( circa 1942) is an example of a hydraulically operated common rail diesel engine, also known as a modified common rail. The common rail system prototype for automotive engines was developed in the late 1960s by Robert Huber of Switzerland, and

2548-422: A two-stroke ship diesel engine has a single-stage turbocharger with a turbine that has an axial inflow and a radial outflow. In general, there are three types of scavenging possible: Crossflow scavenging is incomplete and limits the stroke, yet some manufacturers used it. Reverse flow scavenging is a very simple way of scavenging, and it was popular amongst manufacturers until the early 1980s. Uniflow scavenging

2639-413: A variety of motorsports categories which include NASCAR , Formula One (from 2002-2009), World Rally Championship , and World Endurance Championship . The Toyota TS030 Hybrid , using a Denso kinetic energy recovery system , finished second in the 2013 24 Hours of Le Mans . Denso products are also used in many local Japanese motorsports, including Super Formula and Super GT . On January 30, 2012,

2730-457: A very short to no heating-up time, depending on the ambient temperature, and produce lower engine noise and emissions than older systems. Diesel engines have historically used various forms of fuel injection. Two common types include the unit-injection system and the distributor/inline-pump systems . While these older systems provide accurate fuel quantity and injection timing control, they are limited by several factors: In common rail systems,

2821-682: Is a blend word of the Japanese terms for "electricity" ( 電気 , denki ) and "device" ( 装置 , sōchi ) . The company develops and manufactures various auto parts, including gasoline and diesel engine components, hybrid vehicle components, climate control systems, instrument clusters, airbag systems, pre-crash radar systems, and spark plugs . DENSO also develops and manufactures non-automotive components, such as household heating equipment and industrial robots. A Denso industrial robot gained wide public attention in Japan when it conducted

Common rail - Misplaced Pages Continue

2912-423: Is a simplified and idealised representation of the events involved in a diesel engine cycle, arranged to illustrate the similarity with a Carnot cycle . Starting at 1, the piston is at bottom dead centre and both valves are closed at the start of the compression stroke; the cylinder contains air at atmospheric pressure. Between 1 and 2 the air is compressed adiabatically – that is without heat transfer to or from

3003-403: Is approximately 5 MW. Medium-speed engines are used in large electrical generators, railway diesel locomotives , ship propulsion and mechanical drive applications such as large compressors or pumps. Medium speed diesel engines operate on either diesel fuel or heavy fuel oil by direct injection in the same manner as low-speed engines. Usually, they are four-stroke engines with trunk pistons;

3094-429: Is called scavenging . The pressure required is approximately 10-30 kPa. Due to the lack of discrete exhaust and intake strokes, all two-stroke diesel engines use a scavenge blower or some form of compressor to charge the cylinders with air and assist in scavenging. Roots-type superchargers were used for ship engines until the mid-1950s, however since 1955 they have been widely replaced by turbochargers. Usually,

3185-404: Is done on the system to which the engine is connected. During this expansion phase the volume of the gas rises, and its temperature and pressure both fall. At 4 the exhaust valve opens, and the pressure falls abruptly to atmospheric (approximately). This is unresisted expansion and no useful work is done by it. Ideally the adiabatic expansion should continue, extending the line 3–4 to the right until

3276-464: Is more complicated to make but allows the highest fuel efficiency; since the early 1980s, manufacturers such as MAN and Sulzer have switched to this system. It is standard for modern marine two-stroke diesel engines. So-called dual-fuel diesel engines or gas diesel engines burn two different types of fuel simultaneously , for instance, a gaseous fuel and diesel engine fuel. The diesel engine fuel auto-ignites due to compression ignition, and then ignites

3367-461: Is usually high. The diesel engine has the highest thermal efficiency (see engine efficiency ) of any practical internal or external combustion engine due to its very high expansion ratio and inherent lean burn, which enables heat dissipation by excess air. A small efficiency loss is also avoided compared with non-direct-injection gasoline engines, as unburned fuel is not present during valve overlap, and therefore no fuel goes directly from

3458-457: The Audi A8 ). The main suppliers of modern common rail systems are Bosch , Delphi Technologies , Denso , and Siemens VDO (now owned by Continental AG ). The automotive manufacturers refer to their common rail engines by their own brand names: Solenoid or piezoelectric valves make possible fine electronic control over the fuel-injection time and quantity, and the higher pressure that

3549-508: The US Justice Department announced after two years of investigation that it had discovered part of a massive price fixing scheme in which Denso and Yazaki played a significant role. The conspiracy, which fixed prices and allocated components to such car manufacturers as Toyota and Honda , extended from Michigan to Japan, where it was also under investigation. Denso agreed to pay a fine of $ 78 million. In August 2020,

3640-722: The United Kingdom , and the United States for "Method of and Apparatus for Converting Heat into Work". In 1894 and 1895, he filed patents and addenda in various countries for his engine; the first patents were issued in Spain (No. 16,654), France (No. 243,531) and Belgium (No. 113,139) in December 1894, and in Germany (No. 86,633) in 1895 and the United States (No. 608,845) in 1898. Diesel

3731-542: The 1930s, they slowly began to be used in some automobiles . Since the 1970s energy crisis , demand for higher fuel efficiency has resulted in most major automakers, at some point, offering diesel-powered models, even in very small cars. According to Konrad Reif (2012), the EU average for diesel cars at the time accounted for half of newly registered cars. However, air pollution and overall emissions are more difficult to control in diesel engines compared to gasoline engines, and

Common rail - Misplaced Pages Continue

3822-568: The 1990s by Magneti Marelli , Centro Ricerche Fiat in Bari , and Elasis, with further development by physicist Mario Ricco Fiat Group . Unfortunately Fiat were in a poor financial state at this time, so the design was acquired by Robert Bosch GmbH for refinement and mass production. The first passenger car to use this system was the 1997 Alfa Romeo 156 with a 2.4-L JTD engine , and later that same year, Mercedes-Benz introduced it in their W202 model. In 2001, common rail injection made its way into

3913-563: The 6.6 liter Duramax LB7 V8 used in the Chevrolet Silverado HD and GMC Sierra HD. In 2003 Dodge and Cummins launched common rail engines, and Ford followed in 2008 with the 6.4L Powerstroke. Today almost all non-commercial diesel vehicles use common rail systems. The common rail system is suitable for all types of road cars with diesel engines, ranging from city cars (such as the Fiat Panda ) to executive cars (such as

4004-454: The Carnot cycle. Diesel was also introduced to a fire piston , a traditional fire starter using rapid adiabatic compression principles which Linde had acquired from Southeast Asia . After several years of working on his ideas, Diesel published them in 1893 in the essay Theory and Construction of a Rational Heat Motor . Diesel was heavily criticised for his essay, but only a few found

4095-633: The European motorsports facility of the company Toyota Gazoo Racing previously named Toyota Motorsports GmbH located in Germany. Denso plays a vital role as an OEM by specifically engineering auto-parts and electronics for Toyota in motorsports which mainly include spark plugs, starter motors, fuel pumps , alternators , Engine Control Module (ECM) computer systems, engine & transmission sensors and many other high-performance automotive and motor racing equipments and accessories for Toyota to compete in

4186-465: The German engineer Rudolf Diesel , is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression ; thus, the diesel engine is called a compression-ignition engine (CI engine). This contrasts with engines using spark plug -ignition of the air-fuel mixture, such as a petrol engine ( gasoline engine) or

4277-774: The U.S. and China). In 2023, DENSO was the second largest auto parts supplier in the world. In 2022, DENSO was listed at #278 on the Fortune Global 500 list with a total revenue of $ 49.0 billion and 167,950 employees. As of 2021, DENSO consisted of 200 consolidated subsidiaries (64 in Japan , 23 in North America , 32 in Europe , 74 in Asia , and seven in Oceania and other regions). The name DENSO ( 電装 , densō )

4368-400: The amount of fuel injected into the engine. Due to the amount of air being constant (for a given RPM) while the amount of fuel varies, very high ("lean") air-fuel ratios are used in situations where minimal torque output is required. This differs from a petrol engine, where a throttle is used to also reduce the amount of intake air as part of regulating the engine's torque output. Controlling

4459-470: The bore is smaller than the stroke. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) often have an effective efficiency of up to 55%. Like medium-speed engines, low-speed engines are started with compressed air, and they use heavy oil as their primary fuel. Four-stroke engines use the combustion cycle described earlier. Most smaller diesels, for vehicular use, for instance, typically use

4550-551: The city of Kariya , Aichi Prefecture , Japan. After becoming independent from Toyota Motor , the company was founded as Nippon Denso Co. Ltd. ( 日本電装株式会社 , Nippon Densō Kabushiki-Gaisha ) in 1949. About 25% of the company is owned by Toyota. Despite being a part of the Toyota Group of companies, as of the year ending March 2016, sales to the Toyota Group accounted for less than 50% of total revenue (44% of revenue originated from other car manufacturers in Japan, Germany,

4641-412: The combustion chamber ignites. With the fuel being injected into the air just before combustion, the dispersion of fuel is uneven; this is called a heterogeneous air-fuel mixture. The torque a diesel engine produces is controlled by manipulating the air-fuel ratio (λ) ; instead of throttling the intake air, the diesel engine relies on altering the amount of fuel that is injected, and thus the air-fuel ratio

SECTION 50

#1732791876849

4732-448: The combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. Combustion occurs at a substantially constant pressure during the initial part of the power stroke. The start of vaporisation causes a delay before ignition and the characteristic diesel knocking sound as the vapour reaches ignition temperature and causes an abrupt increase in pressure above

4823-418: The combustion chamber. This may be into a (typically toroidal ) void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporises fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in

4914-507: The common rail technology makes available provides better fuel atomisation . To lower engine noise , the engine's electronic control unit can inject a small amount of diesel just before the main injection event ("pilot" injection), thus reducing its explosiveness and vibration, as well as optimising injection timing and quantity for variations in fuel quality, cold starting, and so on. Some advanced common rail fuel systems perform as many as five injections per stroke. Common rail engines require

5005-425: The compressed gas. Combustion and heating occur between 2 and 3. In this interval the pressure remains constant since the piston descends, and the volume increases; the temperature rises as a consequence of the energy of combustion. At 3 fuel injection and combustion are complete, and the cylinder contains gas at a higher temperature than at 2. Between 3 and 4 this hot gas expands, again approximately adiabatically. Work

5096-452: The compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinder is limited by the need to prevent pre-ignition , which would cause engine damage. Since only air is compressed in a diesel engine, and fuel is not introduced into the cylinder until shortly before top dead centre ( TDC ), premature detonation is not a problem and compression ratios are much higher. The pressure–volume diagram (pV) diagram

5187-473: The compression required for his cycle: By June 1893, Diesel had realised his original cycle would not work, and he adopted the constant pressure cycle. Diesel describes the cycle in his 1895 patent application. Notice that there is no longer a mention of compression temperatures exceeding the temperature of combustion. Now it is simply stated that the compression must be sufficient to trigger ignition. In 1892, Diesel received patents in Germany , Switzerland ,

5278-416: The concept of air-blast injection from George B. Brayton , albeit that Diesel substantially improved the system. On 17 February 1894, the redesigned engine ran for 88 revolutions – one minute; with this news, Maschinenfabrik Augsburg's stock rose by 30%, indicative of the tremendous anticipated demands for a more efficient engine. On 26 June 1895, the engine achieved an effective efficiency of 16.6% and had

5369-424: The cost of smaller ships and increases their transport capacity. In addition to that, a single ship can use two smaller engines instead of one big engine, which increases the ship's safety. Low-speed diesel engines are usually very large in size and mostly used to power ships . There are two different types of low-speed engines that are commonly used: Two-stroke engines with a crosshead, and four-stroke engines with

5460-655: The desired pressure. Since the fuel pressure energy is stored remotely and the injectors are electrically actuated, the injection pressure at the start and end of injection is very near the pressure in the accumulator (rail), thus producing a square injection rate. If the accumulator, pump, and plumbing are sized properly, the injection pressure and rate will be the same for each of the multiple injection events. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar (250 MPa; 36,000 psi). Diesel engine The diesel engine , named after

5551-616: The diesel engine is Diesel's "very own work" and that any "Diesel myth" is " falsification of history ". Diesel sought out firms and factories that would build his engine. With the help of Moritz Schröter and Max Gutermuth  [ de ] , he succeeded in convincing both Krupp in Essen and the Maschinenfabrik Augsburg . Contracts were signed in April 1893, and in early summer 1893, Diesel's first prototype engine

SECTION 60

#1732791876849

5642-417: The efficiency is much lower, with efficiencies of up to 43% for passenger car engines, up to 45% for large truck and bus engines, and up to 55% for large two-stroke marine engines. The average efficiency over a motor vehicle driving cycle is lower than the diesel engine's peak efficiency (for example, a 37% average efficiency for an engine with a peak efficiency of 44%). That is because the fuel efficiency of

5733-408: The environment – by the rising piston. (This is only approximately true since there will be some heat exchange with the cylinder walls .) During this compression, the volume is reduced, the pressure and temperature both rise. At or slightly before 2 (TDC) fuel is injected and burns in the compressed hot air. Chemical energy is released and this constitutes an injection of thermal energy (heat) into

5824-463: The four-stroke cycle. This is due to several factors, such as the two-stroke design's narrow powerband which is not particularly suitable for automotive use and the necessity for complicated and expensive built-in lubrication systems and scavenging measures. The cost effectiveness (and proportion of added weight) of these technologies has less of an impact on larger, more expensive engines, while engines intended for shipping or stationary use can be run at

5915-616: The fuel and forced it into the engine through a nozzle (a similar principle to an aerosol spray). The nozzle opening was closed by a pin valve actuated by the camshaft . Although the engine was also required to drive an air compressor used for air-blast injection, the efficiency was nonetheless better than other combustion engines of the time. However the system was heavy and it was slow to react to changing torque demands, making it unsuitable for road vehicles. A unit injector system, also known as "Pumpe-Düse" ( pump-nozzle in German) combines

6006-700: The fuel injection transformed the direct injection engine by allowing much greater control over the combustion. Common rail (CR) direct injection systems do not have the fuel metering, pressure-raising and delivery functions in a single unit, as in the case of a Bosch distributor-type pump, for example. A high-pressure pump supplies the CR. The requirements of each cylinder injector are supplied from this common high pressure reservoir of fuel. An Electronic Diesel Control (EDC) controls both rail pressure and injections depending on engine operating conditions. The injectors of older CR systems have solenoid -driven plungers for lifting

6097-405: The fuel pump measures out the correct amount of fuel and determines the timing of each injection. These engines use injectors that are very precise spring-loaded valves that open and close at a specific fuel pressure. Separate high-pressure fuel lines connect the fuel pump with each cylinder. Fuel volume for each single combustion is controlled by a slanted groove in the plunger which rotates only

6188-461: The gaseous fuel. Such engines do not require any type of spark ignition and operate similar to regular diesel engines. The fuel is injected at high pressure into either the combustion chamber , "swirl chamber" or "pre-chamber," unlike petrol engines where the fuel is often added in the inlet manifold or carburetor . Engines where the fuel is injected into the main combustion chamber are called direct injection (DI) engines, while those which use

6279-419: The injection needle, whilst newer CR injectors use plungers driven by piezoelectric actuators that have less moving mass and therefore allow even more injections in a very short period of time. Early common rail system were controlled by mechanical means. The injection pressure of modern CR systems ranges from 140 MPa to 270 MPa. An indirect diesel injection system (IDI) engine delivers fuel into

6370-553: The injector and fuel pump into a single component, which is positioned above each cylinder. This eliminates the high-pressure fuel lines and achieves a more consistent injection. Under full load, the injection pressure can reach up to 220 MPa. Unit injectors are operated by a cam and the quantity of fuel injected is controlled either mechanically (by a rack or lever) or electronically. Due to increased performance requirements, unit injectors have been largely replaced by common rail injection systems. The average diesel engine has

6461-431: The injector lines. From 1921 to 1980 Doxford Engines used a common rail system in their opposed-piston marine engines , where a multicylinder reciprocating fuel pump generated a pressure around 600 bars (60 MPa; 8,700 psi), with fuel stored in accumulator bottles. Pressure control was achieved by an adjustable pump discharge stroke and a "spill valve". Camshaft-operated mechanical timing valves were used to supply

6552-561: The intake/injection to the exhaust. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) can reach effective efficiencies of up to 55%. The combined cycle gas turbine (Brayton and Rankine cycle) is a combustion engine that is more efficient than a diesel engine, but due to its mass and dimensions, is unsuitable for many vehicles, including watercraft and some aircraft . The world's largest diesel engines put in service are 14-cylinder, two-stroke marine diesel engines; they produce

6643-476: The mistake that he made; his rational heat motor was supposed to utilise a constant temperature cycle (with isothermal compression) that would require a much higher level of compression than that needed for compression ignition. Diesel's idea was to compress the air so tightly that the temperature of the air would exceed that of combustion. However, such an engine could never perform any usable work. In his 1892 US patent (granted in 1895) #542846, Diesel describes

6734-534: The past, however electronic governors are more common on modern engines. Mechanical governors are usually driven by the engine's accessory belt or a gear-drive system and use a combination of springs and weights to control fuel delivery relative to both load and speed. Electronically governed engines use an electronic control unit (ECU) or electronic control module (ECM) to control the fuel delivery. The ECM/ECU uses various sensors (such as engine speed signal, intake manifold pressure and fuel temperature) to determine

6825-480: The piston (not shown on the P-V indicator diagram). When combustion is complete the combustion gases expand as the piston descends further; the high pressure in the cylinder drives the piston downward, supplying power to the crankshaft. As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine's efficiency. Increasing

6916-403: The piston-cylinder combination between 2 and 4. The difference between these two increments of work is the indicated work output per cycle, and is represented by the area enclosed by the pV loop. The adiabatic expansion is in a higher pressure range than that of the compression because the gas in the cylinder is hotter during expansion than during compression. It is for this reason that the loop has

7007-417: The pollutants can be removed from the exhaust gas using exhaust gas treatment technology. Road vehicle diesel engines have no sulfur dioxide emissions, because motor vehicle diesel fuel has been sulfur-free since 2003. Helmut Tschöke argues that particulate matter emitted from motor vehicles has negative impacts on human health. The particulate matter in diesel exhaust emissions is sometimes classified as

7098-408: The pressure falls to that of the surrounding air, but the loss of efficiency caused by this unresisted expansion is justified by the practical difficulties involved in recovering it (the engine would have to be much larger). After the opening of the exhaust valve, the exhaust stroke follows, but this (and the following induction stroke) are not shown on the diagram. If shown, they would be represented by

7189-410: The purpose of the high-pressure pump in that it only needs to maintain a target pressure (either mechanically or electronically controlled). The fuel injectors are typically controlled by the engine control unit (ECU). When the fuel injectors are electrically activated, a hydraulic valve (consisting of a nozzle and plunger) is mechanically or hydraulically opened and fuel is sprayed into the cylinders at

7280-442: The spring-loaded Brice/CAV/Lucas injectors, which injected through the side of the cylinder into the chamber formed between the pistons. Early engines had a pair of timing cams, one for ahead running and one for astern. Later engines had two injectors per cylinder, and the final series of constant-pressure turbocharged engines was fitted with four. This system was used for the injection of both diesel and heavy fuel oil (600cSt heated to

7371-662: The technology was further developed by Dr. Marco Ganser at the Swiss Federal Institute of Technology in Zurich, later of Ganser-Hydromag AG (est. 1995) in Oberägeri. The first common-rail-Diesel-engine used in a road vehicle was the MN 106-engine by East German VEB IFA Motorenwerke Nordhausen . It was built into a single IFA W50 in 1985. Due to a lack of funding, the development was cancelled and mass production

7462-544: The test bench. In the January 1896 report, this was considered a success. In February 1896, Diesel considered supercharging the third prototype. Imanuel Lauster , who was ordered to draw the third prototype " Motor 250/400 ", had finished the drawings by 30 April 1896. During summer that year the engine was built, it was completed on 6 October 1896. Tests were conducted until early 1897. First public tests began on 1 February 1897. Moritz Schröter 's test on 17 February 1897

7553-890: The timing of the start of injection of fuel into the cylinder is similar to controlling the ignition timing in a petrol engine. It is therefore a key factor in controlling the power output, fuel consumption and exhaust emissions. There are several different ways of categorising diesel engines, as outlined in the following sections. Günter Mau categorises diesel engines by their rotational speeds into three groups: High-speed engines are used to power trucks (lorries), buses , tractors , cars , yachts , compressors , pumps and small electrical generators . As of 2018, most high-speed engines have direct injection . Many modern engines, particularly in on-highway applications, have common rail direct injection . On bigger ships, high-speed diesel engines are often used for powering electric generators. The highest power output of high-speed diesel engines

7644-657: The use of diesel auto engines in the U.S. is now largely relegated to larger on-road and off-road vehicles . Though aviation has traditionally avoided using diesel engines, aircraft diesel engines have become increasingly available in the 21st century. Since the late 1990s, for various reasons—including the diesel's inherent advantages over gasoline engines, but also for recent issues peculiar to aviation—development and production of diesel engines for aircraft has surged, with over 5,000 such engines delivered worldwide between 2002 and 2018, particularly for light airplanes and unmanned aerial vehicles . In 1878, Rudolf Diesel , who

7735-400: The world moves and contributes to greater well-being. As a Fortune Global 500s company, DENSO has a broad product portfolio and widespread global impact. DENSO Wave is a subsidiary that produces automatic identification products ( barcode readers and related products), industrial robots , and programmable logic controllers . They are noted for creating the two-dimensional QR code , are

7826-532: Was a student at the "Polytechnikum" in Munich , attended the lectures of Carl von Linde . Linde explained that steam engines are capable of converting just 6–10% of the heat energy into work, but that the Carnot cycle allows conversion of much more of the heat energy into work by means of isothermal change in condition. According to Diesel, this ignited the idea of creating a highly efficient engine that could work on

7917-488: Was attacked and criticised over several years. Critics claimed that Diesel never invented a new motor and that the invention of the diesel engine is fraud. Otto Köhler and Emil Capitaine  [ de ] were two of the most prominent critics of Diesel's time. Köhler had published an essay in 1887, in which he describes an engine similar to the engine Diesel describes in his 1893 essay. Köhler figured that such an engine could not perform any work. Emil Capitaine had built

8008-477: Was built in Augsburg . On 10 August 1893, the first ignition took place, the fuel used was petrol. In winter 1893/1894, Diesel redesigned the existing engine, and by 18 January 1894, his mechanics had converted it into the second prototype. During January that year, an air-blast injection system was added to the engine's cylinder head and tested. Friedrich Sass argues that, it can be presumed that Diesel copied

8099-639: Was founded in Hawthorne, California , in March 1971. The company was staffed with only 12 associates, four of them being Americans. The objective of DENSO Sales California was to promote their air conditioner systems as options in Japanese-made vehicles. In May 1975, DENSO Corporation opened a sales division, Denso Sales, in Southfield, Michigan . In September 1975, DENSO International America opened

8190-656: Was never achieved. The first successful mass production vehicle with common rail, was sold in Japan in 1995. Dr. Shohei Itoh and Masahiko Miyaki of the Denso Corporation developed the ECD-U2 common rail system, mounted on the Hino Ranger truck. Denso claims the first commercial high-pressure common rail system in 1995. Modern common rail systems are governed by an engine control unit , which controls injectors electrically rather than mechanically. Prototyped in

8281-424: Was the main test of Diesel's engine. The engine was rated 13.1 kW with a specific fuel consumption of 324 g·kW ·h , resulting in an effective efficiency of 26.2%. By 1898, Diesel had become a millionaire. The characteristics of a diesel engine are The diesel internal combustion engine differs from the gasoline powered Otto cycle by using highly compressed hot air to ignite the fuel rather than using

#848151