The camera Sony Cyber-shot DSC-HX20V is a digital camera that was first released in 2012. The Sony Cyber-shot HX20V is part of the Cyber-shot line of cameras released by Sony .
85-454: The Sony HX20V Features include: The Sony HX20/HX20V is designed to be a compact camera, that can fit very easily in your pocket. It includes a very small 960mah battery that can be easily changed on the go. It features a grip object in between the camera controls for comfortable use with one hand. It's also constructed with durable materials to withstand everyday usage and occasional bumps or knocks during travel. A zoom -controlling mechanism
170-413: A balancing circuit until the battery is balanced. Balancing typically occurs whenever one or more cells reach their top-of-charge voltage before the other(s), as it is generally inaccurate to do so at other stages of the charge cycle. This is most commonly done by passive balancing, which dissipates excess charge as heat via resistors connected momentarily across the cells to be balanced. Active balancing
255-420: A conventional lithium-ion cell is graphite made from carbon . The positive electrode is typically a metal oxide or phosphate. The electrolyte is a lithium salt in an organic solvent . The negative electrode (which is the anode when the cell is discharging) and the positive electrode (which is the cathode when discharging) are prevented from shorting by a separator. The electrodes are connected to
340-570: A decade or so, and nitrous oxides last about 100 years. The graph gives some indication of which regions have contributed most to human-induced climate change. When these numbers are calculated per capita cumulative emissions based on then-current population the situation is shown even more clearly. The ratio in per capita emissions between industrialized countries and developing countries was estimated at more than 10 to 1. Non- OECD countries accounted for 42% of cumulative energy-related CO 2 emissions between 1890 and 2007. Over this time period,
425-417: A gelled material, requiring fewer binding agents. This in turn shortens the manufacturing cycle. One potential application is in battery-powered airplanes. Another new development of lithium-ion batteries are flow batteries with redox-targeted solids, that use no binders or electron-conducting additives, and allow for completely independent scaling of energy and power. Generally, the negative electrode of
510-400: A higher discharge rate. NMC and its derivatives are widely used in the electrification of transport , one of the main technologies (combined with renewable energy ) for reducing greenhouse gas emissions from vehicles . M. Stanley Whittingham conceived intercalation electrodes in the 1970s and created the first rechargeable lithium-ion battery, based on a titanium disulfide cathode and
595-517: A lack of comparability, which is problematic when monitoring progress towards targets. There are arguments for the adoption of a common measurement tool, or at least the development of communication between different tools. Emissions may be tracked over long time periods, known as historical or cumulative emissions measurements. Cumulative emissions provide some indicators of what is responsible for greenhouse gas atmospheric concentration build-up. The national accounts balance tracks emissions based on
680-404: A liquid solvent (such as propylene carbonate or diethyl carbonate ) is added. The electrolyte salt is almost always lithium hexafluorophosphate ( LiPF 6 ), which combines good ionic conductivity with chemical and electrochemical stability. The hexafluorophosphate anion is essential for passivating the aluminium current collector used for the positive electrode. A titanium tab
765-506: A lithium-aluminium anode, although it suffered from safety problems and was never commercialized. John Goodenough expanded on this work in 1980 by using lithium cobalt oxide as a cathode. The first prototype of the modern Li-ion battery, which uses a carbonaceous anode rather than lithium metal, was developed by Akira Yoshino in 1985 and commercialized by a Sony and Asahi Kasei team led by Yoshio Nishi in 1991. M. Stanley Whittingham , John Goodenough , and Akira Yoshino were awarded
850-524: A lithium-ion cell can change dramatically. Current effort has been exploring the use of novel architectures using nanotechnology to improve performance. Areas of interest include nano-scale electrode materials and alternative electrode structures. The reactants in the electrochemical reactions in a lithium-ion cell are the materials of the electrodes, both of which are compounds containing lithium atoms. Although many thousands of different materials have been investigated for use in lithium-ion batteries, only
935-462: A longer cycle life , and a longer calendar life . Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold. There are at least 12 different chemistries of Li-ion batteries; see " List of battery types ." The invention and commercialization of Li-ion batteries may have had one of
SECTION 10
#17327980895471020-424: A non-aqueous electrolyte is typically used, and a sealed container rigidly excludes moisture from the battery pack. The non-aqueous electrolyte is typically a mixture of organic carbonates such as ethylene carbonate and propylene carbonate containing complexes of lithium ions. Ethylene carbonate is essential for making solid electrolyte interphase on the carbon anode, but since it is solid at room temperature,
1105-862: A particular base year. Choosing between base years of 1750, 1900, 1950, and 1990 has a significant effect for most countries. Within the G8 group of countries, it is most significant for the UK, France and Germany. These countries have a long history of CO 2 emissions (see the section on Cumulative and historical emissions ). The Global Carbon Project continuously releases data about CO 2 emissions, budget and concentration. and industry (excluding cement carbonation) Gt C change Gt C Gt C Gt CO 2 (projection) Distribution of global greenhouse gas emissions based on type of greenhouse gas, without land-use change, using 100 year global warming potential (data from 2020). Total: 49.8 GtCO 2 e Carbon dioxide (CO 2 )
1190-449: A polymer gel as an electrolyte), a lithium cobalt oxide ( LiCoO 2 ) cathode material, and a graphite anode, which together offer high energy density. Lithium iron phosphate ( LiFePO 4 ), lithium manganese oxide ( LiMn 2 O 4 spinel , or Li 2 MnO 3 -based lithium-rich layered materials, LMR-NMC), and lithium nickel manganese cobalt oxide ( LiNiMnCoO 2 or NMC) may offer longer life and
1275-446: A process called insertion ( intercalation ) or extraction ( deintercalation ), respectively. As the lithium ions "rock" back and forth between the two electrodes, these batteries are also known as "rocking-chair batteries" or "swing batteries" (a term given by some European industries). The following equations exemplify the chemistry (left to right: discharging, right to left: charging). The negative electrode half-reaction for
1360-529: A range of alternative materials, replaced TiS 2 with lithium cobalt oxide ( LiCoO 2 , or LCO), which has a similar layered structure but offers a higher voltage and is much more stable in air. This material would later be used in the first commercial Li-ion battery, although it did not, on its own, resolve the persistent issue of flammability. These early attempts to develop rechargeable Li-ion batteries used lithium metal anodes, which were ultimately abandoned due to safety concerns, as lithium metal
1445-483: A significant contributor to warming. Although CFCs are greenhouse gases, they are regulated by the Montreal Protocol which was motivated by CFCs' contribution to ozone depletion rather than by their contribution to global warming. Ozone depletion has only a minor role in greenhouse warming, though the two processes are sometimes confused in the media. In 2016, negotiators from over 170 nations meeting at
1530-461: A significant margin, Asia's and the world's largest emitter: it emits nearly 10 billion tonnes each year, more than one-quarter of global emissions. Other countries with fast growing emissions are South Korea , Iran, and Australia (which apart from the oil rich Persian Gulf states, now has the highest per capita emission rate in the world). On the other hand, annual per capita emissions of the EU-15 and
1615-430: A solid organic electrolyte, polyethylene oxide , which was more stable. In 1985, Akira Yoshino at Asahi Kasei Corporation discovered that petroleum coke , a less graphitized form of carbon, can reversibly intercalate Li-ions at a low potential of ~0.5 V relative to Li+ /Li without structural degradation. Its structural stability originates from its amorphous carbon regions, which serving as covalent joints to pin
1700-541: A temperature range of 5 to 45 °C (41 to 113 °F). Charging should be performed within this temperature range. At temperatures from 0 to 5 °C charging is possible, but the charge current should be reduced. During a low-temperature (under 0 °C) charge, the slight temperature rise above ambient due to the internal cell resistance is beneficial. High temperatures during charging may lead to battery degradation and charging at temperatures above 45 °C will degrade battery performance, whereas at lower temperatures
1785-523: A theoretical capacity of 1339 coulombs per gram (372 mAh/g). The positive electrode is generally one of three materials: a layered oxide (such as lithium cobalt oxide ), a polyanion (such as lithium iron phosphate ) or a spinel (such as lithium manganese oxide ). More experimental materials include graphene -containing electrodes, although these remain far from commercially viable due to their high cost. Lithium reacts vigorously with water to form lithium hydroxide (LiOH) and hydrogen gas. Thus,
SECTION 20
#17327980895471870-515: A very small number are commercially usable. All commercial Li-ion cells use intercalation compounds as active materials. The negative electrode is usually graphite , although silicon is often mixed in to increase the capacity. The electrolyte is usually lithium hexafluorophosphate , dissolved in a mixture of organic carbonates . A number of different materials are used for the positive electrode, such as LiCoO 2 , LiFePO 4 , and lithium nickel manganese cobalt oxides . During cell discharge
1955-440: Is a CuF 2 /Li battery developed by NASA in 1965. The breakthrough that produced the earliest form of the modern Li-ion battery was made by British chemist M. Stanley Whittingham in 1974, who first used titanium disulfide ( TiS 2 ) as a cathode material, which has a layered structure that can take in lithium ions without significant changes to its crystal structure . Exxon tried to commercialize this battery in
2040-417: Is a bit more than the heat of combustion of gasoline but does not consider the other materials that go into a lithium battery and that make lithium batteries many times heavier per unit of energy. Note that the cell voltages involved in these reactions are larger than the potential at which an aqueous solutions would electrolyze . During discharge, lithium ions ( Li ) carry the current within
2125-450: Is a framework of methods to measure and track how much greenhouse gas an organization emits. Cumulative anthropogenic (i.e., human-emitted) emissions of CO 2 from fossil fuel use are a major cause of global warming , and give some indication of which countries have contributed most to human-induced climate change. In particular, CO 2 stays in the atmosphere for at least 150 years and up to 1000 years, whilst methane disappears within
2210-678: Is being used around the shutter button for quick zooming capabilities. The GUI the Sony HX20V is designed to be beginner-friendly, with not a lot of complications taking up the UI . While still being a great GUI for more advanced users! At the bottom of the device, you can easily access the Memory card slot and Battery compartment. The Sony HX20V supports both Sony's branded Memory stick and SD card . The camera also comes with built-in flash memory (111 megabytes), in case of an emergency. Next to
2295-421: Is exported. In comparison, methane has not increased appreciably, and N 2 O by 0.25% y . Using different base years for measuring emissions has an effect on estimates of national contributions to global warming. This can be calculated by dividing a country's highest contribution to global warming starting from a particular base year, by that country's minimum contribution to global warming starting from
2380-413: Is less common, more expensive, but more efficient, returning excess energy to other cells (or the entire pack) via a DC-DC converter or other circuitry. Balancing most often occurs during the constant voltage stage of charging, switching between charge modes until complete. The pack is usually fully charged only when balancing is complete, as even a single cell group lower in charge than the rest will limit
2465-462: Is recommended to be initiated when voltage goes below 4.05 V/cell. Failure to follow current and voltage limitations can result in an explosion. Charging temperature limits for Li-ion are stricter than the operating limits. Lithium-ion chemistry performs well at elevated temperatures but prolonged exposure to heat reduces battery life. Li‑ion batteries offer good charging performance at cooler temperatures and may even allow "fast-charging" within
2550-633: Is responsible for around 73% of emissions. Deforestation and other changes in land use also emit carbon dioxide and methane . The largest source of anthropogenic methane emissions is agriculture , closely followed by gas venting and fugitive emissions from the fossil-fuel industry . The largest agricultural methane source is livestock . Agricultural soils emit nitrous oxide partly due to fertilizers . Similarly, fluorinated gases from refrigerants play an outsized role in total human emissions. The current CO 2 -equivalent emission rates averaging 6.6 tonnes per person per year, are well over twice
2635-454: Is the dominant emitted greenhouse gas, while methane ( CH 4 ) emissions almost have the same short-term impact. Nitrous oxide (N 2 O) and fluorinated gases (F-gases) play a lesser role in comparison. Greenhouse gas emissions are measured in CO 2 equivalents determined by their global warming potential (GWP), which depends on their lifetime in the atmosphere. Estimations largely depend on
Sony Cyber-shot DSC-HX20V - Misplaced Pages Continue
2720-563: Is the first major source of greenhouse gas emissions from transportation, followed by aircraft and maritime. Waterborne transportation is still the least carbon-intensive mode of transportation on average, and it is an essential link in sustainable multimodal freight supply chains . Buildings, like industry, are directly responsible for around one-fifth of greenhouse gas emissions, primarily from space heating and hot water consumption. When combined with power consumption within buildings, this figure climbs to more than one-third. Within
2805-449: Is the main greenhouse gas resulting from human activities. It accounts for more than half of warming. Methane (CH 4 ) emissions have almost the same short-term impact. Nitrous oxide (N 2 O) and fluorinated gases (F-gases) play a lesser role in comparison. Emissions of carbon dioxide, methane and nitrous oxide in 2023 were all higher than ever before. Electricity generation , heat and transport are major emitters; overall energy
2890-410: Is ultrasonically welded to the aluminium current collector. Other salts like lithium perchlorate ( LiClO 4 ), lithium tetrafluoroborate ( LiBF 4 ), and lithium bis(trifluoromethanesulfonyl)imide ( LiC 2 F 6 NO 4 S 2 ) are frequently used in research in tab-less coin cells , but are not usable in larger format cells, often because they are not compatible with
2975-537: Is unstable and prone to dendrite formation, which can cause short-circuiting . The eventual solution was to use an intercalation anode, similar to that used for the cathode, which prevents the formation of lithium metal during battery charging. The first to demonstrate lithium ion reversible intercalation into graphite anodes was Jürgen Otto Besenhard in 1974. Besenhard used organic solvents such as carbonates, however these solvents decomposed rapidly providing short battery cycle life. Later, in 1980, Rachid Yazami used
3060-665: Is very complex, and is affected by how carbon sinks are allocated between regions and the dynamics of the climate system . The graphic shows the logarithm of 1850–2019 fossil fuel CO 2 emissions; natural log on left, actual value of Gigatons per year on right. Although emissions increased during the 170-year period by about 3% per year overall, intervals of distinctly different growth rates (broken at 1913, 1945, and 1973) can be detected. The regression lines suggest that emissions can rapidly shift from one growth regime to another and then persist for long periods of time. The most recent drop in emissions growth – by almost 3 percentage points –
3145-401: The constant current phase, the charger applies a constant current to the battery at a steadily increasing voltage, until the top-of-charge voltage limit per cell is reached. During the balance phase, the charger/battery reduces the charging current (or cycles the charging on and off to reduce the average current) while the state of charge of individual cells is brought to the same level by
3230-719: The greenhouse effect . This contributes to climate change . Carbon dioxide (CO 2 ), from burning fossil fuels such as coal , oil , and natural gas , is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita . The main producers fueling the emissions globally are large oil and gas companies . Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases . Emissions in
3315-473: The 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC (2575 GtCO 2 ), of which 484±20 GtC (1773±73 GtCO 2 ) from fossil fuels and industry, and 219±60 GtC (802±220 GtCO 2 ) from land use change . Land-use change , such as deforestation , caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%. Carbon dioxide (CO 2 )
3400-733: The 2019 Nobel Prize in Chemistry "for the development of lithium-ion batteries". Jeff Dahn received the ECS Battery Division Technology Award (2011) and the Yeager award from the International Battery Materials Association (2016). In April 2023, CATL announced that it would begin scaled-up production of its semi-solid condensed matter battery that produces a then record 500 Wh/kg . They use electrodes made from
3485-476: The 2019 Nobel Prize in Chemistry for their contributions to the development of lithium-ion batteries. Lithium-ion batteries can be a safety hazard if not properly engineered and manufactured because they have flammable electrolytes that, if damaged or incorrectly charged, can lead to explosions and fires. Much progress has been made in the development and manufacturing of safe lithium-ion batteries. Lithium-ion solid-state batteries are being developed to eliminate
Sony Cyber-shot DSC-HX20V - Misplaced Pages Continue
3570-520: The 2030 Paris Agreement increase of 1.5 °C (2.7 °F) over pre-industrial levels. While cities are sometimes considered to be disproportionate contributors to emissions, per-capita emissions tend to be lower for cities than the averages in their countries. A 2017 survey of corporations responsible for global emissions found that 100 companies were responsible for 71% of global direct and indirect emissions , and that state-owned companies were responsible for 59% of their emissions. China is, by
3655-498: The EU, the agricultural sector presently accounts for roughly 10% of total greenhouse gas emissions, with methane from livestock accounting for slightly more than half of 10%. Estimates of total CO 2 emissions do include biotic carbon emissions, mainly from deforestation. Including biotic emissions brings about the same controversy mentioned earlier regarding carbon sinks and land-use change. The actual calculation of net emissions
3740-526: The Earth can cool off. The major anthropogenic (human origin) sources of greenhouse gases are carbon dioxide (CO 2 ), nitrous oxide ( N 2 O ), methane and three groups of fluorinated gases ( sulfur hexafluoride ( SF 6 ), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs, sulphur hexafluoride (SF 6 ), and nitrogen trifluoride (NF 3 )). Though the greenhouse effect is heavily driven by water vapor , human emissions of water vapor are not
3825-718: The US accounted for 28% of emissions; the EU, 23%; Japan, 4%; other OECD countries 5%; Russia, 11%; China, 9%; India, 3%; and the rest of the world, 18%. The European Commission adopted a set of legislative proposals targeting a reduction of the CO 2 emissions by 55% by 2030. Overall, developed countries accounted for 83.8% of industrial CO 2 emissions over this time period, and 67.8% of total CO 2 emissions. Developing countries accounted for industrial CO 2 emissions of 16.2% over this time period, and 32.2% of total CO 2 emissions. However, what becomes clear when we look at emissions across
3910-552: The US are gradually decreasing over time. Emissions in Russia and Ukraine have decreased fastest since 1990 due to economic restructuring in these countries. 2015 was the first year to see both total global economic growth and a reduction of carbon emissions. Annual per capita emissions in the industrialized countries are typically as much as ten times the average in developing countries. Due to China's fast economic development, its annual per capita emissions are quickly approaching
3995-419: The ability of oceans and land sinks to absorb these gases. Short-lived climate pollutants (SLCPs) including methane, hydrofluorocarbons (HFCs) , tropospheric ozone and black carbon persist in the atmosphere for a period ranging from days to 15 years; whereas carbon dioxide can remain in the atmosphere for millennia. Reducing SLCP emissions can cut the ongoing rate of global warming by almost half and reduce
4080-434: The aluminium current collector. Copper (with a spot-welded nickel tab) is used as the current collector at the negative electrode. Current collector design and surface treatments may take various forms: foil, mesh, foam (dealloyed), etched (wholly or selectively), and coated (with various materials) to improve electrical characteristics. Depending on materials choices, the voltage , energy density , life, and safety of
4165-416: The area of non-flammable electrolytes as a pathway to increased safety based on the flammability and volatility of the organic solvents used in the typical electrolyte. Strategies include aqueous lithium-ion batteries , ceramic solid electrolytes, polymer electrolytes, ionic liquids, and heavily fluorinated systems. Research on rechargeable Li-ion batteries dates to the 1960s; one of the earliest examples
4250-399: The battery cell from the negative to the positive electrode, through the non- aqueous electrolyte and separator diaphragm. During charging, an external electrical power source applies an over-voltage (a voltage greater than the cell's own voltage) to the cell, forcing electrons to flow from the positive to the negative electrode. The lithium ions also migrate (through the electrolyte) from
4335-619: The battery/memory compartment is the Tripod screw holder, for easy use with a tripod! External accessories like a microphone are also supported by the Sony HX20V. Lithium-ion battery A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries , Li-ion batteries are characterized by higher specific energy , higher energy density , higher energy efficiency ,
SECTION 50
#17327980895474420-516: The case of Jupiter , or from its host star as in the case of the Earth . In the case of Earth, the Sun emits shortwave radiation ( sunlight ) that passes through greenhouse gases to heat the Earth's surface. In response, the Earth's surface emits longwave radiation that is mostly absorbed by greenhouse gases. The absorption of longwave radiation prevents it from reaching space, reducing the rate at which
4505-667: The concentration of carbon dioxide and other greenhouse gases. Emissions have grown rapidly since about 1950 with ongoing expansions in global population and economic activity following World War II. As of 2021, measured atmospheric concentrations of carbon dioxide were almost 50% higher than pre-industrial levels. The main sources of greenhouse gases due to human activity (also called carbon sources ) are: Global greenhouse gas emissions are about 50 Gt per year and for 2019 have been estimated at 57 Gt CO 2 eq including 5 Gt due to land use change. In 2019, approximately 34% [20 GtCO 2 -eq] of total net anthropogenic GHG emissions came from
4590-413: The difference between a country's exports and imports. For many richer nations, the balance is negative because more goods are imported than they are exported. This result is mostly due to the fact that it is cheaper to produce goods outside of developed countries, leading developed countries to become increasingly dependent on services and not goods. A positive account balance would mean that more production
4675-440: The energy supply sector, 24% [14 GtCO 2 -eq] from industry, 22% [13 GtCO 2 -eq]from agriculture, forestry and other land use (AFOLU), 15% [8.7 GtCO 2 -eq] from transport and 6% [3.3 GtCO 2 -eq] from buildings. Global carbon dioxide emissions by country in 2023: The current CO 2 -equivalent emission rates averaging 6.6 tonnes per person per year, are well over twice the estimated rate 2.3 tons required to stay within
4760-489: The entire life cycle from the production of a good or service along the supply chain to its final consumption. Carbon accounting (or greenhouse gas accounting) is a framework of methods to measure and track how much greenhouse gas an organization emits. The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source as in
4845-511: The entire battery's usable capacity to that of its own. Balancing can last hours or even days, depending on the magnitude of the imbalance in the battery. During the constant voltage phase, the charger applies a voltage equal to the maximum cell voltage times the number of cells in series to the battery, as the current gradually declines towards 0, until the current is below a set threshold of about 3% of initial constant charge current. Periodic topping charge about once per 500 hours. Top charging
4930-414: The estimated rate 2.3 tons required to stay within the 2030 Paris Agreement increase of 1.5 °C (2.7 °F) over pre-industrial levels. Annual per capita emissions in the industrialized countries are typically as much as ten times the average in developing countries. The carbon footprint (or greenhouse gas footprint ) serves as an indicator to compare the amount of greenhouse gases emitted over
5015-419: The external circuit toward the cathode where they recombine with the cathode material in a reduction half-reaction. The electrolyte provides a conductive medium for lithium ions but does not partake in the electrochemical reaction. The reactions during discharge lower the chemical potential of the cell, so discharging transfers energy from the cell to wherever the electric current dissipates its energy, mostly in
5100-481: The external circuit. During charging these reactions and transports go in the opposite direction: electrons move from the positive electrode to the negative electrode through the external circuit. To charge the cell the external circuit has to provide electrical energy. This energy is then stored as chemical energy in the cell (with some loss, e. g., due to coulombic efficiency lower than 1). Both electrodes allow lithium ions to move in and out of their structures with
5185-864: The flammable electrolyte. Improperly recycled batteries can create toxic waste, especially from toxic metals, and are at risk of fire. Moreover, both lithium and other key strategic minerals used in batteries have significant issues at extraction, with lithium being water intensive in often arid regions and other minerals used in some Li-ion chemistries potentially being conflict minerals such as cobalt . Both environmental issues have encouraged some researchers to improve mineral efficiency and find alternatives such as Lithium iron phosphate lithium-ion chemistries or non-lithium-based battery chemistries like iron-air batteries . Research areas for lithium-ion batteries include extending lifetime, increasing energy density, improving safety, reducing cost, and increasing charging speed, among others. Research has been under way in
SECTION 60
#17327980895475270-470: The graphite is The positive electrode half-reaction in the lithium-doped cobalt oxide substrate is The full reaction being The overall reaction has its limits. Overdischarging supersaturates lithium cobalt oxide , leading to the production of lithium oxide , possibly by the following irreversible reaction: Overcharging up to 5.2 volts leads to the synthesis of cobalt (IV) oxide, as evidenced by x-ray diffraction : The transition metal in
5355-562: The greatest impacts of all technologies in human history , as recognized by the 2019 Nobel Prize in Chemistry . More specifically, Li-ion batteries enabled portable consumer electronics , laptop computers , cellular phones , and electric cars , or what has been called the e-mobility revolution. It also sees significant use for grid-scale energy storage as well as military and aerospace applications. Lithium-ion cells can be manufactured to optimize energy or power density. Handheld electronics mostly use lithium polymer batteries (with
5440-824: The importing country, rather than the exporting, country. A substantial proportion of CO 2 emissions is traded internationally. The net effect of trade was to export emissions from China and other emerging markets to consumers in the US, Japan, and Western Europe. Emission intensity is a ratio between greenhouse gas emissions and another metric, e.g., gross domestic product (GDP) or energy use. The terms "carbon intensity" and " emissions intensity " are also sometimes used. Emission intensities may be calculated using market exchange rates (MER) or purchasing power parity (PPP). Calculations based on MER show large differences in intensities between developed and developing countries, whereas calculations based on PPP show smaller differences. Carbon accounting (or greenhouse gas accounting)
5525-443: The internal resistance of the battery may increase, resulting in slower charging and thus longer charging times. Batteries gradually self-discharge even if not connected and delivering current. Li-ion rechargeable batteries have a self-discharge rate typically stated by manufacturers to be 1.5–2% per month. The rate increases with temperature and state of charge. A 2004 study found that for most cycling conditions self-discharge
5610-474: The lapse of formerly declining trends in carbon intensity of both developing and developed nations. China was responsible for most of global growth in emissions during this period. Localised plummeting emissions associated with the collapse of the Soviet Union have been followed by slow emissions growth in this region due to more efficient energy use , made necessary by the increasing proportion of it that
5695-564: The late 1970s, but found the synthesis expensive and complex, as TiS 2 is sensitive to moisture and releases toxic H 2 S gas on contact with water. More prohibitively, the batteries were also prone to spontaneously catch fire due to the presence of metallic lithium in the cells. For this, and other reasons, Exxon discontinued the development of Whittingham's lithium-titanium disulfide battery. In 1980, working in separate groups Ned A. Godshall et al., and, shortly thereafter, Koichi Mizushima and John B. Goodenough , after testing
5780-435: The layers together. Although it has a lower capacity compared to graphite (~Li0.5C6, 186 mAh g–1), it became the first commercial intercalation anode for Li-ion batteries owing to its cycling stability. In 1987, Yoshino patented what would become the first commercial lithium-ion battery using this anode. He used Goodenough's previously reported LiCoO 2 as the cathode and a carbonate ester -based electrolyte. The battery
5865-721: The levels of those in the Annex I group of the Kyoto Protocol (i.e., the developed countries excluding the US). Africa and South America are both fairly small emitters, accounting for 3-4% of global emissions each. Both have emissions almost equal to international aviation and shipping. There are several ways of measuring greenhouse gas emissions. Some variables that have been reported include: These measures are sometimes used by countries to assert various policy/ethical positions on climate change. The use of different measures leads to
5950-500: The main international treaty on climate change (the UNFCCC ), countries report on emissions produced within their borders, e.g., the emissions produced from burning fossil fuels. Under a production-based accounting of emissions, embedded emissions on imported goods are attributed to the exporting, rather than the importing, country. Under a consumption-based accounting of emissions, embedded emissions on imported goods are attributed to
6035-459: The major source of greenhouse gas emissions in the EU . Greenhouse gas emissions from the transportation sector continue to rise, in contrast to power generation and nearly all other sectors. Since 1990, transportation emissions have increased by 30%. The transportation sector accounts for around 70% of these emissions. The majority of these emissions are caused by passenger vehicles and vans. Road travel
6120-428: The negative electrode is the anode and the positive electrode the cathode : electrons flow from the anode to the cathode through the external circuit. An oxidation half-reaction at the anode produces positively charged lithium ions and negatively charged electrons. The oxidation half-reaction may also produce uncharged material that remains at the anode. Lithium ions move through the electrolyte; electrons move through
6205-410: The positive electrode, cobalt ( Co ), is reduced from Co to Co during discharge, and oxidized from Co to Co during charge. The cell's energy is equal to the voltage times the charge. Each gram of lithium represents Faraday's constant /6.941, or 13,901 coulombs. At 3 V, this gives 41.7 kJ per gram of lithium, or 11.6 kWh per kilogram of lithium. This
6290-492: The positive to the negative electrode where they become embedded in the porous electrode material in a process known as intercalation . Energy losses arising from electrical contact resistance at interfaces between electrode layers and at contacts with current collectors can be as high as 20% of the entire energy flow of batteries under typical operating conditions. The charging procedures for single Li-ion cells, and complete Li-ion batteries, are slightly different: During
6375-432: The powered circuit through two pieces of metal called current collectors. The negative and positive electrodes swap their electrochemical roles ( anode and cathode ) when the cell is charged. Despite this, in discussions of battery design the negative electrode of a rechargeable cell is often just called "the anode" and the positive electrode "the cathode". In its fully lithiated state of LiC 6 , graphite correlates to
6460-457: The presence of ethylene carbonate solvent (which is solid at room temperature and is mixed with other solvents to make a liquid). This represented the final innovation of the era that created the basic design of the modern lithium-ion battery. In 2010, global lithium-ion battery production capacity was 20 gigawatt-hours. By 2016, it was 28 GWh, with 16.4 GWh in China. Global production capacity
6545-629: The summit of the United Nations Environment Programme reached a legally binding accord to phase out hydrofluorocarbons (HFCs) in the Kigali Amendment to the Montreal Protocol . The use of CFC-12 (except some essential uses) has been phased out due to its ozone depleting properties. The phasing-out of less active HCFC-compounds will be completed in 2030. Starting about 1750, industrial activity powered by fossil fuels began to significantly increase
6630-457: The world today is that the countries with the highest emissions over history are not always the biggest emitters today. For example, in 2017, the UK accounted for just 1% of global emissions. In comparison, humans have emitted more greenhouse gases than the Chicxulub meteorite impact event which caused the extinction of the dinosaurs . Transport, together with electricity generation , is
6715-582: The year 1995). A country's emissions may also be reported as a proportion of global emissions for a particular year. Another measurement is of per capita emissions. This divides a country's total annual emissions by its mid-year population. Per capita emissions may be based on historical or annual emissions. One way of attributing greenhouse gas emissions is to measure the embedded emissions (also referred to as "embodied emissions") of goods that are being consumed. Emissions are usually measured according to production, rather than consumption. For example, in
6800-419: Was 767 GWh in 2020, with China accounting for 75%. Production in 2021 is estimated by various sources to be between 200 and 600 GWh, and predictions for 2023 range from 400 to 1,100 GWh. In 2012, John B. Goodenough , Rachid Yazami and Akira Yoshino received the 2012 IEEE Medal for Environmental and Safety Technologies for developing the lithium-ion battery; Goodenough, Whittingham, and Yoshino were awarded
6885-630: Was assembled in the discharged state, which made it safer and cheaper to manufacture. In 1991, using Yoshino's design, Sony began producing and selling the world's first rechargeable lithium-ion batteries. The following year, a joint venture between Toshiba and Asashi Kasei Co. also released a lithium-ion battery. Significant improvements in energy density were achieved in the 1990s by replacing Yoshino's soft carbon anode first with hard carbon and later with graphite. In 1990, Jeff Dahn and two colleagues at Dalhousie University (Canada) reported reversible intercalation of lithium ions into graphite in
6970-406: Was at about the time of the 1970s energy crisis . Percent changes per year were estimated by piecewise linear regression on the log data and are shown on the plot; the data are from The Integrated Carbon Observation system. The sharp acceleration in CO 2 emissions since 2000 to more than a 3% increase per year (more than 2 ppm per year) from 1.1% per year during the 1990s is attributable to
7055-458: Was estimated at 2% to 3%, and 2 –3% by 2016. By comparison, the self-discharge rate for NiMH batteries dropped, as of 2017, from up to 30% per month for previously common cells to about 0.08–0.33% per month for low self-discharge NiMH batteries, and is about 10% per month in NiCd batteries . Greenhouse gas emissions Greenhouse gas ( GHG ) emissions from human activities intensify
7140-590: Was occurring within a country, so more operational factories would increase carbon emission levels. Emissions may also be measured across shorter time periods. Emissions changes may, for example, be measured against the base year of 1990. 1990 was used in the United Nations Framework Convention on Climate Change (UNFCCC) as the base year for emissions, and is also used in the Kyoto Protocol (some gases are also measured from
7225-484: Was primarily time-dependent; however, after several months of stand on open circuit or float charge, state-of-charge dependent losses became significant. The self-discharge rate did not increase monotonically with state-of-charge, but dropped somewhat at intermediate states of charge. Self-discharge rates may increase as batteries age. In 1999, self-discharge per month was measured at 8% at 21 °C, 15% at 40 °C, 31% at 60 °C. By 2007, monthly self-discharge rate
#546453