In geology and physical geography , a plateau ( / p l ə ˈ t oʊ , p l æ ˈ t oʊ , ˈ p l æ t oʊ / ; French: [plato] ; pl. : plateaus or plateaux ), also called a high plain or a tableland , is an area of a highland consisting of flat terrain that is raised sharply above the surrounding area on at least one side. Often one or more sides have deep hills or escarpments . Plateaus can be formed by a number of processes, including upwelling of volcanic magma , extrusion of lava , and erosion by water and glaciers . Plateaus are classified according to their surrounding environment as intermontane, piedmont, or continental. A few plateaus may have a small flat top while others have wider ones.
46-580: The Dease Plateau is a sub-plateau of the larger Yukon Plateau , and is located in far northern British Columbia , Canada, northwest from the Deadwood River to and beyond the Yukon -British Columbia boundary. The plateau is named in association with Dease Lake and the Dease River . Very mountainous in some of its vast area, it is in some classification systems it is included as a subarea of
92-424: A certain proportion of its mass below the surface of the water. If snow falls to the top of the iceberg, the iceberg will sink lower in the water. If a layer of ice melts off the top of the iceberg, the remaining iceberg will rise. Similarly, Earth's lithosphere "floats" in the asthenosphere. When continents collide, the continental crust may thicken at their edges in the collision. It is also very common for one of
138-425: A change in crust loading) provide information on the viscosity of the upper mantle. The basis of the model is Pascal's law , and particularly its consequence that, within a fluid in static equilibrium, the hydrostatic pressure is the same on every point at the same elevation (surface of hydrostatic compensation): h 1 ⋅ρ 1 = h 2 ⋅ρ 2 = h 3 ⋅ρ 3 = ... h n ⋅ρ n For the simplified picture shown,
184-535: A characteristic wave number As the rigid layer becomes weaker, κ {\displaystyle \kappa } approaches infinity, and the behavior approaches the pure hydrostatic balance of the Airy-Heiskanen hypothesis. The depth of compensation (also known as the compensation level , compensation depth , or level of compensation ) is the depth below which the pressure is identical across any horizontal surface. In stable regions, it lies in
230-490: A region, the land may rise to compensate. Therefore, as a mountain range is eroded, the (reduced) range rebounds upwards (to a certain extent) to be eroded further. Some of the rock strata now visible at the ground surface may have spent much of their history at great depths below the surface buried under other strata, to be eventually exposed as those other strata eroded away and the lower layers rebounded upwards. An analogy may be made with an iceberg , which always floats with
276-553: A river was already there, though not necessarily on exactly the same course. Then, subterranean geological forces caused the land in that part of North America to gradually rise by about a centimeter per year for millions of years. An unusual balance occurred: the river that would become the Colorado River was able to erode into the crust of the Earth at a nearly equal rate to the uplift of the plateau. Now, millions of years later,
322-528: Is defined as the Bouger anomaly minus the gravity anomaly due to the subsurface compensation, and is a measure of the local departure from isostatic equilibrium. At the center of a level plateau, it is approximately equal to the free air anomaly . Models such as deep dynamic isostasy (DDI) include such viscous forces and are applicable to a dynamic mantle and lithosphere. Measurements of the rate of isostatic rebound (the return to isostatic equilibrium following
368-622: Is divided into three main flat regions: the Bogotá savanna , the valleys of Ubaté and Chiquinquirá , and the valleys of Duitama and Sogamoso . The parallel Sierra of Andes delimit one of the world highest plateaux: the Altiplano , (Spanish for "high plain"), Andean Plateau or Bolivian Plateau. It lies in west-central South America, where the Andes are at their widest, is the most extensive area of high plateau on Earth outside of Tibet. The bulk of
414-502: Is invoked to explain how different topographic heights can exist at Earth's surface. Although originally defined in terms of continental crust and mantle, it has subsequently been interpreted in terms of lithosphere and asthenosphere , particularly with respect to oceanic island volcanoes , such as the Hawaiian Islands . Although Earth is a dynamic system that responds to loads in many different ways, isostasy describes
460-710: Is sometimes called the Roof of Africa due to its height and large area. Another example is the Highveld which is the portion of the South African inland plateau which has an altitude above approximately 1,500 metres, but below 2,100 metres, thus excluding the Lesotho mountain regions. It is home to some of the largest South African urban agglomerations . In Egypt are the Giza Plateau and Galala Mountain , which
506-545: Is the Scottish Highlands . Plateaus are classified according to their surrounding environment. The highest African plateau is the Ethiopian Highlands which cover the central part of Ethiopia. It forms the largest continuous area of its altitude in the continent, with little of its surface falling below 1,500 metres (4,921 ft), while the summits reach heights of up to 4,550 metres (14,928 ft). It
SECTION 10
#1732786778054552-445: Is the acceleration due to gravity, and P ( x ) {\displaystyle P(x)} is the load on the ocean crust. The parameter D is the flexural rigidity , defined as where E is Young's modulus , σ {\displaystyle \sigma } is Poisson's ratio , and T c {\displaystyle T_{c}} is the thickness of the lithosphere. Solutions to this equation have
598-572: Is the home of more than 70 million people. The Western Plateau , part of the Australian Shield , is an ancient craton covering much of the continent's southwest, an area of some 700,000 square kilometres. It has an average elevation between 305 and 460 metres. The North Island Volcanic Plateau is an area of high land occupying much of the centre of the North Island of New Zealand, with volcanoes, lava plateaus, and crater lakes,
644-476: The Baltic Sea and Hudson Bay . As the ice retreats, the load on the lithosphere and asthenosphere is reduced and they rebound back towards their equilibrium levels. In this way, it is possible to find former sea cliffs and associated wave-cut platforms hundreds of metres above present-day sea level . The rebound movements are so slow that the uplift caused by the ending of the last glacial period
690-558: The Cassiar Mountains . This article about a location in the Interior of British Columbia , Canada is a stub . You can help Misplaced Pages by expanding it . Plateau Plateaus can be formed by a number of processes, including upwelling of volcanic magma, extrusion of lava, plate tectonics movements, and erosion by water and glaciers. Volcanic plateaus are produced by volcanic activity . The Columbia Plateau in
736-895: The Deccan Plateau (≈1,900,000 km (730,000 sq mi), elevation 300–600 metres (980–1,970 ft)). A large plateau in North America is the Colorado Plateau , which covers about 337,000 km (130,000 sq mi) in Colorado , Arizona , New Mexico , and Utah . In northern Arizona and southern Utah the Colorado Plateau is bisected by the Colorado River and the Grand Canyon . This came to be over 10 million years ago,
782-567: The " Roof of the World ", which is still being formed by the collisions of the Indo-Australian and Eurasian tectonic plates . The Tibetan Plateau covers approximately 2,500,000 km (970,000 sq mi), at about 5,000 m (16,000 ft) above sea level. The plateau is sufficiently high to reverse the Hadley cell convection cycles and to drive the monsoons of India towards
828-527: The 1950s by the Dutch geodesist Vening Meinesz . Three principal models of isostasy are used: Airy and Pratt isostasy are statements of buoyancy, but flexural isostasy is a statement of buoyancy when deflecting a sheet of finite elastic strength. In other words, the Airy and Pratt models are purely hydrostatic, taking no account of material strength, while flexural isostacy takes into account elastic forces from
874-688: The Altiplano lies within Bolivian and Peruvian territory while its southern parts lie in Chile. The Altiplano plateau hosts several cities like Puno, Oruro, El Alto and La Paz the administrative seat of Bolivia. Northeastern Altiplano is more humid than the Southwestern, the latter of which hosts several salares , or salt flats, due to its aridity. At the Bolivia-Peru border lies Lake Titicaca ,
920-721: The North Rim of the Grand Canyon is at an elevation of about 2,450 m (8,040 ft) above sea level , and the South Rim of the Grand Canyon is about 2,150 m (7,050 ft) above sea level. At its deepest, the Colorado River is about 1,830 m (6,000 ft) below the level of the North Rim. Another high-altitude plateau in North America is the Mexican Plateau . With an area of 601,882 km (232,388 sq mi) and average height of 1,825 metres, it
966-560: The Pratt hypothesis as overlying regions of unusually low density in the upper mantle. This reflects thermal expansion from the higher temperatures present under the ridges. In the Basin and Range Province of western North America, the isostatic anomaly is small except near the Pacific coast, indicating that the region is generally near isostatic equilibrium. However, the depth to the base of
SECTION 20
#17327867780541012-403: The balancing of lithospheric columns gives: where ρ m {\displaystyle \rho _{m}} is the density of the mantle (ca. 3,300 kg m ), ρ c {\displaystyle \rho _{c}} is the density of the crust (ca. 2,750 kg m ) and ρ w {\displaystyle \rho _{w}} is the density of
1058-418: The crust does not strongly correlate with the height of the terrain. This provides evidence (via the Pratt hypothesis) that the upper mantle in this region is inhomogeneous, with significant lateral variations in density. The formation of ice sheets can cause Earth's surface to sink. Conversely, isostatic post-glacial rebound is observed in areas once covered by ice sheets that have now melted, such as around
1104-761: The crust. Tectonic plateaus are formed by tectonic plate movements which cause uplift, and are normally of a considerable size, and a fairly uniform altitude. Examples are the Deccan Plateau in India and the Meseta Central on the Iberian Peninsula . Plateaus can also be formed by the erosional processes of glaciers on mountain ranges, leaving them sitting between the mountain ranges. Water can also erode mountains and other landforms down into plateaus. Dissected plateaus are highly eroded plateaus cut by rivers and broken by deep narrow valleys. An example
1150-448: The deep crust, but in active regions, it may lie below the base of the lithosphere. In the Pratt model, it is the depth below which all rock has the same density; above this depth, density is lower where topographic elevation is greater. When large amounts of sediment are deposited on a particular region, the immense weight of the new sediment may cause the crust below to sink. Similarly, when large amounts of material are eroded away from
1196-406: The deformation of the rigid crust. These elastic forces can transmit buoyant forces across a large region of deformation to a more concentrated load. Perfect isostatic equilibrium is possible only if mantle material is in rest. However, thermal convection is present in the mantle. This introduces viscous forces that are not accounted for the static theory of isostacy. The isostatic anomaly or IA
1242-411: The depth of the mountain belt roots (b 1 ) is calculated as follows: where ρ m {\displaystyle \rho _{m}} is the density of the mantle (ca. 3,300 kg m ) and ρ c {\displaystyle \rho _{c}} is the density of the crust (ca. 2,750 kg m ). Thus, generally: In the case of negative topography (a marine basin),
1288-403: The flexural rigidity of the lithosphere approaches zero. For example, the vertical displacement z of a region of ocean crust would be described by the differential equation where ρ m {\displaystyle \rho _{m}} and ρ w {\displaystyle \rho _{w}} are the densities of the aesthenosphere and ocean water, g
1334-674: The gods" in the native tongue of the Pemon , the Indigenous people who inhabit the Gran Sabana . Tepuis can be considered minute plateaus and tend to be found as isolated entities rather than in connected ranges, which makes them the host of a unique array of endemic plant and animal species. Some of the most outstanding tepuis are Neblina , Autana , Auyan and Mount Roraima . They are typically composed of sheer blocks of Precambrian quartz arenite sandstone that rise abruptly from
1380-547: The important limiting case in which crust and mantle are in static equilibrium . Certain areas (such as the Himalayas and other convergent margins) are not in isostatic equilibrium and are not well described by isostatic models. The general term isostasy was coined in 1882 by the American geologist Clarence Dutton . In the 17th and 18th centuries, French geodesists (for example, Jean Picard ) attempted to determine
1426-492: The jungle, giving rise to spectacular natural scenery. Auyán-tepui is the source of Angel Falls , the world's tallest waterfall . The Colombian capital city of Bogota sits on an Andean plateau known as the Altiplano Cundiboyacense roughly the size of Switzerland. Averaging a height of 2,600 m (8,500 ft) above sea level, this northern Andean plateau is situated in the country's eastern range and
Dease Plateau - Misplaced Pages Continue
1472-480: The largest lake in South America. [REDACTED] Media related to Plateaus at Wikimedia Commons Isostasy Isostasy (Greek ísos 'equal', stásis 'standstill') or isostatic equilibrium is the state of gravitational equilibrium between Earth 's crust (or lithosphere ) and mantle such that the crust "floats" at an elevation that depends on its thickness and density. This concept
1518-400: The mass of the mountains. In other words, the low-density mountain roots provided the buoyancy to support the weight of the mountains above the surrounding terrain. Similar observations in the 19th century by British surveyors in India showed that this was a widespread phenomenon in mountainous areas. It was later found that the difference between the measured local gravitational field and what
1564-601: The most notable of which is the country's largest lake, Lake Taupō . The plateau stretches approximately 100 km east to west and 130 km north to south. The majority of the plateau is more than 600 metres above sea level. A tepui ( / ˈ t ɛ p w i / ), or tepuy ( Spanish: [teˈpuj] ), is a table-top mountain or mesa found in the Guiana Highlands of South America, especially in Venezuela and western Guyana . The word tepui means "house of
1610-442: The north-western United States is an example. They may be formed by upwelling of volcanic magma or extrusion of lava. The underlining mechanism in forming plateaus from upwelling starts when magma rises from the mantle , causing the ground to swell upward. In this way, large, flat areas of rock are uplifted to form a plateau. For plateaus formed by extrusion, the rock is built up from lava spreading outward from cracks and weak areas in
1656-520: The phenomenon had by then already been proposed, in 1855, one by George Airy and the other by John Henry Pratt . The Airy hypothesis was later refined by the Finnish geodesist Veikko Aleksanteri Heiskanen and the Pratt hypothesis by the American geodesist John Fillmore Hayford . Both the Airy-Heiskanen and Pratt-Hayford hypotheses assume that isostacy reflects a local hydrostatic balance. A third hypothesis, lithospheric flexure , takes into account
1702-427: The plates to be underthrust beneath the other plate. The result is that the crust in the collision zone becomes as much as 80 kilometers (50 mi) thick, versus 40 kilometers (25 mi) for average continental crust. As noted above , the Airy hypothesis predicts that the resulting mountain roots will be about five times deeper than the height of the mountains, or 32 km versus 8 km. In other words, most of
1748-473: The rigidity of the Earth's outer shell, the lithosphere . Lithospheric flexure was first invoked in the late 19th century to explain the shorelines uplifted in Scandinavia following the melting of continental glaciers at the end of the last glaciation . It was likewise used by American geologist G. K. Gilbert to explain the uplifted shorelines of Lake Bonneville . The concept was further developed in
1794-507: The shape of the Earth (the geoid ) by measuring the length of a degree of latitude at different latitudes ( arc measurement ). A party working in Ecuador was aware that its plumb lines , used to determine the vertical direction, would be deflected by the gravitational attraction of the nearby Andes Mountains . However, the deflection was less than expected, which was attributed to the mountains having low-density roots that compensated for
1840-866: The south. The Deosai Plains in Pakistan are situated at an average elevation of 4,114 meters (13,497 ft) above sea level. They are considered to be the second highest plateaus in the world. Other major plateaus in Asia are: Najd on the Arabian Peninsula , elevation 762 to 1,525 m (2,500 to 5,003 ft), Armenian Highlands (≈400,000 km (150,000 sq mi), elevation 900–2,100 metres (3,000–6,900 ft)), Iranian Plateau (≈3,700,000 km (1,400,000 sq mi), elevation 300–1,500 metres (980–4,920 ft)), Anatolian Plateau , Mongolian Plateau (≈2,600,000 km (1,000,000 sq mi), elevation 1,000–1,500 metres (3,300–4,900 ft)), and
1886-480: The surrounding coastline through enormous glaciers . The polar ice cap is so massive that the echolocation measurements of ice thickness have shown that large areas are below sea level . But, as the ice melts, the land beneath will rebound through isostasy and ultimately rise above sea level. The largest and highest plateau in the world is the Tibetan Plateau , sometimes metaphorically described as
Dease Plateau - Misplaced Pages Continue
1932-434: The thickened crust moves downwards rather than up, just as most of an iceberg is below the surface of the water. However, convergent plate margins are tectonically highly active, and their surface features are partially supported by dynamic horizontal stresses, so that they are not in complete isostatic equilibrium. These regions show the highest isostatic anomalies on the Earth's surface. Mid-ocean ridges are explained by
1978-408: The thickness of the crust. This hypothesis was suggested to explain how large topographic loads such as seamounts (e.g. Hawaiian Islands ) could be compensated by regional rather than local displacement of the lithosphere. This is the more general solution for lithospheric flexure , as it approaches the locally compensated models above as the load becomes much larger than a flexural wavelength or
2024-401: The water (ca. 1,000 kg m ). Thus, generally: For the simplified model shown the new density is given by: ρ 1 = ρ c c h 1 + c {\displaystyle \rho _{1}=\rho _{c}{\frac {c}{h_{1}+c}}} , where h 1 {\displaystyle h_{1}} is the height of the mountain and c
2070-461: Was expected for the altitude and local terrain (the Bouguer anomaly ) is positive over ocean basins and negative over high continental areas. This shows that the low elevation of ocean basins and high elevation of continents is also compensated at depth. The American geologist Clarence Dutton use the word 'isostasy' in 1889 to describe this general phenomenon. However, two hypotheses to explain
2116-605: Was once called Gallayat Plateaus, rising 3,300 ft above sea level. Another very large plateau is the icy Antarctic Plateau , which is sometimes referred to as the Polar Plateau or King Haakon VII Plateau, home to the geographic South Pole and the Amundsen–Scott South Pole Station , which covers most of East Antarctica where there are no known mountains but rather 3,000 m (9,800 ft) high of superficial ice and which spreads very slowly toward
#53946