The Dresden Suspension Railway ( German : Schwebebahn Dresden ) is a suspended funicular located in Dresden , Germany , and connects the districts of Loschwitz and Oberloschwitz (Rochwitz side). It is one of the oldest suspension railways, having entered service on 6 May 1901, the same year the Wuppertal Schwebebahn entered service. Like the Wuppertal railway, the system was designed by Eugen Langen . The line is 274 metres (899 ft) long and is supported on 33 pillars.
77-506: Despite its unusual suspended format, the Dresden Suspension Railway is operated as a conventional funicular railway . The two cars are attached to each other by a cable, which runs around a drum at the top of the incline. The ascending car is pulled up the hill by the weight of the descending car, assisted if necessary by an electric drive to the drum. The line has the following technical parameters: The Schwebebahn
154-399: A ferromagnetic core. Electric current passing through the wire causes the magnetic field to exert a force ( Lorentz force ) on it, turning the rotor. Windings are coiled wires, wrapped around a laminated, soft, iron, ferromagnetic core so as to form magnetic poles when energized with current. Electric machines come in salient- and nonsalient-pole configurations. In a salient-pole motor
231-430: A magnetic field that passes through the rotor armature, exerting force on the rotor windings. The stator core is made up of many thin metal sheets that are insulated from each other, called laminations. These laminations are made of electrical steel , which has a specified magnetic permeability, hysteresis, and saturation. Laminations reduce losses that would result from induced circulating eddy currents that would flow if
308-404: A 100- horsepower induction motor currently has the same mounting dimensions as a 7.5-horsepower motor in 1897. In 2022, electric motor sales were estimated to be 800 million units, increasing by 10% annually. Electric motors consume ≈50% of the world's electricity. Since the 1980s, the market share of DC motors has declined in favor of AC motors. An electric motor has two mechanical parts:
385-431: A 20-hp squirrel cage and a 100-hp wound rotor with a starting rheostat. These were the first three-phase asynchronous motors suitable for practical operation. Since 1889, similar developments of three-phase machinery were started Wenström. At the 1891 Frankfurt International Electrotechnical Exhibition, the first long distance three-phase system was successfully presented. It was rated 15 kV and extended over 175 km from
462-470: A commutator-type direct-current electric motor was built by American inventors Thomas Davenport and Emily Davenport , which he patented in 1837. The motors ran at up to 600 revolutions per minute, and powered machine tools and a printing press. Due to the high cost of primary battery power , the motors were commercially unsuccessful and bankrupted the Davenports. Several inventors followed Sturgeon in
539-463: A comparatively small air gap. The St. Louis motor, long used in classrooms to illustrate motor principles, is inefficient for the same reason, as well as appearing nothing like a modern motor. Electric motors revolutionized industry. Industrial processes were no longer limited by power transmission using line shafts, belts, compressed air or hydraulic pressure. Instead, every machine could be equipped with its own power source, providing easy control at
616-422: A generator and the other as motor. The drum rotor was introduced by Friedrich von Hefner-Alteneck of Siemens & Halske to replace Pacinotti's ring armature in 1872, thus improving the machine efficiency. The laminated rotor was introduced by Siemens & Halske the following year, achieving reduced iron losses and increased induced voltages. In 1880, Jonas Wenström provided the rotor with slots for housing
693-615: A mix of different track layouts. An example of this arrangement is the lower half of the Great Orme Tramway , where the section "above" the passing loop has a three-rail layout (with each pair of adjacent rails having its own conduit which the cable runs through), while the section "below" the passing loop has a two-rail layout (with a single conduit shared by both cars). Another example is the Peak Tram in Hong Kong , which
770-437: A model electric vehicle that same year. A major turning point came in 1864, when Antonio Pacinotti first described the ring armature (although initially conceived in a DC generator, i.e. a dynamo). This featured symmetrically grouped coils closed upon themselves and connected to the bars of a commutator, the brushes of which delivered practically non-fluctuating current. The first commercially successful DC motors followed
847-1037: A power grid, inverters or electrical generators. Electric motors may be classified by considerations such as power source type, construction, application and type of motion output. They can be brushed or brushless , single-phase , two-phase , or three-phase , axial or radial flux , and may be air-cooled or liquid-cooled. Standardized motors provide power for industrial use. The largest are used for ship propulsion, pipeline compression and pumped-storage applications, with output exceeding 100 megawatts . Applications include industrial fans, blowers and pumps, machine tools, household appliances, power tools, vehicles, and disk drives. Small motors may be found in electric watches. In certain applications, such as in regenerative braking with traction motors , electric motors can be used in reverse as generators to recover energy that might otherwise be lost as heat and friction. Electric motors produce linear or rotary force ( torque ) intended to propel some external mechanism. This makes them
SECTION 10
#1732780569692924-469: A pulley at the bottom of the incline. In these designs, one of the pulleys must be designed as a tensioning wheel to avoid slack in the ropes. One advantage of such an installation is the fact that the weight of the rope is balanced between the carriages; therefore, the engine no longer needs to use any power to lift the cable itself. This practice is used on funiculars with slopes below 6%, funiculars using sledges instead of carriages, or any other case where it
1001-464: A railway track laid on a steep slope . The system is characterized by two counterbalanced carriages (also called cars or trains) permanently attached to opposite ends of a haulage cable, which is looped over a pulley at the upper end of the track. The result of such a configuration is that the two carriages move synchronously: as one ascends, the other descends at an equal speed. This feature distinguishes funiculars from inclined elevators , which have
1078-425: A rotating bar winding rotor. Steadfast in his promotion of three-phase development, Mikhail Dolivo-Dobrovolsky invented the three-phase induction motor in 1889, of both types cage-rotor and wound rotor with a starting rheostat, and the three-limb transformer in 1890. After an agreement between AEG and Maschinenfabrik Oerlikon , Doliwo-Dobrowolski and Charles Eugene Lancelot Brown developed larger models, namely
1155-425: A short distance down from the passing loop as well, for the sole purpose of allowing the other car to call at Nebozízek. A number of cable railway systems which pull their cars on inclined slopes were built since the 1820s. In the second half of the 19th century the design of a funicular as a transit system emerged. It was especially attractive in comparison with the other systems of the time as counterbalancing of
1232-453: A single car that is hauled uphill. The term funicular derives from the Latin word funiculus , the diminutive of funis , meaning 'rope'. In a funicular, both cars are permanently connected to the opposite ends of the same cable, known as a haul rope ; this haul rope runs through a system of pulleys at the upper end of the line. If the railway track is not perfectly straight,
1309-398: A solid core were used. Mains powered AC motors typically immobilize the wires within the windings by impregnating them with varnish in a vacuum. This prevents the wires in the winding from vibrating against each other which would abrade the wire insulation and cause premature failures. Resin-packed motors, used in deep well submersible pumps, washing machines, and air conditioners, encapsulate
1386-538: A tunnel 1.8 km (1.1 mi) long, is claimed by the Guinness World Records as the "least extensive metro " in the world. Technically, it is an underground funicular. The Dresden Suspension Railway ( Dresden Schwebebahn ), which hangs from an elevated rail, is the only suspended funicular in the world. The Fribourg funicular is the only funicular in the world powered by wastewater. Standseilbahn Linth-Limmern , capable of moving 215 t,
1463-584: A type of actuator . They are generally designed for continuous rotation, or for linear movement over a significant distance compared to its size. Solenoids also convert electrical power to mechanical motion, but over only a limited distance. Before modern electromagnetic motors, experimental motors that worked by electrostatic force were investigated. The first electric motors were simple electrostatic devices described in experiments by Scottish monk Andrew Gordon and American experimenter Benjamin Franklin in
1540-493: A world record, which Jacobi improved four years later in September 1838. His second motor was powerful enough to drive a boat with 14 people across a wide river. It was also in 1839/40 that other developers managed to build motors with similar and then higher performance. In 1827–1828, Jedlik built a device using similar principles to those used in his electromagnetic self-rotors that was capable of useful work. He built
1617-592: A wound rotor forming a self-starting induction motor , and the third a true synchronous motor with separately excited DC supply to rotor winding. One of the patents Tesla filed in 1887, however, also described a shorted-winding-rotor induction motor. George Westinghouse , who had already acquired rights from Ferraris (US$ 1,000), promptly bought Tesla's patents (US$ 60,000 plus US$ 2.50 per sold hp, paid until 1897), employed Tesla to develop his motors, and assigned C.F. Scott to help Tesla; however, Tesla left for other pursuits in 1889. The constant speed AC induction motor
SECTION 20
#17327805696921694-417: Is mostly of a two-rail layout except for a short three-rail section immediately uphill of the passing loop. Some four-rail funiculars have their tracks interlaced above and below the passing loop; this allows the system to be nearly as narrow as a two-rail system, with a single platform at each station, while also eliminating the need for the costly junctions either side of the passing loop. The Hill Train at
1771-410: Is not ensured that the descending car is always able to pull out the cable from the pulley in the station on the top of the incline. It is also used in systems where the engine room is located at the lower end of the track (such as the upper half of the Great Orme Tramway ) – in such systems, the cable that runs through the top of the incline is still necessary to prevent the carriages from coasting down
1848-455: Is said to have the highest capacity. Some inclined elevators are incorrectly called funiculars. On an inclined elevator the cars operate independently rather than in interconnected pairs, and are lifted uphill. A notable example is Paris ' Montmartre Funicular . Its formal title is a relic of its original configuration, when its two cars operated as a counterbalanced, interconnected pair, always moving in opposite directions, thus meeting
1925-975: Is the Fisherman's Walk Cliff Railway in Bournemouth , England, which is 39 metres (128 ft) long. Stoosbahn in Switzerland, with a maximum slope of 110% (47.7°), is the steepest funicular in the world. The Lynton and Lynmouth Cliff Railway , built in 1888, is the steepest and longest water-powered funicular in the world. It climbs 152 metres (499 ft) vertically on a 58% gradient. The city of Valparaíso in Chile used to have up to 30 funicular elevators ( Spanish : ascensores ). The oldest of them dates from 1883. 15 remain with almost half in operation, and others in various stages of restoration. The Carmelit in Haifa , Israel, with six stations and
2002-539: The Giessbachbahn in the Swiss canton of Bern , opened in 1879, was originally powered by water ballast. In 1912 its energy provision was replaced by a hydraulic engine powered by a Pelton turbine . In 1948 this in turn was replaced by an electric motor. There are three main rail layouts used on funiculars; depending on the system, the track bed can consist of four, three, or two rails. Some funicular systems use
2079-488: The Legoland Windsor Resort is an example of this configuration. In the case of two-rail funiculars, various solutions exist for ensuring that a carriage always enters the same track at the passing loop. One such solution involves installing switches at each end of the passing loop. These switches are moved into their desired position by the carriage's wheels during trailing movements (i.e. away from
2156-483: The South Side Elevated Railroad , where it became popularly known as the " L ". Sprague's motor and related inventions led to an explosion of interest and use in electric motors for industry. The development of electric motors of acceptable efficiency was delayed for several decades by failure to recognize the extreme importance of an air gap between the rotor and stator. Efficient designs have
2233-515: The Tünel has been in continuous operation since 1875 and is both the first underground funicular and the second-oldest underground railway. It remained powered by a steam engine up until it was taken for renovation in 1968. Until the end of the 1870s, the four-rail parallel-track funicular was the normal configuration. Carl Roman Abt developed the Abt Switch allowing the two-rail layout, which
2310-439: The armature . Two or more electrical contacts called brushes made of a soft conductive material like carbon press against the commutator. The brushes make sliding contact with successive commutator segments as the rotator turns, supplying current to the rotor. The windings on the rotor are connected to the commutator segments. The commutator reverses the current direction in the rotor windings with each half turn (180°), so
2387-560: The passing loop ) and the Carmelit in Haifa , Israel (six stations, three on each side of the passing loop). A few funiculars with asymmetrically placed stations also exist. For example, the Petřín funicular in Prague has three stations: one at each end, and a third (Nebozízek) a short way up from the passing loop. Because of this arrangement, carriages are forced to make a technical stop
Dresden Suspension Railway - Misplaced Pages Continue
2464-416: The 1740s. The theoretical principle behind them, Coulomb's law , was discovered but not published, by Henry Cavendish in 1771. This law was discovered independently by Charles-Augustin de Coulomb in 1785, who published it so that it is now known by his name. Due to the difficulty of generating the high voltages they required, electrostatic motors were never used for practical purposes. The invention of
2541-582: The Lauffen waterfall on the Neckar river. The Lauffen power station included a 240 kW 86 V 40 Hz alternator and a step-up transformer while at the exhibition a step-down transformer fed a 100-hp three-phase induction motor that powered an artificial waterfall, representing the transfer of the original power source. The three-phase induction is now used for the vast majority of commercial applications. Mikhail Dolivo-Dobrovolsky claimed that Tesla's motor
2618-415: The cable is guided along the track using sheaves – unpowered pulleys that simply allow the cable to change direction. While one car is pulled upwards by one end of the haul rope, the other car descends the slope at the other end. Since the weight of the two cars is counterbalanced (except for the weight of passengers), no lifting force is required to move them; the engine only has to lift the cable itself and
2695-596: The cars was deemed to be a cost-cutting solution. The first line of the Funiculars of Lyon ( Funiculaires de Lyon ) opened in 1862, followed by other lines in 1878, 1891 and 1900. The Budapest Castle Hill Funicular was built in 1868–69, with the first test run on 23 October 1869. The oldest funicular railway operating in Britain dates from 1875 and is in Scarborough , North Yorkshire. In Istanbul , Turkey,
2772-404: The city's tram , bus and ferry networks. Specific General 51°03′15″N 13°49′05″E / 51.05417°N 13.81806°E / 51.05417; 13.81806 Funicular A funicular ( / f juː ˈ n ɪ k j ʊ l ər , f ( j ) ʊ -, f ( j ) ə -/ few- NIK -yoo-lər, f(y)uu-, f(j)ə- ) is a type of cable railway system that connects points along
2849-498: The crown of the rail were invented by the Swiss entrepreneurs Franz Josef Bucher and Josef Durrer and implemented at the Stanserhorn funicular [ de ] , opened in 1893. The Abt rack and pinion system was also used on some funiculars for speed control or emergency braking. Many early funiculars were built using water tanks under the floor of each car, which were filled or emptied until just sufficient imbalance
2926-440: The definition of a funicular. However, the system has since been redesigned, and now uses two independently-operating cars that can each ascend or descend on demand, qualifying as a double inclined elevator; the term "funicular" in its title is retained as a historical reference. Electric motor An electric motor is a machine that converts electrical energy into mechanical energy . Most electric motors operate through
3003-523: The development of DC motors, but all encountered the same battery cost issues. As no electricity distribution system was available at the time, no practical commercial market emerged for these motors. After many other more or less successful attempts with relatively weak rotating and reciprocating apparatus Prussian/Russian Moritz von Jacobi created the first real rotating electric motor in May 1834. It developed remarkable mechanical output power. His motor set
3080-478: The developments by Zénobe Gramme who, in 1871, reinvented Pacinotti's design and adopted some solutions by Werner Siemens . A benefit to DC machines came from the discovery of the reversibility of the electric machine, which was announced by Siemens in 1867 and observed by Pacinotti in 1869. Gramme accidentally demonstrated it on the occasion of the 1873 Vienna World's Fair , when he connected two such DC devices up to 2 km from each other, using one of them as
3157-598: The distinction of being the first funicular in the United States for strictly passenger use and not freight. In 1880 the funicular of Mount Vesuvius inspired the Italian popular song Funiculì, Funiculà . This funicular was destroyed repeatedly by volcanic eruptions and abandoned after the eruption of 1944. According to the Guinness World Records , the smallest public funicular in the world
Dresden Suspension Railway - Misplaced Pages Continue
3234-508: The electric energy produced in the US. In 1824, French physicist François Arago formulated the existence of rotating magnetic fields , termed Arago's rotations , which, by manually turning switches on and off, Walter Baily demonstrated in 1879 as in effect the first primitive induction motor . In the 1880s many inventors were trying to develop workable AC motors because AC's advantages in long-distance high-voltage transmission were offset by
3311-576: The electric grid, provided for electric distribution to trolleys via overhead wires and the trolley pole, and provided control systems for electric operations. This allowed Sprague to use electric motors to invent the first electric trolley system in 1887–88 in Richmond, Virginia , the electric elevator and control system in 1892, and the electric subway with independently powered centrally-controlled cars. The latter were first installed in 1892 in Chicago by
3388-474: The electrochemical battery by Alessandro Volta in 1799 made possible the production of persistent electric currents. Hans Christian Ørsted discovered in 1820 that an electric current creates a magnetic field, which can exert a force on a magnet. It only took a few weeks for André-Marie Ampère to develop the first formulation of the electromagnetic interaction and present the Ampère's force law , that described
3465-406: The excess passengers, and supply the energy lost to friction by the cars' wheels and the pulleys. For passenger comfort, funicular carriages are often (although not always) constructed so that the floor of the passenger deck is horizontal, and not necessarily parallel to the sloped track. In some installations, the cars are also attached to a second cable – bottom towrope – which runs through
3542-472: The first device to contain the three main components of practical DC motors: the stator , rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings. The first commutator DC electric motor capable of turning machinery was invented by English scientist William Sturgeon in 1832. Following Sturgeon's work,
3619-434: The friction between the bullwheel grooves and the cable. For emergency and service purposes two sets of brakes are used at the engine room: the emergency brake directly grips the bullwheel, and the service brake is mounted at the high speed shaft of the gear. In case of an emergency the cars are also equipped with spring-applied, hydraulically opened rail brakes. The first funicular caliper brakes which clamp each side of
3696-586: The inability to operate motors on AC. The first alternating-current commutatorless induction motor was invented by Galileo Ferraris in 1885. Ferraris was able to improve his first design by producing more advanced setups in 1886. In 1888, the Royal Academy of Science of Turin published Ferraris's research detailing the foundations of motor operation, while concluding at that time that "the apparatus based on that principle could not be of any commercial importance as motor." Possible industrial development
3773-414: The inboard wheels are unflanged (and usually wider to allow them to roll over the turnouts more easily). The double-flanged wheels keep the carriages bound to one specific rail at all times. One car has the flanged wheels on the left-hand side, so it follows the leftmost rail, forcing it to run via the left branch of the passing loop; similarly, the other car has them on the right-hand side, meaning it follows
3850-428: The incline. In most modern funiculars, neither of the two carriages is equipped with an engine of its own. Instead, the propulsion is provided by an electric motor in the engine room (typically at the upper end of the track); the motor is linked via a speed-reducing gearbox to a large pulley – a drive bullwheel – which then controls the movement of the haul rope using friction. Some early funiculars were powered in
3927-474: The interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates in reverse, converting mechanical energy into electrical energy. Electric motors can be powered by direct current (DC) sources, such as from batteries or rectifiers , or by alternating current (AC) sources, such as
SECTION 50
#17327805696924004-644: The load are exerted beyond the outermost bearing, the load is said to be overhung. The rotor is supported by bearings , which allow the rotor to turn on its axis by transferring the force of axial and radial loads from the shaft to the motor housing. A DC motor is usually supplied through a split ring commutator as described above. AC motors' commutation can be achieved using either a slip ring commutator or external commutation. It can be fixed-speed or variable-speed control type, and can be synchronous or asynchronous. Universal motors can run on either AC or DC. DC motors can be operated at variable speeds by adjusting
4081-546: The magnet, showing that the current gave rise to a close circular magnetic field around the wire. Faraday published the results of his discovery in the Quarterly Journal of Science , and sent copies of his paper along with pocket-sized models of his device to colleagues around the world so they could also witness the phenomenon of electromagnetic rotations. This motor is often demonstrated in physics experiments, substituting brine for (toxic) mercury. Barlow's wheel
4158-459: The passing loop); this procedure also sets the route for the next trip in the opposite direction. The Great Orme Tramway is an example of a funicular that utilizes this system. Another turnout system, known as the Abt switch, involves no moving parts on the track at all. Instead, the carriages are built with an unconventional wheelset design: the outboard wheels have flanges on both sides, whereas
4235-485: The point of use, and improving power transmission efficiency. Electric motors applied in agriculture eliminated human and animal muscle power from such tasks as handling grain or pumping water. Household uses (like in washing machines, dishwashers, fans, air conditioners and refrigerators (replacing ice boxes ) of electric motors reduced heavy labor in the home and made higher standards of convenience, comfort and safety possible. Today, electric motors consume more than half of
4312-485: The production of mechanical force by the interaction of an electric current and a magnetic field. Michael Faraday gave the first demonstration of the effect with a rotary motion on 3 September 1821 in the basement of the Royal Institution . A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around
4389-526: The rack and pinion system engaged with the rack mounted between the rails. The Bom Jesus funicular built in 1882 near Braga , Portugal is one of the extant systems of this type. Another example, the Fribourg funicular in Fribourg , Switzerland built in 1899, is of particular interest as it utilizes waste water, coming from a sewage plant at the upper part of the city. Some funiculars of this type were later converted to electrical power. For example,
4466-529: The rightmost rail and runs on the right branch of the loop. This system was invented by Carl Roman Abt and first implemented on the Lugano Città–Stazione funicular in Switzerland in 1886; since then, the Abt turnout has gained popularity, becoming a standard for modern funiculars. The lack of moving parts on the track makes this system cost-effective and reliable compared to other systems. The majority of funiculars have two stations, one at each end of
4543-428: The rotor and stator ferromagnetic cores have projections called poles that face each other. Wire is wound around each pole below the pole face, which become north or south poles when current flows through the wire. In a nonsalient-pole (distributed field or round-rotor) motor, the ferromagnetic core is a smooth cylinder, with the windings distributed evenly in slots around the circumference. Supplying alternating current in
4620-465: The rotor and the stator. The product between these two fields gives rise to a force and thus a torque on the motor shaft. One or both of these fields changes as the rotor turns. This is done by switching the poles on and off at the right time, or varying the strength of the pole. Motors can be designed to operate on DC current, on AC current, or some types can work on either. AC motors can be either asynchronous or synchronous. Synchronous motors require
4697-402: The rotor, which moves, and the stator, which does not. Electrically, the motor consists of two parts, the field magnets and the armature, one of which is attached to the rotor and the other to the stator. Together they form a magnetic circuit . The magnets create a magnetic field that passes through the armature. These can be electromagnets or permanent magnets . The field magnet is usually on
SECTION 60
#17327805696924774-423: The same way, but using steam engines or other types of motor. The bullwheel has two grooves: after the first half turn around it the cable returns via an auxiliary pulley. This arrangement has the advantage of having twice the contact area between the cable and the groove, and returning the downward-moving cable in the same plane as the upward-moving one. Modern installations also use high friction liners to enhance
4851-595: The space required for building a funicular, reducing grading costs on mountain slopes and property costs for urban funiculars. These layouts enabled a funicular boom in the latter half of the 19th century. Currently, the United States' oldest and steepest funicular in continuous use is the Monongahela Incline located in Pittsburgh, Pennsylvania . Construction began in 1869 and officially opened 28 May 1870 for passenger use. The Monongahela incline also has
4928-454: The stator and the armature on the rotor, but these may be reversed. The rotor is the moving part that delivers the mechanical power. The rotor typically holds conductors that carry currents, on which the magnetic field of the stator exerts force to turn the shaft. The stator surrounds the rotor, and usually holds field magnets, which are either electromagnets (wire windings around a ferromagnetic iron core) or permanent magnets . These create
5005-435: The stator in plastic resin to prevent corrosion and/or reduce conducted noise. An air gap between the stator and rotor allows it to turn. The width of the gap has a significant effect on the motor's electrical characteristics. It is generally made as small as possible, as a large gap weakens performance. Conversely, gaps that are too small may create friction in addition to noise. The armature consists of wire windings on
5082-406: The torque applied to the rotor is always in the same direction. Without this reversal, the direction of torque on each rotor winding would reverse with each half turn, stopping the rotor. Commutated motors have been mostly replaced by brushless motors , permanent magnet motors , and induction motors . The motor shaft extends outside of the motor, where it satisfies the load. Because the forces of
5159-534: The track. However, some systems have been built with additional intermediate stations . Because of the nature of a funicular system, intermediate stations are usually built symmetrically about the mid-point; this allows both cars to call simultaneously at a station. Examples of funiculars with more than two stations include the Wellington Cable Car in New Zealand (five stations, including one at
5236-663: The voltage applied to the terminals or by using pulse-width modulation (PWM). AC motors operated at a fixed speed are generally powered directly from the grid or through motor soft starters . AC motors operated at variable speeds are powered with various power inverter , variable-frequency drive or electronic commutator technologies. The term electronic commutator is usually associated with self-commutated brushless DC motor and switched reluctance motor applications. Electric motors operate on one of three physical principles: magnetism , electrostatics and piezoelectricity . In magnetic motors, magnetic fields are formed in both
5313-406: The winding, further increasing the efficiency. In 1886, Frank Julian Sprague invented the first practical DC motor, a non-sparking device that maintained relatively constant speed under variable loads. Other Sprague electric inventions about this time greatly improved grid electric distribution (prior work done while employed by Thomas Edison ), allowed power from electric motors to be returned to
5390-431: The windings creates poles in the core that rotate continuously. A shaded-pole motor has a winding around part of the pole that delays the phase of the magnetic field for that pole. A commutator is a rotary electrical switch that supplies current to the rotor. It periodically reverses the flow of current in the rotor windings as the shaft rotates. It consists of a cylinder composed of multiple metal contact segments on
5467-417: Was achieved to allow movement, and a few such funiculars still exist and operate in the same way. The car at the top of the hill is loaded with water until it is heavier than the car at the bottom, causing it to descend the hill and pull up the other car. The water is drained at the bottom, and the process repeats with the cars exchanging roles. The movement is controlled by a brakeman using the brake handle of
5544-508: Was an early refinement to this Faraday demonstration, although these and similar homopolar motors remained unsuited to practical application until late in the century. In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils . After Jedlik solved the technical problems of continuous rotation with the invention of the commutator , he called his early devices "electromagnetic self-rotors". Although they were used only for teaching, in 1828 Jedlik demonstrated
5621-449: Was envisioned by Nikola Tesla , who invented independently his induction motor in 1887 and obtained a patent in May 1888. In the same year, Tesla presented his paper A New System of Alternate Current Motors and Transformers to the AIEE that described three patented two-phase four-stator-pole motor types: one with a four-pole rotor forming a non-self-starting reluctance motor , another with
5698-458: Was found not to be suitable for street cars, but Westinghouse engineers successfully adapted it to power a mining operation in Telluride, Colorado in 1891. Westinghouse achieved its first practical induction motor in 1892 and developed a line of polyphase 60 hertz induction motors in 1893, but these early Westinghouse motors were two-phase motors with wound rotors. B.G. Lamme later developed
5775-630: Was not damaged in World War II , but it was out of service from 1984 to 1992 due to reconstruction. In 1990 and 2002, extensive repair works took place and there is now a new lookout point on the roof of the upper station. The Schwebebahn is one of two funicular railways in Dresden, the other being the much more conventional Dresden Cable Car . Both lines are operated by the Dresdner Verkehrsbetriebe AG , who also operate
5852-438: Was not practical because of two-phase pulsations, which prompted him to persist in his three-phase work. The General Electric Company began developing three-phase induction motors in 1891. By 1896, General Electric and Westinghouse signed a cross-licensing agreement for the bar-winding-rotor design, later called the squirrel-cage rotor . Induction motor improvements flowing from these inventions and innovations were such that
5929-765: Was used for the first time in 1879 when the Giessbach Funicular opened in Switzerland . In the United States, the first funicular to use a two-rail layout was the Telegraph Hill Railroad in San Francisco, which was in operation from 1884 until 1886. The Mount Lowe Railway in Altadena, California, was the first mountain railway in the United States to use the three-rail layout. Three- and two-rail layouts considerably reduced
#691308