A tank locomotive is a steam locomotive which carries its water in one or more on-board water tanks , instead of a more traditional tender . Most tank engines also have bunkers (or fuel tanks ) to hold fuel; in a tender-tank locomotive a tender holds some or all of the fuel, and may hold some water also.
105-769: The Donnellys Crossing Section (later the Donnellys Crossing Branch ), also known as the Kaihu Valley Railway or Kaihu Branch , was a railway line in Northland , New Zealand . Initially an isolated line of 35.91 kilometres (22.31 mi), it became a branch line when the Dargaville Branch was opened and connected it with the North Auckland Line and the rest of the national rail network in 1943. The branch
210-430: A bunker is used to carry the fuel (for locomotives using liquid fuel such as oil , a Fuel tank is used). There are two main positions for bunkers on tank locomotives: to the rear of the cab (as illustrated in the left of the images below), a position typically used on locomotives with a trailing carrying axle or a trailing bogie ; or on top of and to one side of the firebox, a positioning typically used in cases where
315-408: A crank on a driving axle. Steam locomotives have been phased out in most parts of the world for economical and safety reasons, although many are preserved in working order by heritage railways . Electric locomotives draw power from a stationary source via an overhead wire or third rail . Some also or instead use a battery . In locomotives that are powered by high-voltage alternating current ,
420-586: A dining car . Some lines also provide over-night services with sleeping cars . Some long-haul trains have been given a specific name . Regional trains are medium distance trains that connect cities with outlying, surrounding areas, or provide a regional service, making more stops and having lower speeds. Commuter trains serve suburbs of urban areas, providing a daily commuting service. Airport rail links provide quick access from city centres to airports . High-speed rail are special inter-city trains that operate at much higher speeds than conventional railways,
525-731: A fourth rail system in 1890 on the City and South London Railway , now part of the London Underground Northern line . This was the first major railway to use electric traction . The world's first deep-level electric railway, it runs from the City of London , under the River Thames , to Stockwell in south London. The first practical AC electric locomotive was designed by Charles Brown , then working for Oerlikon , Zürich. In 1891, Brown had demonstrated long-distance power transmission, using three-phase AC , between
630-542: A funicular railway at the Hohensalzburg Fortress in Austria. The line originally used wooden rails and a hemp haulage rope and was operated by human or animal power, through a treadwheel . The line is still operational, although in updated form and is possibly the oldest operational railway. Wagonways (or tramways ) using wooden rails, hauled by horses, started appearing in the 1550s to facilitate
735-492: A hydro-electric plant at Lauffen am Neckar and Frankfurt am Main West, a distance of 280 km (170 mi). Using experience he had gained while working for Jean Heilmann on steam–electric locomotive designs, Brown observed that three-phase motors had a higher power-to-weight ratio than DC motors and, because of the absence of a commutator , were simpler to manufacture and maintain. However, they were much larger than
840-431: A steam engine that provides adhesion. Coal , petroleum , or wood is burned in a firebox , boiling water in the boiler to create pressurized steam. The steam travels through the smokebox before leaving via the chimney or smoke stack. In the process, it powers a piston that transmits power directly through a connecting rod (US: main rod) and a crankpin (US: wristpin) on the driving wheel (US main driver) or to
945-469: A transformer in the locomotive converts the high-voltage low-current power to low-voltage high current used in the traction motors that power the wheels. Modern locomotives may use three-phase AC induction motors or direct current motors. Under certain conditions, electric locomotives are the most powerful traction. They are also the cheapest to run and provide less noise and no local air pollution. However, they require high capital investments both for
1050-518: A 'well' on the underside of the locomotive, generally between the locomotive's frames. This arrangement was patented by S.D. Davison in 1852. This does not restrict access to the boiler, but space is limited there, and the design is therefore not suitable for locomotives that need a good usable range before refilling. The arrangement does, however, have the advantage of creating a low centre of gravity , creating greater stability on poorly laid or narrow gauge tracks. The first tank locomotive, Novelty ,
1155-529: A curve (like an inverted 'U'), or even an ogee shape (a concave arc flowing into a convex arc). Walter Nielson patented the saddle tank arrangement in 1849. Saddle tanks were a popular arrangement especially for smaller locomotives in industrial use. It gave a greater water supply, but limited the size of the boiler and restricted access to it for cleaning. Furthermore, the locomotive has a higher centre of gravity and hence must operate at lower speeds. The driver's vision may also be restricted, again restricting
SECTION 10
#17327976431171260-462: A derailment. Some tram engines were fitted with a roof and enclosed sides, giving them an appearance more like a goods wagon than a locomotive. Railway locomotives with vertical boilers universally were tank locomotives. They were small, cheaper-to-operate machines mostly used in industrial settings. The benefits of tank locomotives include: There are disadvantages: Worldwide, tank engines varied in popularity. They were more common in areas where
1365-550: A diesel locomotive from the company in 1909. The world's first diesel-powered locomotive was operated in the summer of 1912 on the Winterthur–Romanshorn railway in Switzerland, but was not a commercial success. The locomotive weight was 95 tonnes and the power was 883 kW with a maximum speed of 100 km/h (62 mph). Small numbers of prototype diesel locomotives were produced in a number of countries through
1470-478: A double track plateway, erroneously sometimes cited as world's first public railway, in south London. William Jessop had earlier used a form of all-iron edge rail and flanged wheels successfully for an extension to the Charnwood Forest Canal at Nanpantan , Loughborough, Leicestershire in 1789. In 1790, Jessop and his partner Outram began to manufacture edge rails. Jessop became a partner in
1575-640: A few more months. The Donnellys Crossing Section was exclusively the domain of tank locomotives . During the line's period of isolation, F class engines were the dominant motive power, and with the opening of the Dargaville Branch the line was upgraded to permit the use of W class locomotives. The line closed too early for diesel motive power to be introduced. Until the Dargaville Branch opened, locomotives requiring major overhaul were sent to Newmarket , by ship or barge. Relics of closed railway lines naturally diminish and disappear over time due to
1680-579: A full cab, often only having a front ' spectacle plate '. If a cab was provided it was usually removable along with the chimney, and sometimes the dome, so that the locomotive could be loaded onto a flatbed wagon for transport to new locations by rail whilst remaining within the loading gauge . Steam tram engines, which were built, or modified, to work on a street, or roadside, tramway were almost universally also tank engines. Tram engines had their wheels and motion enclosed to avoid accidents in traffic. They often had cow catchers to avoid road debris causing
1785-437: A large turning radius in its design. While high-speed rail is most often designed for passenger travel, some high-speed systems also offer freight service. Since 1980, rail transport has changed dramatically, but a number of heritage railways continue to operate as part of living history to preserve and maintain old railway lines for services of tourist trains. A train is a connected series of rail vehicles that move along
1890-498: A larger locomotive named Galvani , exhibited at the Royal Scottish Society of Arts Exhibition in 1841. The seven-ton vehicle had two direct-drive reluctance motors , with fixed electromagnets acting on iron bars attached to a wooden cylinder on each axle, and simple commutators . It hauled a load of six tons at four miles per hour (6 kilometers per hour) for a distance of one and a half miles (2.4 kilometres). It
1995-423: A locomotive. This involves one or more powered vehicles being located at the front of the train, providing sufficient tractive force to haul the weight of the full train. This arrangement remains dominant for freight trains and is often used for passenger trains. A push–pull train has the end passenger car equipped with a driver's cab so that the engine driver can remotely control the locomotive. This allows one of
2100-477: A number of trains per hour (tph). Passenger trains can usually be into two types of operation, intercity railway and intracity transit. Whereas intercity railway involve higher speeds, longer routes, and lower frequency (usually scheduled), intracity transit involves lower speeds, shorter routes, and higher frequency (especially during peak hours). Intercity trains are long-haul trains that operate with few stops between cities. Trains typically have amenities such as
2205-676: A piece of circular rail track in Bloomsbury , London, the Catch Me Who Can , but never got beyond the experimental stage with railway locomotives, not least because his engines were too heavy for the cast-iron plateway track then in use. The first commercially successful steam locomotive was Matthew Murray 's rack locomotive Salamanca built for the Middleton Railway in Leeds in 1812. This twin-cylinder locomotive
SECTION 20
#17327976431172310-465: A pivotal role in the development and widespread adoption of the steam locomotive. His designs considerably improved on the work of the earlier pioneers. He built the locomotive Blücher , also a successful flanged -wheel adhesion locomotive. In 1825 he built the locomotive Locomotion for the Stockton and Darlington Railway in the northeast of England, which became the first public steam railway in
2415-439: A revival in recent decades due to road congestion and rising fuel prices, as well as governments investing in rail as a means of reducing CO 2 emissions . Smooth, durable road surfaces have been made for wheeled vehicles since prehistoric times. In some cases, they were narrow and in pairs to support only the wheels. That is, they were wagonways or tracks. Some had grooves or flanges or other mechanical means to keep
2520-686: A separate tender to carry needed water and fuel. The first tank locomotive was the Novelty that ran at the Rainhill Trials in 1829. It was an example of a well tank . However, the more common form of side tank date from the 1840s; one of the first of these was supplied by George England and Co. of New Cross to the contractors building the Seaford branch line for the London Brighton and South Coast Railway in 1848. In spite of
2625-739: A single lever to control both engine and generator in a coordinated fashion, and was the prototype for all diesel–electric locomotive control systems. In 1914, world's first functional diesel–electric railcars were produced for the Königlich-Sächsische Staatseisenbahnen ( Royal Saxon State Railways ) by Waggonfabrik Rastatt with electric equipment from Brown, Boveri & Cie and diesel engines from Swiss Sulzer AG . They were classified as DET 1 and DET 2 ( de.wiki ). The first regular used diesel–electric locomotives were switcher (shunter) locomotives . General Electric produced several small switching locomotives in
2730-508: A space between the tanks and the running plate. Pannier tanks have a lower centre of gravity than a saddle tank , whilst still giving the same easy access to the valve gear. Pannier tanks are so-named because the tanks are in a similar position to the panniers on a pack animal . [REDACTED] Media related to Pannier tank locomotives at Wikimedia Commons In Belgium , pannier tanks were in use at least since 1866, once again in conjunction with Belpaire firebox. Locomotives were built for
2835-407: A standard. Following SNCF's successful trials, 50 Hz, now also called industrial frequency was adopted as standard for main-lines across the world. Earliest recorded examples of an internal combustion engine for railway use included a prototype designed by William Dent Priestman . Sir William Thomson examined it in 1888 and described it as a "Priestman oil engine mounted upon a truck which
2940-415: A tender was used with a narrow-gauge locomotive it usually carried only fuel, with water carried in the locomotive's tanks. The tender offered greater fuel capacity than a bunker on the locomotive and often the water capacity could be increased by converting redundant bunker space into a water tank. Large side tank engines might also have an additional rear tank (under the coal bunker), or a well tank (between
3045-632: A terminus about one-half mile (800 m) away. A funicular railway was also made at Broseley in Shropshire some time before 1604. This carried coal for James Clifford from his mines down to the River Severn to be loaded onto barges and carried to riverside towns. The Wollaton Wagonway , completed in 1604 by Huntingdon Beaumont , has sometimes erroneously been cited as the earliest British railway. It ran from Strelley to Wollaton near Nottingham . The Middleton Railway in Leeds , which
3150-425: A variety of main line and industrial roles, particularly those involving shorter journeys or frequent changes in direction. There are a number of types of tank locomotive, based on the location and style of the water tanks. Side tanks are cuboid -shaped tanks which are situated on both sides of the boiler , extending all or part of the boiler's length. The tank sides extend down to the running platform, if such
3255-408: A wheel. This was a large stationary engine , powering cotton mills and a variety of machinery; the state of boiler technology necessitated the use of low-pressure steam acting upon a vacuum in the cylinder, which required a separate condenser and an air pump . Nevertheless, as the construction of boilers improved, Watt investigated the use of high-pressure steam acting directly upon a piston, raising
Donnellys Crossing Section - Misplaced Pages Continue
3360-460: A wing tank and an inverted saddle tank. The inverted saddle tank was a variation of the Wing Tank where the two tanks were joined underneath the smokebox and supported it. This rare design was used for the same reasons as the wing tank but provided slightly greater water capacity. The Brill Tramway locomotive Wotton is believed to have had an inverted saddle tank. The inverted saddle tank
3465-527: Is a 4-4-0 American-type with wheels reversed. Wing tanks are side tanks that run the length of the smokebox, instead of the full length of the boiler. In the early 19th century the term "wing tank" was sometimes used as a synonym for side tank. Wing tanks were mainly used on narrow gauge industrial locomotives that could be frequently re-filled with water and where side or saddle tanks would restrict access to valve gear. The Kerry Tramway 's locomotive Excelsior has been described, by various sources, as both
3570-410: Is a single, self-powered car, and may be electrically propelled or powered by a diesel engine . Multiple units have a driver's cab at each end of the unit, and were developed following the ability to build electric motors and other engines small enough to fit under the coach. There are only a few freight multiple units, most of which are high-speed post trains. Steam locomotives are locomotives with
3675-399: Is dominant. Electro-diesel locomotives are built to run as diesel–electric on unelectrified sections and as electric locomotives on electrified sections. Alternative methods of motive power include magnetic levitation , horse-drawn, cable , gravity, pneumatics and gas turbine . A passenger train stops at stations where passengers may embark and disembark. The oversight of the train is
3780-412: Is injected into the boiler. However, if the water becomes too hot, injectors lose efficiency and can fail. For this reason, the tanks often stopped short of the hotter and uninsulated smokebox . [REDACTED] Media related to Saddle tank locomotives at Wikimedia Commons Pannier tanks are box-shaped tanks carried on the sides of the boiler, not carried on the locomotive's running plates. This leaves
3885-458: Is present, for at least part of their length. This was a common configuration in the UK. The length of side tanks was often limited in order to give access to the valve gear (inside motion). Tanks that ran the full length of the boiler provided greater water capacity and, in this case, cut-outs in the rectangular tank gave access to the valve gear. Longer side tanks were sometimes tapered downwards at
3990-750: Is the distance in kilometres from Dargaville): Initially, the Donnellys Crossing Section resembled a bush tramway built to railway standards, though after the government's Railways Department acquired the line from the KVRC, it became more of a general purpose railway. Logging traffic was so heavy in the early part of the 20th century that the line was briefly considered to be one of the most profitable in New Zealand. Two "mixed" trains of both passengers and freight ran each way each day, typically carrying significant quantities of timber from
4095-408: Is usually provided by diesel or electrical locomotives . While railway transport is capital-intensive and less flexible than road transport, it can carry heavy loads of passengers and cargo with greater energy efficiency and safety. Precursors of railways driven by human or animal power have existed since antiquity, but modern rail transport began with the invention of the steam locomotive in
4200-556: Is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes." In 1894, a 20 hp (15 kW) two axle machine built by Priestman Brothers was used on the Hull Docks . In 1906, Rudolf Diesel , Adolf Klose and the steam and diesel engine manufacturer Gebrüder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered
4305-615: The Kaihu Valley with the port in Dargaville . The Railways Construction and Land Act authorised settlers to build railways instead of waiting for the government to do it, and the KVRC hoped that diverse traffic would develop and use the line. However, it was not until February 1889 that the line reached Opanake , and with the Long Depression taking its toll, the KVRC went bankrupt and the government foreclosed, taking over
Donnellys Crossing Section - Misplaced Pages Continue
4410-692: The United Kingdom at the beginning of the 19th century. The first passenger railway, the Stockton and Darlington Railway , opened in 1825. The quick spread of railways throughout Europe and North America, following the 1830 opening of the first intercity connection in England, was a key component of the Industrial Revolution . The adoption of rail transport lowered shipping costs compared to water transport, leading to "national markets" in which prices varied less from city to city. In
4515-615: The United Kingdom , South Korea , Scandinavia, Belgium and the Netherlands. The construction of many of these lines has resulted in the dramatic decline of short-haul flights and automotive traffic between connected cities, such as the London–Paris–Brussels corridor, Madrid–Barcelona, Milan–Rome–Naples, as well as many other major lines. High-speed trains normally operate on standard gauge tracks of continuously welded rail on grade-separated right-of-way that incorporates
4620-546: The firebox overhangs the rear driving axle, as this counterbalances the overhanging weight of the firebox, stabilising the locomotive. There are several other specialised types of steam locomotive which carry their own fuel but which are usually categorised for different reasons. A Garratt locomotive is articulated in three parts. The boiler is mounted on the centre frame without wheels, and two sets of driving wheels (4 cylinders total) carrying fuel bunkers and water tanks are mounted on separate frames, one on each end of
4725-479: The kauri forest in the area. Only so much forest existed, though, and in the 1920s, both the logging industry and the railway began their decline. In 1934, only a quarter of traffic came from the logging industry, and any hopes that a connection to the national network would improve the line's fortunes were soon dashed. Trains were cut to run just once a day in each direction in 1942, and then thrice weekly in 1951. By this point, only 171 tons of timber originated on
4830-414: The overhead lines and the supporting infrastructure, as well as the generating station that is needed to produce electricity. Accordingly, electric traction is used on urban systems, lines with high traffic and for high-speed rail. Diesel locomotives use a diesel engine as the prime mover . The energy transmission may be either diesel–electric , diesel-mechanical or diesel–hydraulic but diesel–electric
4935-458: The puddling process in 1784. In 1783 Cort also patented the rolling process , which was 15 times faster at consolidating and shaping iron than hammering. These processes greatly lowered the cost of producing iron and rails. The next important development in iron production was hot blast developed by James Beaumont Neilson (patented 1828), which considerably reduced the amount of coke (fuel) or charcoal needed to produce pig iron. Wrought iron
5040-418: The rotary phase converter , enabling electric locomotives to use three-phase motors whilst supplied via a single overhead wire, carrying the simple industrial frequency (50 Hz) single phase AC of the high-voltage national networks. An important contribution to the wider adoption of AC traction came from SNCF of France after World War II. The company conducted trials at AC 50 Hz, and established it as
5145-540: The 1880s, railway electrification began with tramways and rapid transit systems. Starting in the 1940s, steam locomotives were replaced by diesel locomotives . The first high-speed railway system was introduced in Japan in 1964, and high-speed rail lines now connect many cities in Europe , East Asia , and the eastern United States . Following some decline due to competition from cars and airplanes, rail transport has had
5250-521: The 1930s (the famous " 44-tonner " switcher was introduced in 1940) Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929. In 1929, the Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse. Although steam and diesel services reaching speeds up to 200 km/h (120 mph) were started before
5355-508: The 1960s in Europe, they were not very successful. The first electrified high-speed rail Tōkaidō Shinkansen was introduced in 1964 between Tokyo and Osaka in Japan. Since then high-speed rail transport, functioning at speeds up to and above 300 km/h (190 mph), has been built in Japan, Spain, France , Germany, Italy, the People's Republic of China, Taiwan (Republic of China),
SECTION 50
#17327976431175460-460: The 1990s, followed by Donnellys Crossing's station building sometime in the first decade of the 2000s. Donnellys Crossing station was located near a double track yard bridge; one side of the bridge has been removed and the other side adapted to road use, with the underframe still in place on the unused half. Little remains of the locomotives and rolling stock of the KVRC. The last member of the F class , F 216 (built by Neilson and Company in 1888),
5565-464: The 40 km Burgdorf–Thun line , Switzerland. Italian railways were the first in the world to introduce electric traction for the entire length of a main line rather than a short section. The 106 km Valtellina line was opened on 4 September 1902, designed by Kandó and a team from the Ganz works. The electrical system was three-phase at 3 kV 15 Hz. In 1918, Kandó invented and developed
5670-631: The Belgian State and for la Société Générale d'Exploitatation (SGE) , a private company grouping smaller secondary lines. In the United Kingdom , pannier tank locomotives were used almost exclusively by the Great Western Railway . The first Great Western pannier tanks were converted from saddle tank locomotives when these were being rebuilt in the early 1900s with the Belpaire firebox . There were difficulties in accommodating
5775-530: The Butterley Company in 1790. The first public edgeway (thus also first public railway) built was Lake Lock Rail Road in 1796. Although the primary purpose of the line was to carry coal, it also carried passengers. These two systems of constructing iron railways, the "L" plate-rail and the smooth edge-rail, continued to exist side by side until well into the early 19th century. The flanged wheel and edge-rail eventually proved its superiority and became
5880-514: The DC motors of the time and could not be mounted in underfloor bogies : they could only be carried within locomotive bodies. In 1894, Hungarian engineer Kálmán Kandó developed a new type 3-phase asynchronous electric drive motors and generators for electric locomotives. Kandó's early 1894 designs were first applied in a short three-phase AC tramway in Évian-les-Bains (France), which was constructed between 1896 and 1898. In 1896, Oerlikon installed
5985-780: The German Class 61 and the Hungarian Class 242 . The contractor's locomotive was a small tank locomotive specially adapted for use by civil engineering contractor firms engaged in the building of railways. The locomotives would be used for hauling men, equipment and building materials over temporary railway networks built at the worksite that were frequently re-laid or taken up and moved elsewhere as building work progressed. Contractor's locomotives were usually saddle or well tank types (see above) but required several adaptations to make them suitable for their task. They were built to be as light as possible so they could run over
6090-544: The boiler. Articulation is used so larger locomotives can go around curves which would otherwise restrict the size of rigid framed locomotives. One of the major advantages of the Garratt form of articulation is the maintenance of the locomotive's centre-of-gravity over or inside the track centre-line when rounding curves. A crane tank (CT) is a steam tank locomotive fitted with a crane for working in railway workshops or other industrial environments. The crane may be fitted at
6195-430: The duty of a guard/train manager/conductor . Passenger trains are part of public transport and often make up the stem of the service, with buses feeding to stations. Passenger trains provide long-distance intercity travel, daily commuter trips, or local urban transit services, operating with a diversity of vehicles, operating speeds, right-of-way requirements, and service frequency. Service frequencies are often expressed as
6300-409: The early belief that such locomotives were inherently unsafe, the idea quickly caught on, particularly for industrial use and five manufacturers exhibited designs at The Great Exhibition in 1851. These were E. B. Wilson and Company , William Fairbairn & Sons , George England, Kitson Thompson and Hewitson and William Bridges Adams . By the mid-1850s tank locomotives were to be found performing
6405-525: The effects of both nature and human development, but in the rural setting of the Far North of New Zealand, some signs of the Donnellys Crossing Section have survived. For much of the line's length, its formation can be seen travelling through the countryside, and a truss bridge over the Kaihu River is still in place. Unfortunately, Kaihu's station building was removed at some point in the latter half of
SECTION 60
#17327976431176510-402: The end of the 19th century, because they were cleaner compared to steam-driven trams which caused smoke in city streets. In 1784 James Watt , a Scottish inventor and mechanical engineer, patented a design for a steam locomotive . Watt had improved the steam engine of Thomas Newcomen , hitherto used to pump water out of mines, and developed a reciprocating engine in 1769 capable of powering
6615-471: The end of the 19th century, improving the quality of steel and further reducing costs. Thus steel completely replaced the use of iron in rails, becoming standard for all railways. The first passenger horsecar or tram , Swansea and Mumbles Railway , was opened between Swansea and Mumbles in Wales in 1807. Horses remained the preferable mode for tram transport even after the arrival of steam engines until
6720-527: The engine by one power stroke. The transmission system employed a large flywheel to even out the action of the piston rod. On 21 February 1804, the world's first steam-powered railway journey took place when Trevithick's unnamed steam locomotive hauled a train along the tramway of the Penydarren ironworks, near Merthyr Tydfil in South Wales . Trevithick later demonstrated a locomotive operating upon
6825-475: The era of great expansion of railways that began in the late 1860s. Steel rails lasted several times longer than iron. Steel rails made heavier locomotives possible, allowing for longer trains and improving the productivity of railroads. The Bessemer process introduced nitrogen into the steel, which caused the steel to become brittle with age. The open hearth furnace began to replace the Bessemer process near
6930-522: The first commercial example of the system on the Lugano Tramway . Each 30-tonne locomotive had two 110 kW (150 hp) motors run by three-phase 750 V 40 Hz fed from double overhead lines. Three-phase motors run at a constant speed and provide regenerative braking , and are well suited to steeply graded routes, and the first main-line three-phase locomotives were supplied by Brown (by then in partnership with Walter Boveri ) in 1899 on
7035-513: The flat top of the latter within an encircling saddle tank which cut down capacity and increased the tendency to overheat the water in the tank. Pannier tank locomotives are often seen as an icon of the GWR. In Logging railroads in the Western USA used 2-6-6-2 Saddle tanks or Pannier tanks for heavy timber trains. In this design, used in earlier and smaller locomotives, the water is stored in
7140-536: The frames when extra weight and traction was required, then removed when it was not. Most had sanding gear fitted to all wheels for maximum traction. Some method of keeping mud and dust from clogging the wheels and brake shoes was also required – this either took the form of scraper bars fitted to the leading edge of the wheels or wheel washer jets supplied from the water tank. To handle long trains of loose-coupled (and often un-sprung) wagons, contractor's locomotives usually had very effective steam-powered brakes. Most lacked
7245-629: The frames). This may have been to increase the water capacity, to equalise the weight distribution, or else improve the stability by lowering the centre of gravity . Because tank locomotives are capable of running equally fast in both directions (see below) they usually have symmetrical wheel arrangements to ensure the same ride and stability characteristics regardless of the direction travelled, producing arrangements with only driving wheels (e.g. 0-4-0 T and 0-6-0 T ) or equal numbers of leading and trailing wheels (e.g. 2-4-2 T and 4-6-4 T ). However other requirements, such as
7350-429: The front to improve forward visibility. Side tanks almost all stopped at, or before, the end of the boiler barrel, with the smokebox protruding ahead. A few designs did reach to the front of the smokebox and these were termed 'flatirons'. The water tank sits on top of the boiler like a saddle sits atop a horse. Usually, the tank is curved in cross-section, although in some cases there were straight sides surmounted by
7455-411: The front, centre or rear. During the 1930s there was a trend for express passenger locomotives to be streamlined by enclosed bodyshells. Express locomotives were nearly all tender locomotives, but a few fast tank engines were also streamlined, for use on high-speed, but shorter, services where turn-around time was important and the tank engine's independence from turntables was useful. Examples included
7560-657: The highest possible radius. All these features are dramatically different from freight operations, thus justifying exclusive high-speed rail lines if it is economically feasible. Tank locomotive There are several different types of tank locomotive, distinguished by the position and style of the water tanks and fuel bunkers. The most common type has tanks mounted either side of the boiler. This type originated about 1840 and quickly became popular for industrial tasks, and later for shunting and shorter-distance main line duties. Tank locomotives have advantages and disadvantages compared to traditional locomotives that required
7665-520: The length of run was short, and a quick turn around time was needed or turning facilities were not available, mostly in Europe. With their limited fuel and water capacity, they were not favoured in areas where long runs between stops were the norm. They were very common in the United Kingdom, France, and Germany. In the United Kingdom, they were frequently used for shunting and piloting duties, suburban passenger services and local freight. The GWR
7770-408: The lightly built temporary rails and had deeply flanged wheels so they did not de-rail on the tracks which were often very uneven. At the same time, they had to be very powerful with good traction as they would often have to haul trains of wagons up very steep gradients, such as the sides of railway embankments or spoil heaps. Many were designed so that large iron ballast blocks could be fitted to
7875-1230: The limit being regarded at 200 to 350 kilometres per hour (120 to 220 mph). High-speed trains are used mostly for long-haul service and most systems are in Western Europe and East Asia. Magnetic levitation trains such as the Shanghai maglev train use under-riding magnets which attract themselves upward towards the underside of a guideway and this line has achieved somewhat higher peak speeds in day-to-day operation than conventional high-speed railways, although only over short distances. Due to their heightened speeds, route alignments for high-speed rail tend to have broader curves than conventional railways, but may have steeper grades that are more easily climbed by trains with large kinetic energy. High kinetic energy translates to higher horsepower-to-ton ratios (e.g. 20 horsepower per short ton or 16 kilowatts per tonne); this allows trains to accelerate and maintain higher speeds and negotiate steep grades as momentum builds up and recovered in downgrades (reducing cut and fill and tunnelling requirements). Since lateral forces act on curves, curvatures are designed with
7980-403: The line and larger quantities were being railed into the area. Remarkably, passenger services survived right until the end. Many New Zealand branch lines lost their passenger services during the 1930s, with private cars seen as far preferable over the slow pace of country mixed trains that stopped to shunt at many sidings along the way, but in the isolated Far North, people were still happy to use
8085-496: The line in 1890. With the economy improving, a short extension was opened to Kaihu on 21 October 1896, but it was not until 1908 that further work was undertaken. Construction was extremely slow and the few kilometres to Whatoro were not open until 1 June 1914. World War I brought construction to an absolute halt, and when work began after the war, the final extension of the line was built and opened to Donnellys Crossing on 1 April 1923. In 1940, this isolated section of track
8190-743: The line, $ 4m of the cost being from the Provincial Growth Fund . Railway Rail transport (also known as train transport ) is a means of transport using wheeled vehicles running in tracks , which usually consist of two parallel steel rails . Rail transport is one of the two primary means of land transport , next to road transport . It is used for about 8% of passenger and freight transport globally, thanks to its energy efficiency and potentially high speed . Rolling stock on rails generally encounters lower frictional resistance than rubber-tyred road vehicles, allowing rail cars to be coupled into longer trains . Power
8295-429: The locomotive-hauled train's drawbacks to be removed, since the locomotive need not be moved to the front of the train each time the train changes direction. A railroad car is a vehicle used for the haulage of either passengers or freight. A multiple unit has powered wheels throughout the whole train. These are used for rapid transit and tram systems, as well as many both short- and long-haul passenger trains. A railcar
8400-569: The main portion of the B&O to the new line to New York through a series of tunnels around the edges of Baltimore's downtown. Electricity quickly became the power supply of choice for subways, abetted by the Sprague's invention of multiple-unit train control in 1897. By the early 1900s most street railways were electrified. The London Underground , the world's oldest underground railway, opened in 1863, and it began operating electric services using
8505-433: The mid-1920s. The Soviet Union operated three experimental units of different designs since late 1925, though only one of them (the E el-2 ) proved technically viable. A significant breakthrough occurred in 1914, when Hermann Lemp , a General Electric electrical engineer, developed and patented a reliable direct current electrical control system (subsequent improvements were also patented by Lemp). Lemp's design used
8610-557: The need to support a large bunker, would require a non-symmetrical layout such as 2-6-4 T . In the Whyte notation for classification of locomotives (primarily by wheel arrangement ), various suffixes are used to denote tank locomotives: In the UIC notation which also classifies locomotives primarily by wheel arrangement , the suffix 't' is used to denote tank locomotives On tank locomotives which use solid fuels such as coal ,
8715-412: The noise they made on the tracks. There are many references to their use in central Europe in the 16th century. Such a transport system was later used by German miners at Caldbeck , Cumbria , England, perhaps from the 1560s. A wagonway was built at Prescot , near Liverpool , sometime around 1600, possibly as early as 1594. Owned by Philip Layton, the line carried coal from a pit near Prescot Hall to
8820-461: The possibility of a smaller engine that might be used to power a vehicle. Following his patent, Watt's employee William Murdoch produced a working model of a self-propelled steam carriage in that year. The first full-scale working railway steam locomotive was built in the United Kingdom in 1804 by Richard Trevithick , a British engineer born in Cornwall . This used high-pressure steam to drive
8925-408: The safe speed. The squared-off shape of the Belpaire firebox does not fit easily beneath a saddle tank, and so most saddle tanks retained the older round-topped boiler instead. A few American locomotives used saddle tanks that only covered the boiler barrel, forward of the firebox. Water in the tank is slightly pre-heated by the boiler, which reduces the loss of pressure found when cold feedwater
9030-441: The standard for railways. Cast iron used in rails proved unsatisfactory because it was brittle and broke under heavy loads. The wrought iron invented by John Birkinshaw in 1820 replaced cast iron. Wrought iron, usually simply referred to as "iron", was a ductile material that could undergo considerable deformation before breaking, making it more suitable for iron rails. But iron was expensive to produce until Henry Cort patented
9135-475: The time, was Liverpool and Manchester Railway , built in 1830. Steam power continued to be the dominant power system in railways around the world for more than a century. The first known electric locomotive was built in 1837 by chemist Robert Davidson of Aberdeen in Scotland, and it was powered by galvanic cells (batteries). Thus it was also the earliest battery-electric locomotive. Davidson later built
9240-543: The track. Propulsion for the train is provided by a separate locomotive or from individual motors in self-propelled multiple units. Most trains carry a revenue load, although non-revenue cars exist for the railway's own use, such as for maintenance-of-way purposes. The engine driver (engineer in North America) controls the locomotive or other power cars, although people movers and some rapid transits are under automatic control. Traditionally, trains are pulled using
9345-478: The train. Initially, four six-wheeled passenger wagons were based in the area, but in 1933, two- bogied carriages were introduced. As late as 1958–59, approximately 15 people were carried per train, but the overall quantity of traffic was extremely poor and there was no reason to keep the line open any longer. Closure came on 19 July 1959, though the Dargaville shunter ran wagons of freight to and from Kaihu for
9450-471: The transport of ore tubs to and from mines and soon became popular in Europe. Such an operation was illustrated in Germany in 1556 by Georgius Agricola in his work De re metallica . This line used "Hund" carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way. The miners called the wagons Hunde ("dogs") from
9555-629: The wheels on track. For example, evidence indicates that a 6 to 8.5 km long Diolkos paved trackway transported boats across the Isthmus of Corinth in Greece from around 600 BC. The Diolkos was in use for over 650 years, until at least the 1st century AD. Paved trackways were also later built in Roman Egypt . In 1515, Cardinal Matthäus Lang wrote a description of the Reisszug ,
9660-622: The world in 1825, although it used both horse power and steam power on different runs. In 1829, he built the locomotive Rocket , which entered in and won the Rainhill Trials . This success led to Stephenson establishing his company as the pre-eminent builder of steam locomotives for railways in Great Britain and Ireland, the United States, and much of Europe. The first public railway which used only steam locomotives, all
9765-512: Was a soft material that contained slag or dross . The softness and dross tended to make iron rails distort and delaminate and they lasted less than 10 years. Sometimes they lasted as little as one year under high traffic. All these developments in the production of iron eventually led to the replacement of composite wood/iron rails with superior all-iron rails. The introduction of the Bessemer process , enabling steel to be made inexpensively, led to
9870-411: Was a speciality of W.G.Bagnall . A tank locomotive may also haul a tender behind it. This was the common arrangement on the largest locomotives, as well as on narrow gauge railways where the small size of the locomotive restricts the space available for fuel and water. These combined both fuel and water in a proportion (where coal was used) of 1 pound of coal for every 6 pounds of water. . Where
9975-510: Was a well tank. [REDACTED] Media related to Well tank locomotives at Wikimedia Commons In this design, the tank is placed behind the cab, usually over a supporting bogie. This removes the weight of the water from the driving wheels, giving the locomotive a constant tractive weight. The disadvantage is a reduction in water carrying capacity. A rear tank is an essential component of the American Forney type of locomotive, which
10080-602: Was accomplished by the distribution of weight between a number of wheels. Puffing Billy is now on display in the Science Museum in London, and is the oldest locomotive in existence. In 1814, George Stephenson , inspired by the early locomotives of Trevithick, Murray and Hedley, persuaded the manager of the Killingworth colliery where he worked to allow him to build a steam-powered machine. Stephenson played
10185-514: Was built by Siemens. The tram ran on 180 volts DC, which was supplied by running rails. In 1891 the track was equipped with an overhead wire and the line was extended to Berlin-Lichterfelde West station . The Volk's Electric Railway opened in 1883 in Brighton , England. The railway is still operational, thus making it the oldest operational electric railway in the world. Also in 1883, Mödling and Hinterbrühl Tram opened near Vienna in Austria. It
10290-693: Was built for the KVRC and was subsequently bought by the Railways Department. It was in use until April 1932, when it was sold to the Auckland Farmers Freezing Co., Horotiu , who converted the engine to diesel propulsion. It was donated to the Goldfields Railway in 1981 and then to the Bush Tramway Club in 1985. It is located at their Pukemiro depot. A cycle trail is being planned to use much of
10395-706: Was built in 1758, later became the world's oldest operational railway (other than funiculars), albeit now in an upgraded form. In 1764, the first railway in the Americas was built in Lewiston, New York . In the late 1760s, the Coalbrookdale Company began to fix plates of cast iron to the upper surface of the wooden rails. This allowed a variation of gauge to be used. At first only balloon loops could be used for turning, but later, movable points were taken into use that allowed for switching. A system
10500-555: Was closed in 1959. The name of the line is often given as the Donnelly's Crossing Section or Branch. Although grammatically accurate, this is incorrect as the locality's name is officially recognised as Donnellys Crossing with no apostrophe. The Kaihu Valley Railway Company Limited (KVRC) formed in 1882 under the provisions of the Railways Construction and Land Act of 1881 to build a railway linking lumber mills in
10605-493: Was finally linked to the national network when the Dargaville Branch off the North Auckland Line reached Dargaville. However, the relocation and reconstruction of Dargaville's railway station was seen as required and this work took until 1943, when the Dargaville branch was officially opened as a connection to the North Auckland Line. The following stations were located on the Donnellys Crossing Section (in brackets
10710-548: Was introduced in which unflanged wheels ran on L-shaped metal plates, which came to be known as plateways . John Curr , a Sheffield colliery manager, invented this flanged rail in 1787, though the exact date of this is disputed. The plate rail was taken up by Benjamin Outram for wagonways serving his canals, manufacturing them at his Butterley ironworks . In 1803, William Jessop opened the Surrey Iron Railway ,
10815-489: Was light enough to not break the edge-rails track and solved the problem of adhesion by a cog-wheel using teeth cast on the side of one of the rails. Thus it was also the first rack railway . This was followed in 1813 by the locomotive Puffing Billy built by Christopher Blackett and William Hedley for the Wylam Colliery Railway, the first successful locomotive running by adhesion only. This
10920-762: Was tested on the Edinburgh and Glasgow Railway in September of the following year, but the limited power from batteries prevented its general use. It was destroyed by railway workers, who saw it as a threat to their job security. By the middle of the nineteenth century most european countries had military uses for railways. Werner von Siemens demonstrated an electric railway in 1879 in Berlin. The world's first electric tram line, Gross-Lichterfelde Tramway , opened in Lichterfelde near Berlin , Germany, in 1881. It
11025-636: Was the first tram line in the world in regular service powered from an overhead line. Five years later, in the U.S. electric trolleys were pioneered in 1888 on the Richmond Union Passenger Railway , using equipment designed by Frank J. Sprague . The first use of electrification on a main line was on a four-mile section of the Baltimore Belt Line of the Baltimore and Ohio Railroad (B&O) in 1895 connecting
#116883