Misplaced Pages

DMS-100

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The DMS-100 is a member of the Digital Multiplex System (DMS) product line of telephone exchange switches manufactured by Northern Telecom . Designed during the 1970s and released in 1979, it can control 100,000 telephone lines.

#748251

48-705: The purpose of the DMS-100 Switch is to provide local service and connections to the PSTN public telephone network. It is designed to deliver services over subscribers' telephone lines and trunks . It provides plain old telephone service (POTS), mobility management for cellular phone systems, sophisticated business services such as automatic call distribution (ACD), Integrated Services Digital Network (ISDN), and Meridian Digital Centrex (MDC), formerly called Integrated Business Network (IBN). It also provides Intelligent Network functions (AIN, CS1-R, ETSI INAP ). It

96-406: A timeslot because DS0s are aggregated in time-division multiplexing (TDM) equipment to form higher capacity communication links. A Digital Signal 1 (DS1) circuit carries 24 DS0s on a North American or Japanese T-carrier (T1) line, or 32 DS0s (30 for calls plus two for framing and signaling) on an E-carrier (E1) line used in most other countries. In modern networks, the multiplexing function

144-732: A Central Terminal (CT) that had the dial tone lines wired into it and a remote box called a Remote terminal (RT) where the dial tone 'came out'. They used 2-6 T1 links on copper - i.e. LD-1 or fiber. As telcos modernized, these remote boxes were re-configured to work directly from a SMU peripheral at the host DMS. Typically each SMU can handle 3-6 RCUs. Transmitters, receivers and other service circuits are in Trunk Module (TM) and Miscellaneous Trunk Module (MTM) shelves. Trunks are on DTC (Digital Trunk Controller) or DTCI (Digital Trunk Controller ISDN) or PDTC (PCM30 Digital Trunk Controller) shelves, usually two T-1 lines per card, ten cards per DTC for

192-586: A DISKUT command line program. Analog lines are terminated on individual line cards , each with its own codec , in pull-out Line Drawers in frames. The original design of such frames was called the Line Module (LM) with 32 lines per drawer. LMs were not able to send caller-id information (CLASS services) and became rare late in the century, having been supplemented or replaced by the newer Line Concentrating Module (LCM). Duplicated ringing generators serve each LM or pair of LCM. For DC testing, each line card has

240-478: A Line Group Controller (LGC) and communicate over DS-30 connections to NT6X48AA interface cards on the LGC. The number of LCMs per LGC depends on traffic: 3-4 LCM per LGC but as few as two where traffic is heavy. Remote offices, anywhere from a kilometre to 100 km from the host, can be served by a Remote Line control Module (RLCM), Remote Switching Center (RSC); a later vintage is known as RCC2. They use T1 links to

288-546: A Message Controller. The Compute Module contains redundant SuperNode CPUs to handle call processing and maintenance functions and, like the NT40 core, can operate in a synchronized mode with its mate. The System Load Module contains all the necessary software for every element of the DMS switch and also provides file system and data storage functions on magnetic tape and hard disk. The Message Controller provides communications links between

336-653: A benchmark for the development of the Telecommunications Industry Association 's TIA-TSB-116 standard on voice-quality recommendations for IP telephony, to determine acceptable levels of audio latency and echo. In most countries, the government has a regulatory agency dedicated to provisioning of PSTN services. The agency regulate technical standards, legal requirements, and set service tasks may be for example to ensure that end customers are not over-charged for services where monopolies may exist. These regulatory agencies may also regulate

384-528: A distributed architecture allowing for the development of new features and services. Each of the elements of the DMS SuperNode uses a common SuperNode CPU hardware design differing only in the software used to control them. The SuperNode consists of two main elements: DMS Core and DMS Bus. DMS Core provides the main computing facility and is made up of the Compute Module, System Load Module and

432-495: A mate exchange bus (MEB) between the two CPUs enables the state of one CPU to be continuously compared to that of the other CPU on a cycle by cycle basis. Any discrepancy between the two CPUs results in maintenance circuitry determining which CPU is at fault and activity to change to the same CPU. A Program Store is dedicated to each CPU and is a memory for the program instructions required by that CPU for processing calls, maintenance and for administrative tasks. The PS associated with

480-569: A network of fixed-line analog telephone systems, the PSTN is almost entirely digital in its core network and includes mobile and wireless networks, all of which are currently transitioning to use the Internet Protocol to carry their PSTN traffic. The technical operation of the PSTN adheres to the standards internationally promulgated by the ITU-T . These standards have their origins in

528-478: A relay to connect it to a test bus. LCM have smaller line cards, serving 64 lines per physical drawer (two logical drawers) of the same size as in the LM. An LCM requires only half the space as an LM for the same number of lines. The majority of line cards are NT6X17, with three relays for loop start lines. Others include NT6X18 which have four or more relays and a slide switch for ground start lines (a newer version of

SECTION 10

#1732780681749

576-403: A total of 480 DS-0 voice channels. At the turn of the century many original NT6X50AA cards were still in service that cannot perform T-carrier extended superframe signaling, this can be performed with a plug-in replacement NT6X50AB card, used for services such as PBX ISDN T1s. Trunks can also be provisioned on SPM (Synchronous Peripheral Module) capable of handling 2016 DS0s, nearly 4.2x more than

624-415: Is known as Remote Carrier Urban (RCU). Such units typically reside on the side of a road in a large box, approx 3 meters across, almost 2 meters high and almost a meter through. In the 1980s many telcos installed an early version of these instead of pulling more cable into a remote area. They were much cheaper and could provide up to approx 500 lines. Back then they needed two 'boxes' to work- a host box called

672-488: Is moved as close to the end user as possible, usually into cabinets at the roadside in residential areas, or into large business premises. These aggregated circuits are conveyed from the initial multiplexer to the exchange over a set of equipment collectively known as the access network . The access network and inter-exchange transport use synchronous optical transmission, for example, SONET and Synchronous Digital Hierarchy (SDH) technologies, although some parts still use

720-637: Is now defunct. PSTN The public switched telephone network ( PSTN ) is the aggregate of the world's telephone networks that are operated by national, regional, or local telephony operators. It provides infrastructure and services for public telephony . The PSTN consists of telephone lines , fiber-optic cables , microwave transmission links, cellular networks , communications satellites , and undersea telephone cables interconnected by switching centers , such as central offices , network tandems , and international gateways, which allow telephone users to communicate with each other. Originally

768-794: Is performed in E-Net, similar to the Communication Module of 5ESS switch or the Switching Network of EWSD or the Group Switch of AXE telephone exchange . There are also DMS-200 and DMS-250 variants for tandem switches. In 2006 Nortel introduced the Communication Server 1500 (CS 1500) Softswitch based on VOIP to modernize the DMS-based telephone switches. A CS 1500 softswitch system can replace all

816-399: Is switched using a call set up protocol (usually ISUP ) between the telephone exchanges under an overall routing strategy . The call is carried over the PSTN using a 64 kbit/s channel, originally designed by Bell Labs . The name given to this channel is Digital Signal 0 (DS0). The DS0 circuit is the basic granularity of circuit switching in a telephone exchange. A DS0 is also known as

864-565: Is used in countries throughout the world. There are also DMS-200 and DMS-250 variants for tandem switches. Much of the hardware used in the DMS-100, with the possible exception of the line cards, is used in other members of the DMS family, including the DMS-200 toll switch. All power distribution is at -48 VDC (nominal), from which DC to DC converters on every shelf provide other necessary voltages. The Central Control Complex comprises

912-622: The Broadband Integrated Services Digital Network (B-ISDN). The B-ISDN vision was overtaken by the disruptive technology of the Internet . At the turn of the 21st century, the oldest parts of the telephone network still used analog baseband technology to deliver audio-frequency connectivity over the last mile to the end-user. However, digital technologies such as DSL , ISDN , FTTx , and cable modems were progressively deployed in this portion of

960-421: The last mile from the exchange to the telephone in the home (also called the local loop ). To carry a typical phone call from a calling party to a called party , the analog audio signal is digitized at an 8 kHz sample rate with 8-bit resolution using a special type of nonlinear pulse-code modulation known as G.711 . The call is then transmitted from one end to another via telephone exchanges. The call

1008-485: The 1970s, the telecommunications industry began implementing packet-switched network data services using the X.25 protocol transported over much of the end-to-end equipment as was already in use in the PSTN. These became known as public data networks , or public switched data networks. In the 1980s, the industry began planning for digital services assuming they would follow much the same pattern as voice services and conceived end-to-end circuit-switched services, known as

SECTION 20

#1732780681749

1056-738: The Central Processing Unit (CPU), Program Store (PS), Data Store (DS) and the Central Message Controller (CMC). The CPU contains two identical 16-bit processors running in hot standby mode. The original CPU core was referred to as the NT40 CPU and was implemented in approximately 250 discrete logic devices across several circuit boards running at 36 MHz. The NT40 core consisted mainly of the NT1X44 stack card, which provides some register and stack functions of

1104-700: The DMS Core and the DMS Bus. DMS Bus is used to interconnect the DMS Core, the switching network and the Input/Output controller (IOC) and manage message flows between these units and consists of redundant Message Switches. The Message Switches of the DMS Bus operate in a load-sharing mode and one of them provides the main clock source for the DMS-100 system while the others are synchronized to it. Messages between all SuperNode units are carried by optical DS512 links. The operating system used by both generations of

1152-688: The DMS component modules except for the LCMs, reducing the footprint of a DMS-100 to one 19" rack and allowing operators to reduce cooling and power requirements significantly. A successor to the DMS-100 is the Communication Server 2000 (CS2K), which shares many components and software with the DMS. The significant difference is the addition of VOIP technology into the CS2K. In 2010, Genband purchased Nortel Networks' Carrier VoIP and Application Solutions (CVAS) business for $ 182.5 million. Nortel

1200-504: The DMS-100 switch was called Support Operating System (SOS) and was written in a high level language called PROTEL which stood for PRocedure Oriented Type Enforcing Language developed at Bell Northern Research (BNR). Hardware and maintenance are administered locally through cathode-ray terminals, through a multilevel menu system called MAPCI. There are various methods used to access the DMS remotely as well, including modem and telnet. Backups and other hard drive work are administered through

1248-606: The DTC. Internal connections to the time switch (network) are on 2.56 Mbit/s (DS-30) Speech Links, each carrying thirty channels plus synchronization and data channels, on four wires plus a ground wire. Connections to the network are handled by the NT6X40AA DS-30 interface card on an LGC or LTC and these link may also be DS-512 optical interfaces. Using the NT6X44AA time switch card, LGCs and LTCs internally map channels on

1296-678: The Motorola 68030 . In the early 1990s it was further upgraded to use the Motorola 88100 and 88110 Reduced Instruction Set Computing (RISC) CPUs. This RISC version of the SuperNode Computing Module was known as the BRISC (BNR Reduced Instruction Set Computing) CPU. With the BRISC CPU the DMS SuperNode had a processing capacity of 1,500,000 call attempts per hour. DMS SuperNode featured increased processing capacity across

1344-622: The NT6X18 has eliminated the ground switch). The NT6X18 also has the ability to provide current reversal required for some coin phones and business systems. The NT6X17B and the NT6X18B is known as the world line card and is software configurable to more than 15 million functional settings to meet almost any signalling and transmission requirement in any market. NT6X19 line cards allow the use of older style, neon message-waiting lamps, this feature also requires an additional card per drawer that supplies

1392-524: The NT6X48AA DS-30 & NT6X50AA/AB DS1 interface links to available channels on NT6X40AA DS-30 or NT6X40FA DS-512 interfaces out to the network. European PDTCs were complemented by the DTCOI2 and DTCO2. The DTCOI2 was designed to run PRI and DPNSS services as per existing PDTCOI and MSB7 peripherals. The DTCO2 was designed to carry CAS and SS7 as per existing PDTCO peripheral. Time Division switching

1440-641: The Network Message Controller (NMC) in the various Network Modules (NM), or the Input/Output Controller (IOC). Both CPUs have access to either CMC which share the message load to the Line Modules or peripherals. The original NT40 based CCC was replaced by the compatible DMS SuperNode in 1987. The DMS SuperNode Computing Module was first based on the Motorola 68020 Central Processing Unit (CPU) and then upgraded to

1488-567: The PSTN evolved over time to support an increasing number of subscribers, call volume, destinations, features, and technologies. The principles developed in North America and in Europe were adopted by other nations, with adaptations for local markets. A key concept was that the telephone exchanges are arranged into hierarchies, so that if a call cannot be handled in a local cluster, it is passed to one higher up for onward routing. This reduced

DMS-100 - Misplaced Pages Continue

1536-480: The PSTN, usually for military purposes. There are also private networks run by large companies that are linked to the PSTN only through limited gateways , such as a large private branch exchange (PBX). The task of building the networks and selling services to customers fell to the network operators . The first company to be incorporated to provide PSTN services was the Bell Telephone Company in

1584-715: The United States. In some countries, however, the job of providing telephone networks fell to government as the investment required was very large and the provision of telephone service was increasingly becoming an essential public utility . For example, the General Post Office in the United Kingdom brought together a number of private companies to form a single nationalized company . In more recent decades, these state monopolies were broken up or sold off through privatization . The architecture of

1632-459: The core. The NT1X48 processor maintenance card contained a thumbwheel on the faceplate to enable various diagnostic tests of the CPU. A later modification of these same five circuit boards with faster pin-compatible discrete logic devices enabled the CPU to operate at 40 MHz allowing central offices to improve call throughput capacity by 10 percent. When the CPU is configured in dual hot standby mode,

1680-472: The development of local telephone networks, primarily in the Bell System in the United States and in the networks of European ITU members. The E.164 standard provides a single global address space in the form of telephone numbers . The combination of the interconnected networks and a global telephone numbering plan allows telephones around the world to connect with each other. Commercialization of

1728-399: The end of the 20th century. The growth of the PSTN was enabled by teletraffic engineering techniques to deliver quality of service (QoS) in the network. The work of A. K. Erlang established the mathematical foundations of methods required to determine the capacity requirements and configuration of equipment and the number of personnel required to deliver a specific level of service. In

1776-412: The exchange principle already employed in telegraph networks. Each telephone was wired to a telephone exchange established for a town or area. For communication outside this exchange area, trunks were installed between exchanges. Networks were designed in a hierarchical manner until they spanned cities, states, and international distances. Automation introduced pulse dialing between the telephone and

1824-521: The exchange so that each subscriber could directly dial another subscriber connected to the same exchange, but long-distance calling across multiple exchanges required manual switching by operators. Later, more sophisticated address signaling, including multi-frequency signaling methods, enabled direct-dialed long-distance calls by subscribers, culminating in the Signalling System 7 (SS7) network that controlled calls between most exchanges by

1872-465: The host LGC. RCCs/RCC2s work like LTCs in controlling LCMs. Large remotes may have 2+ RCC/RCCs and they can be equipped with links between the RCCs - Interlinks; so calls within the remote do not tie up host links. The RCCs/RCC2s are usually equipped so they will provide calling within the remote office if the host links fail; this feature is called ESA; Emergency Stand Alone . Another type of remote office

1920-565: The interface to end-users remaining the same. Several other European countries, including Estonia, Germany, Iceland, the Netherlands, Spain and Portugal, have also retired, or are planning to retire, their PSTN networks. Countries in other continents are also performing similar transitions. Protel Too Many Requests If you report this error to the Wikimedia System Administrators, please include

1968-505: The network, primarily to provide high-speed Internet access. As of 2023 , operators worldwide are in the process of retiring support for both last-mile analog telephony and ISDN, and transitioning voice service to Voice over IP via Internet access delivered either via DSL , cable modems or fiber-to-the-premises , eliminating the expense and complexity of running two separate technology infrastructures for PSTN and Internet access. Several large private telephone networks are not linked to

DMS-100 - Misplaced Pages Continue

2016-415: The number of connecting trunks required between operators over long distances, and also kept local traffic separate. Modern technologies have brought simplifications Most automated telephone exchanges use digital switching rather than mechanical or analog switching. The trunks connecting the exchanges are also digital, called circuits or channels. However analog two-wire circuits are still used to connect

2064-506: The older PDH technology. The access network defines a number of reference points. Most of these are of interest mainly to ISDN but one, the V reference point , is of more general interest. This is the reference point between a primary multiplexer and an exchange. The protocols at this reference point were standardized in ETSI areas as the V5 interface . Voice quality in PSTN networks was used as

2112-453: The other CPU contains identical program instructions. A Data Store is dedicated with each CPU and contains dynamic information on a per-call basis, as well as customer data and office-specific settings. The other CPU is also associated with its own DS containing duplicate data. The Central Message Controller controls the flow of messages between the other units of the CCC and prioritizes them for

2160-437: The prices charged between the operators to carry each other's traffic . In the United Kingdom, the copper POTS and ISDN-based PSTN is being retired in favour of SIP telephony , with an original completion date of December 2025, although this has now been put back to January 2027. See United Kingdom PSTN switch-off . Voice telephony will continue to follow the E.163 and E.164 standards, as with current mobile telephony, with

2208-562: The processor, the NT1X45 which contained the arithmetic and logic functions, the NT1X46 which provides more registers and the load-route read-only memory (ROM) and the NT1X47 timing and control card which provides the micro-cycle source and microstore decoding functions of the processor. The NT1X47 card also contained the 2-digit hexadecimal display to indicate test result codes and the condition of

2256-502: The telephone began shortly after its invention, with instruments operated in pairs for private use between two locations. Users who wanted to communicate with persons at multiple locations had as many telephones as necessary for the purpose. Alerting another user of the desire to establish a telephone call was accomplished by whistling loudly into the transmitter until the other party heard the alert. Bells were soon added to stations for signaling . Later telephone systems took advantage of

2304-576: The voltage. Type NT6X21 cards serve P-sets (Meridian Business Sets), a special analogue telephone with a proprietary Nortel data link operating at 8 kHz to provide advanced call handling services. For example, a telephone number may appear on multiple P-sets even though each such telephone has only one pair of wires, thus providing a simpler replacement for key telephone systems . An LCME, for ISDN service, which uses NTBX27 cards serve Basic Rate ISDN lines. When provided with ring generators, an LCME can also support other linecard types. LCMs are served by

#748251