96-459: Endpoint security or endpoint protection is an approach to the protection of computer networks that are remotely bridged to client devices. The connection of endpoint devices such as laptops , tablets , mobile phones , and other wireless devices to corporate networks creates attack paths for security threats. Endpoint security attempts to ensure that such devices follow compliance to standards . The endpoint security space has evolved since
192-414: A core surrounded by a cladding layer, both of which are made of dielectric materials. To confine the optical signal in the core, the refractive index of the core must be greater than that of the cladding. The boundary between the core and cladding may either be abrupt, in step-index fiber , or gradual, in graded-index fiber . Light can be fed into optical fibers using lasers or LEDs . Fiber
288-756: A protocol stack , often constructed per the OSI model, communications functions are divided up into protocol layers, where each layer leverages the services of the layer below it until the lowest layer controls the hardware that sends information across the media. The use of protocol layering is ubiquitous across the field of computer networking. An important example of a protocol stack is HTTP (the World Wide Web protocol) running over TCP over IP (the Internet protocols) over IEEE 802.11 (the Wi-Fi protocol). This stack
384-411: A wavelength shifter collect scintillation light in physics experiments . Fiber-optic sights for handguns, rifles, and shotguns use pieces of optical fiber to improve the visibility of markings on the sight. An optical fiber is a cylindrical dielectric waveguide ( nonconducting waveguide) that transmits light along its axis through the process of total internal reflection. The fiber consists of
480-426: A 16,000-kilometer distance, means that there is a minimum delay of 80 milliseconds (about 1 12 {\displaystyle {\tfrac {1}{12}}} of a second) between when one caller speaks and the other hears. When light traveling in an optically dense medium hits a boundary at a steep angle of incidence (larger than the critical angle for the boundary), the light is completely reflected. This
576-492: A branch of computer science , computer engineering , and telecommunications , since it relies on the theoretical and practical application of the related disciplines. Computer networking was influenced by a wide array of technological developments and historical milestones. Computer networks enhance how users communicate with each other by using various electronic methods like email, instant messaging, online chat, voice and video calls, and video conferencing. Networks also enable
672-423: A cladding made of pure silica, with an index of 1.444 at 1500 nm, and a core of doped silica with an index around 1.4475. The larger the index of refraction, the slower light travels in that medium. From this information, a simple rule of thumb is that a signal using optical fiber for communication will travel at around 200,000 kilometers per second. Thus a phone call carried by fiber between Sydney and New York,
768-401: A computer network can include personal computers , servers , networking hardware , or other specialized or general-purpose hosts . They are identified by network addresses and may have hostnames . Hostnames serve as memorable labels for the nodes and are rarely changed after initial assignment. Network addresses serve for locating and identifying the nodes by communication protocols such as
864-450: A corporate network. This allows the network administrator to restrict the use of sensitive data as well as certain website access to specific users, to maintain, and comply with the organization's policies and standards. The components involved in aligning the endpoint security management systems include a virtual private network (VPN) client, an operating system and an updated endpoint agent. Computer devices that are not in compliance with
960-451: A digital audio optical connection. This allows the streaming of audio over light, using the S/PDIF protocol over an optical TOSLINK connection. Fibers have many uses in remote sensing . In some applications, the fiber itself is the sensor (the fibers channel optical light to a processing device that analyzes changes in the light's characteristics). In other cases, fiber is used to connect
1056-503: A diverse set of networking capabilities. The protocols have a flat addressing scheme. They operate mostly at layers 1 and 2 of the OSI model. For example, MAC bridging ( IEEE 802.1D ) deals with the routing of Ethernet packets using a Spanning Tree Protocol . IEEE 802.1Q describes VLANs , and IEEE 802.1X defines a port-based network access control protocol, which forms the basis for the authentication mechanisms used in VLANs (but it
SECTION 10
#17327909287281152-440: A large, congested network into an aggregation of smaller, more efficient networks. A router is an internetworking device that forwards packets between networks by processing the addressing or routing information included in the packet. The routing information is often processed in conjunction with the routing table . A router uses its routing table to determine where to forward packets and does not require broadcasting packets which
1248-522: A lasting impact on structures . It is based on the principle of measuring analog attenuation. In spectroscopy , optical fiber bundles transmit light from a spectrometer to a substance that cannot be placed inside the spectrometer itself, in order to analyze its composition. A spectrometer analyzes substances by bouncing light off and through them. By using fibers, a spectrometer can be used to study objects remotely. An optical fiber doped with certain rare-earth elements such as erbium can be used as
1344-440: A multi-port bridge. Switches normally have numerous ports, facilitating a star topology for devices, and for cascading additional switches. Bridges and switches operate at the data link layer (layer 2) of the OSI model and bridge traffic between two or more network segments to form a single local network. Both are devices that forward frames of data between ports based on the destination MAC address in each frame. They learn
1440-423: A network in an office building (see fiber to the office ), fiber-optic cabling can save space in cable ducts. This is because a single fiber can carry much more data than electrical cables such as standard category 5 cable , which typically runs at 100 Mbit/s or 1 Gbit/s speeds. Fibers are often also used for short-distance connections between devices. For example, most high-definition televisions offer
1536-432: A network, but the topology of interconnections of a network can significantly affect its throughput and reliability. With many technologies, such as bus or star networks, a single failure can cause the network to fail entirely. In general, the more interconnections there are, the more robust the network is; but the more expensive it is to install. Therefore, most network diagrams are arranged by their network topology which
1632-457: A repeater hub assists with collision detection and fault isolation for the network. Hubs and repeaters in LANs have been largely obsoleted by modern network switches. Network bridges and network switches are distinct from a hub in that they only forward frames to the ports involved in the communication whereas a hub forwards to all ports. Bridges only have two ports but a switch can be thought of as
1728-474: A sensor to a measurement system. Optical fibers can be used as sensors to measure strain , temperature , pressure , and other quantities by modifying a fiber so that the property being measured modulates the intensity , phase , polarization , wavelength , or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest since only a simple source and detector are required. A particularly useful feature of such fiber optic sensors
1824-595: A service (SaaS), where the security programs and the host server are maintained remotely by the merchant. In the payment card industry, the contribution from both the delivery models is that the server program verifies and authenticates the user login credentials and performs a device scan to check if it complies with designated corporate security standards prior to permitting network access. In addition to protecting an organization's endpoints from potential threats, endpoint security allows IT admins to monitor operation functions and data backup strategies. Endpoint security
1920-403: A standard voice telephone line. Modems are still commonly used for telephone lines, using a digital subscriber line technology and cable television systems using DOCSIS technology. A firewall is a network device or software for controlling network security and access rules. Firewalls are inserted in connections between secure internal networks and potentially insecure external networks such as
2016-649: A target without a clear line-of-sight path. Many microscopes use fiber-optic light sources to provide intense illumination of samples being studied. Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope , which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures. Industrial endoscopes (see fiberscope or borescope ) are used for inspecting anything hard to reach, such as jet engine interiors. In some buildings, optical fibers route sunlight from
SECTION 20
#17327909287282112-877: A transmission medium. Power line communication uses a building's power cabling to transmit data. The following classes of wired technologies are used in computer networking. Network connections can be established wirelessly using radio or other electromagnetic means of communication. The last two cases have a large round-trip delay time , which gives slow two-way communication but does not prevent sending large amounts of information (they can have high throughput). Apart from any physical transmission media, networks are built from additional basic system building blocks, such as network interface controllers , repeaters , hubs , bridges , switches , routers , modems, and firewalls . Any particular piece of equipment will frequently contain multiple building blocks and so may perform multiple functions. A network interface controller (NIC)
2208-524: A transparent cladding. Later that same year, Harold Hopkins and Narinder Singh Kapany at Imperial College in London succeeded in making image-transmitting bundles with over 10,000 fibers, and subsequently achieved image transmission through a 75 cm long bundle which combined several thousand fibers. The first practical fiber optic semi-flexible gastroscope was patented by Basil Hirschowitz , C. Wilbur Peters, and Lawrence E. Curtiss, researchers at
2304-495: A variety of different sources, primarily to support circuit-switched digital telephony . However, due to its protocol neutrality and transport-oriented features, SONET/SDH also was the obvious choice for transporting Asynchronous Transfer Mode (ATM) frames. Asynchronous Transfer Mode (ATM) is a switching technique for telecommunication networks. It uses asynchronous time-division multiplexing and encodes data into small, fixed-sized cells . This differs from other protocols such as
2400-657: A virtual system of links that run on top of the Internet . Overlay networks have been used since the early days of networking, back when computers were connected via telephone lines using modems, even before data networks were developed. The most striking example of an overlay network is the Internet itself. The Internet itself was initially built as an overlay on the telephone network . Even today, each Internet node can communicate with virtually any other through an underlying mesh of sub-networks of wildly different topologies and technologies. Address resolution and routing are
2496-522: Is computer hardware that connects the computer to the network media and has the ability to process low-level network information. For example, the NIC may have a connector for plugging in a cable, or an aerial for wireless transmission and reception, and the associated circuitry. In Ethernet networks, each NIC has a unique Media Access Control (MAC) address —usually stored in the controller's permanent memory. To avoid address conflicts between network devices,
2592-468: Is a mechanical splice , where the ends of the fibers are held in contact by mechanical force. Temporary or semi-permanent connections are made by means of specialized optical fiber connectors . The field of applied science and engineering concerned with the design and application of optical fibers is known as fiber optics . The term was coined by Indian-American physicist Narinder Singh Kapany . Daniel Colladon and Jacques Babinet first demonstrated
2688-420: Is a constantly evolving field, primarily because adversaries never cease innovating their strategies. A foundational step in fortifying defenses is to grasp the myriad pathways adversaries exploit to compromise endpoint devices. Here are a few of the most used methods: The protection of endpoint devices has become more crucial than ever. Understanding the different components that contribute to endpoint protection
2784-470: Is a formatted unit of data carried by a packet-switched network . Packets consist of two types of data: control information and user data (payload). The control information provides data the network needs to deliver the user data, for example, source and destination network addresses , error detection codes, and sequencing information. Typically, control information is found in packet headers and trailers , with payload data in between. With packets,
2880-427: Is a set of computers sharing resources located on or provided by network nodes . Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical , and wireless radio-frequency methods that may be arranged in a variety of network topologies . The nodes of
2976-422: Is a virtual network that is built on top of another network. Nodes in the overlay network are connected by virtual or logical links. Each link corresponds to a path, perhaps through many physical links, in the underlying network. The topology of the overlay network may (and often does) differ from that of the underlying one. For example, many peer-to-peer networks are overlay networks. They are organized as nodes of
Endpoint security - Misplaced Pages Continue
3072-453: Is a way of measuring the speed of light in a material. Light travels fastest in a vacuum , such as in outer space. The speed of light in vacuum is about 300,000 kilometers (186,000 miles) per second. The refractive index of a medium is calculated by dividing the speed of light in vacuum by the speed of light in that medium. The refractive index of vacuum is therefore 1, by definition. A typical single-mode fiber used for telecommunications has
3168-566: Is also found in WLANs ) – it is what the home user sees when the user has to enter a "wireless access key". Ethernet is a family of technologies used in wired LANs. It is described by a set of standards together called IEEE 802.3 published by the Institute of Electrical and Electronics Engineers. Wireless LAN based on the IEEE 802.11 standards, also widely known as WLAN or WiFi, is probably
3264-478: Is an electronic device that receives a network signal , cleans it of unnecessary noise and regenerates it. The signal is retransmitted at a higher power level, or to the other side of obstruction so that the signal can cover longer distances without degradation. In most twisted-pair Ethernet configurations, repeaters are required for cable that runs longer than 100 meters. With fiber optics, repeaters can be tens or even hundreds of kilometers apart. Repeaters work on
3360-411: Is bent towards the perpendicular ... When the ray passes from water to air it is bent from the perpendicular... If the angle which the ray in water encloses with the perpendicular to the surface be greater than 48 degrees, the ray will not quit the water at all: it will be totally reflected at the surface... The angle which marks the limit where total reflection begins is called the limiting angle of
3456-412: Is called multi-mode fiber , from the electromagnetic analysis (see below). In a step-index multi-mode fiber, rays of light are guided along the fiber core by total internal reflection. Rays that meet the core-cladding boundary at an angle (measured relative to a line normal to the boundary) greater than the critical angle for this boundary, are completely reflected. The critical angle is determined by
3552-418: Is called total internal reflection . This effect is used in optical fibers to confine light in the core. Most modern optical fiber is weakly guiding , meaning that the difference in refractive index between the core and the cladding is very small (typically less than 1%). Light travels through the fiber core, bouncing back and forth off the boundary between the core and cladding. Because the light must strike
3648-507: Is designed for use in the near infrared . Multi-mode fiber, by comparison, is manufactured with core diameters as small as 50 micrometers and as large as hundreds of micrometers. Some special-purpose optical fiber is constructed with a non-cylindrical core or cladding layer, usually with an elliptical or rectangular cross-section. These include polarization-maintaining fiber used in fiber optic sensors and fiber designed to suppress whispering gallery mode propagation. Photonic-crystal fiber
3744-614: Is essential for developing a robust defense strategy. Here are the key elements integral to securing endpoints: An endpoint protection platform (EPP) is a solution deployed on endpoint devices to prevent file-based malware attacks, detect malicious activity, and provide the investigation and remediation capabilities needed to respond to dynamic security incidents and alerts. Several vendors produce systems converging EPP systems with endpoint detection and response (EDR) platforms – systems focused on threat detection, response, and unified monitoring. Computer network A computer network
3840-565: Is far less than in electrical copper cables, leading to long-haul fiber connections with repeater distances of 70–150 kilometers (43–93 mi). Two teams, led by David N. Payne of the University of Southampton and Emmanuel Desurvire at Bell Labs , developed the erbium-doped fiber amplifier , which reduced the cost of long-distance fiber systems by reducing or eliminating optical-electrical-optical repeaters, in 1986 and 1987 respectively. The emerging field of photonic crystals led to
3936-564: Is immune to electrical interference as there is no cross-talk between signals in different cables and no pickup of environmental noise. Information traveling inside the optical fiber is even immune to electromagnetic pulses generated by nuclear devices. Fiber cables do not conduct electricity, which makes fiber useful for protecting communications equipment in high voltage environments such as power generation facilities or applications prone to lightning strikes. The electrical isolation also prevents problems with ground loops . Because there
Endpoint security - Misplaced Pages Continue
4032-418: Is important in fiber optic communication. This is more complex than joining electrical wire or cable and involves careful cleaving of the fibers, precise alignment of the fiber cores, and the coupling of these aligned cores. For applications that demand a permanent connection a fusion splice is common. In this technique, an electric arc is used to melt the ends of the fibers together. Another common technique
4128-412: Is inefficient for very big networks. Modems (modulator-demodulator) are used to connect network nodes via wire not originally designed for digital network traffic, or for wireless. To do this one or more carrier signals are modulated by the digital signal to produce an analog signal that can be tailored to give the required properties for transmission. Early modems modulated audio signals sent over
4224-611: Is kept in the core by the phenomenon of total internal reflection which causes the fiber to act as a waveguide . Fibers that support many propagation paths or transverse modes are called multi-mode fibers , while those that support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a wider core diameter and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,050 meters (3,440 ft). Being able to join optical fibers with low loss
4320-405: Is made with a regular pattern of index variation (often in the form of cylindrical holes that run along the length of the fiber). Such fiber uses diffraction effects instead of or in addition to total internal reflection, to confine light to the fiber's core. The properties of the fiber can be tailored to a wide variety of applications. Attenuation in fiber optics, also known as transmission loss,
4416-412: Is monitored and analyzed for disturbances. This return signal is digitally processed to detect disturbances and trip an alarm if an intrusion has occurred. Optical fibers are widely used as components of optical chemical sensors and optical biosensors . Optical fiber can be used to transmit power using a photovoltaic cell to convert the light into electricity. While this method of power transmission
4512-439: Is no electricity in optical cables that could potentially generate sparks, they can be used in environments where explosive fumes are present. Wiretapping (in this case, fiber tapping ) is more difficult compared to electrical connections. Fiber cables are not targeted for metal theft . In contrast, copper cable systems use large amounts of copper and have been targeted since the 2000s commodities boom . The refractive index
4608-478: Is not as efficient as conventional ones, it is especially useful in situations where it is desirable not to have a metallic conductor as in the case of use near MRI machines, which produce strong magnetic fields. Other examples are for powering electronics in high-powered antenna elements and measurement devices used in high-voltage transmission equipment. Optical fibers are used as light guides in medical and other applications where bright light needs to be shone on
4704-418: Is that they can, if required, provide distributed sensing over distances of up to one meter. Distributed acoustic sensing is one example of this. In contrast, highly localized measurements can be provided by integrating miniaturized sensing elements with the tip of the fiber. These can be implemented by various micro- and nanofabrication technologies, such that they do not exceed the microscopic boundary of
4800-422: Is the numerical aperture (NA) of the fiber. Fiber with a larger NA requires less precision to splice and work with than fiber with a smaller NA. The size of this acceptance cone is a function of the refractive index difference between the fiber's core and cladding. Single-mode fiber has a small NA. Fiber with large core diameter (greater than 10 micrometers) may be analyzed by geometrical optics . Such fiber
4896-578: Is the map of logical interconnections of network hosts. Common topologies are: The physical layout of the nodes in a network may not necessarily reflect the network topology. As an example, with FDDI , the network topology is a ring, but the physical topology is often a star, because all neighboring connections can be routed via a central physical location. Physical layout is not completely irrelevant, however, as common ducting and equipment locations can represent single points of failure due to issues like fires, power failures and flooding. An overlay network
SECTION 50
#17327909287284992-474: Is the measurement of temperature inside jet engines by using a fiber to transmit radiation into a pyrometer outside the engine. Extrinsic sensors can be used in the same way to measure the internal temperature of electrical transformers , where the extreme electromagnetic fields present make other measurement techniques impossible. Extrinsic sensors measure vibration, rotation, displacement, velocity, acceleration, torque, and torsion. A solid-state version of
5088-840: Is the process of selecting network paths to carry network traffic. Routing is performed for many kinds of networks, including circuit switching networks and packet switched networks. Optical fiber An optical fiber , or optical fibre , is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications , where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss and are immune to electromagnetic interference . Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in
5184-428: Is the reduction in the intensity of the light signal as it travels through the transmission medium. Attenuation coefficients in fiber optics are usually expressed in units of dB/km. The medium is usually a fiber of silica glass that confines the incident light beam within. Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting
5280-484: Is typical in deployed systems. Through the use of wavelength-division multiplexing (WDM), each fiber can carry many independent channels, each using a different wavelength of light. The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the forward error correction (FEC) overhead, multiplied by the number of channels (usually up to 80 in commercial dense WDM systems as of 2008 ). For short-distance applications, such as
5376-402: Is used as a medium for telecommunication and computer networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because infrared light propagates through the fiber with much lower attenuation compared to electricity in electrical cables. This allows long distances to be spanned with few repeaters . 10 or 40 Gbit/s
5472-459: Is used between the wireless router and the home user's personal computer when the user is surfing the web. There are many communication protocols, a few of which are described below. The Internet protocol suite , also called TCP/IP, is the foundation of all modern networking. It offers connection-less and connection-oriented services over an inherently unreliable network traversed by datagram transmission using Internet protocol (IP). At its core,
5568-462: The Institute of Electrical and Electronics Engineers (IEEE) maintains and administers MAC address uniqueness. The size of an Ethernet MAC address is six octets . The three most significant octets are reserved to identify NIC manufacturers. These manufacturers, using only their assigned prefixes, uniquely assign the three least-significant octets of every Ethernet interface they produce. A repeater
5664-736: The Internet Protocol . Computer networks may be classified by many criteria, including the transmission medium used to carry signals, bandwidth , communications protocols to organize network traffic , the network size, the topology, traffic control mechanisms, and organizational intent. Computer networks support many applications and services , such as access to the World Wide Web , digital video and audio , shared use of application and storage servers , printers and fax machines , and use of email and instant messaging applications. Computer networking may be considered
5760-471: The University of Michigan , in 1956. In the process of developing the gastroscope, Curtiss produced the first glass-clad fibers; previous optical fibers had relied on air or impractical oils and waxes as the low-index cladding material. Kapany coined the term fiber optics after writing a 1960 article in Scientific American that introduced the topic to a wide audience. He subsequently wrote
5856-416: The bandwidth of the transmission medium can be better shared among users than if the network were circuit switched . When one user is not sending packets, the link can be filled with packets from other users, and so the cost can be shared, with relatively little interference, provided the link is not overused. Often the route a packet needs to take through a network is not immediately available. In that case,
SECTION 60
#17327909287285952-405: The gain medium of a fiber laser or optical amplifier . Rare-earth-doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is optically pumped with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through
6048-439: The 2010s away from limited antivirus software and into more advanced, comprehensive defenses. This includes next-generation antivirus , threat detection, investigation, and response, device management , data loss prevention (DLP), patch management , and other considerations to face evolving threats . Endpoint security management is a software approach that helps to identify and manage the users' computer and data access over
6144-440: The Internet protocol suite or Ethernet that use variable-sized packets or frames . ATM has similarities with both circuit and packet switched networking. This makes it a good choice for a network that must handle both traditional high-throughput data traffic, and real-time, low-latency content such as voice and video. ATM uses a connection-oriented model in which a virtual circuit must be established between two endpoints before
6240-574: The Internet. Firewalls are typically configured to reject access requests from unrecognized sources while allowing actions from recognized ones. The vital role firewalls play in network security grows in parallel with the constant increase in cyber attacks . A communication protocol is a set of rules for exchanging information over a network. Communication protocols have various characteristics. They may be connection-oriented or connectionless , they may use circuit mode or packet switching, and they may use hierarchical addressing or flat addressing. In
6336-627: The actual data exchange begins. ATM still plays a role in the last mile , which is the connection between an Internet service provider and the home user. There are a number of different digital cellular standards, including: Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS), cdmaOne , CDMA2000 , Evolution-Data Optimized (EV-DO), Enhanced Data Rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), Digital Enhanced Cordless Telecommunications (DECT), Digital AMPS (IS-136/TDMA), and Integrated Digital Enhanced Network (iDEN). Routing
6432-468: The association of physical ports to MAC addresses by examining the source addresses of received frames and only forward the frame when necessary. If an unknown destination MAC is targeted, the device broadcasts the request to all ports except the source, and discovers the location from the reply. Bridges and switches divide the network's collision domain but maintain a single broadcast domain. Network segmentation through bridging and switching helps break down
6528-564: The attenuation in fibers available at the time was caused by impurities that could be removed, rather than by fundamental physical effects such as scattering. They correctly and systematically theorized the light-loss properties for optical fiber and pointed out the right material to use for such fibers— silica glass with high purity. This discovery earned Kao the Nobel Prize in Physics in 2009. The crucial attenuation limit of 20 dB/km
6624-416: The boundary with an angle greater than the critical angle, only light that enters the fiber within a certain range of angles can travel down the fiber without leaking out. This range of angles is called the acceptance cone of the fiber. There is a maximum angle from the fiber axis at which light may enter the fiber so that it will propagate, or travel, in the core of the fiber. The sine of this maximum angle
6720-457: The cameras had to be supervised by someone with an appropriate security clearance. Charles K. Kao and George A. Hockham of the British company Standard Telephones and Cables (STC) were the first to promote the idea that the attenuation in optical fibers could be reduced below 20 decibels per kilometer (dB/km), making fibers a practical communication medium, in 1965. They proposed that
6816-416: The case of a fiberscope . Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers . Glass optical fibers are typically made by drawing , while plastic fibers can be made either by drawing or by extrusion . Optical fibers typically include a core surrounded by a transparent cladding material with a lower index of refraction . Light
6912-407: The core-cladding boundary. The resulting curved paths reduce multi-path dispersion because high-angle rays pass more through the lower-index periphery of the core, rather than the high-index center. The index profile is chosen to minimize the difference in axial propagation speeds of the various rays in the fiber. This ideal index profile is very close to a parabolic relationship between the index and
7008-442: The development in 1991 of photonic-crystal fiber , which guides light by diffraction from a periodic structure, rather than by total internal reflection. The first photonic crystal fibers became commercially available in 2000. Photonic crystal fibers can carry higher power than conventional fibers and their wavelength-dependent properties can be manipulated to improve performance. These fibers can have hollow cores. Optical fiber
7104-467: The difference in the index of refraction between the core and cladding materials. Rays that meet the boundary at a low angle are refracted from the core into the cladding where they terminate. The critical angle determines the acceptance angle of the fiber, often reported as a numerical aperture . A high numerical aperture allows light to propagate down the fiber in rays both close to the axis and at various angles, allowing efficient coupling of light into
7200-445: The distance from the axis. Fiber with a core diameter less than about ten times the wavelength of the propagating light cannot be modeled using geometric optics. Instead, it must be analyzed as an electromagnetic waveguide structure, according to Maxwell's equations as reduced to the electromagnetic wave equation . As an optical waveguide, the fiber supports one or more confined transverse modes by which light can propagate along
7296-621: The doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is stimulated emission . Optical fiber is also widely exploited as a nonlinear medium. The glass medium supports a host of nonlinear optical interactions, and the long interaction lengths possible in fiber facilitate a variety of phenomena, which are harnessed for applications and fundamental investigation. Conversely, fiber nonlinearity can have deleterious effects on optical signals, and measures are often required to minimize such unwanted effects. Optical fibers doped with
7392-424: The fiber tip, allowing for such applications as insertion into blood vessels via hypodermic needle. Extrinsic fiber optic sensors use an optical fiber cable , normally a multi-mode one, to transmit modulated light from either a non-fiber optical sensor—or an electronic sensor connected to an optical transmitter. A major benefit of extrinsic sensors is their ability to reach otherwise inaccessible places. An example
7488-404: The fiber. Fiber supporting only one mode is called single-mode . The waveguide analysis shows that the light energy in the fiber is not completely confined in the core. Instead, especially in single-mode fibers, a significant fraction of the energy in the bound mode travels in the cladding as an evanescent wave . The most common type of single-mode fiber has a core diameter of 8–10 micrometers and
7584-438: The fiber. However, this high numerical aperture increases the amount of dispersion as rays at different angles have different path lengths and therefore take different amounts of time to traverse the fiber. In graded-index fiber, the index of refraction in the core decreases continuously between the axis and the cladding. This causes light rays to bend smoothly as they approach the cladding, rather than reflecting abruptly from
7680-493: The first book about the new field. The first working fiber-optic data transmission system was demonstrated by German physicist Manfred Börner at Telefunken Research Labs in Ulm in 1965, followed by the first patent application for this technology in 1966. In 1968, NASA used fiber optics in the television cameras that were sent to the moon. At the time, the use in the cameras was classified confidential , and employees handling
7776-510: The guiding of light by refraction, the principle that makes fiber optics possible, in Paris in the early 1840s. John Tyndall included a demonstration of it in his public lectures in London , 12 years later. Tyndall also wrote about the property of total internal reflection in an introductory book about the nature of light in 1870: When the light passes from air into water, the refracted ray
7872-469: The gyroscope, using the interference of light, has been developed. The fiber optic gyroscope (FOG) has no moving parts and exploits the Sagnac effect to detect mechanical rotation. Common uses for fiber optic sensors include advanced intrusion detection security systems . The light is transmitted along a fiber optic sensor cable placed on a fence, pipeline, or communication cabling, and the returned signal
7968-668: The literature as the physical medium ) used to link devices to form a computer network include electrical cable , optical fiber , and free space. In the OSI model , the software to handle the media is defined at layers 1 and 2 — the physical layer and the data link layer. A widely adopted family that uses copper and fiber media in local area network (LAN) technology are collectively known as Ethernet. The media and protocol standards that enable communication between networked devices over Ethernet are defined by IEEE 802.3 . Wireless LAN standards use radio waves , others use infrared signals as
8064-665: The means that allow mapping of a fully connected IP overlay network to its underlying network. Another example of an overlay network is a distributed hash table , which maps keys to nodes in the network. In this case, the underlying network is an IP network, and the overlay network is a table (actually a map ) indexed by keys. Overlay networks have also been proposed as a way to improve Internet routing, such as through quality of service guarantees achieve higher-quality streaming media . Previous proposals such as IntServ , DiffServ , and IP multicast have not seen wide acceptance largely because they require modification of all routers in
8160-413: The medium. For water this angle is 48°27′, for flint glass it is 38°41′, while for a diamond it is 23°42′. In the late 19th century, a team of Viennese doctors guided light through bent glass rods to illuminate body cavities. Practical applications such as close internal illumination during dentistry followed, early in the twentieth century. Image transmission through tubes was demonstrated independently by
8256-415: The most well-known member of the IEEE 802 protocol family for home users today. IEEE 802.11 shares many properties with wired Ethernet. Synchronous optical networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized multiplexing protocols that transfer multiple digital bit streams over optical fiber using lasers. They were originally designed to transport circuit mode communications from
8352-729: The network. On the other hand, an overlay network can be incrementally deployed on end-hosts running the overlay protocol software, without cooperation from Internet service providers . The overlay network has no control over how packets are routed in the underlying network between two overlay nodes, but it can control, for example, the sequence of overlay nodes that a message traverses before it reaches its destination . For example, Akamai Technologies manages an overlay network that provides reliable, efficient content delivery (a kind of multicast ). Academic research includes end system multicast, resilient routing and quality of service studies, among others. The transmission media (often referred to in
8448-434: The organization's policy are provisioned with limited access to a virtual LAN . Encrypting data on endpoints, and removable storage devices help to protect against data leaks. Endpoint security systems operate on a client-server model , with the security program controlled by a centrally managed host server pinned with a client program that is installed on all the network drives. There is another model called software as
8544-444: The packet is queued and waits until a link is free. The physical link technologies of packet networks typically limit the size of packets to a certain maximum transmission unit (MTU). A longer message may be fragmented before it is transferred and once the packets arrive, they are reassembled to construct the original message. The physical or geographic locations of network nodes and links generally have relatively little effect on
8640-520: The physical layer of the OSI model but still require a small amount of time to regenerate the signal. This can cause a propagation delay that affects network performance and may affect proper function. As a result, many network architectures limit the number of repeaters used in a network, e.g., the Ethernet 5-4-3 rule . An Ethernet repeater with multiple ports is known as an Ethernet hub . In addition to reconditioning and distributing network signals,
8736-456: The protocol suite defines the addressing, identification, and routing specifications for Internet Protocol Version 4 (IPv4) and for IPv6 , the next generation of the protocol with a much enlarged addressing capability. The Internet protocol suite is the defining set of protocols for the Internet. IEEE 802 is a family of IEEE standards dealing with local area networks and metropolitan area networks. The complete IEEE 802 protocol suite provides
8832-416: The radio experimenter Clarence Hansell and the television pioneer John Logie Baird in the 1920s. In the 1930s, Heinrich Lamm showed that one could transmit images through a bundle of unclad optical fibers and used it for internal medical examinations, but his work was largely forgotten. In 1953, Dutch scientist Bram van Heel first demonstrated image transmission through bundles of optical fibers with
8928-431: The roof to other parts of the building (see nonimaging optics ). Optical-fiber lamps are used for illumination in decorative applications, including signs , art , toys and artificial Christmas trees . Optical fiber is an intrinsic part of the light-transmitting concrete building product LiTraCon . Optical fiber can also be used in structural health monitoring . This type of sensor can detect stresses that may have
9024-482: The sharing of computing resources. For example, a user can print a document on a shared printer or use shared storage devices. Additionally, networks allow for the sharing of files and information, giving authorized users access to data stored on other computers. Distributed computing leverages resources from multiple computers across a network to perform tasks collaboratively. Most modern computer networks use protocols based on packet-mode transmission. A network packet
9120-568: The speed of manufacture to over 50 meters per second, making optical fiber cables cheaper than traditional copper ones. These innovations ushered in the era of optical fiber telecommunication. The Italian research center CSELT worked with Corning to develop practical optical fiber cables, resulting in the first metropolitan fiber optic cable being deployed in Turin in 1977. CSELT also developed an early technique for splicing optical fibers, called Springroove. Attenuation in modern optical cables
9216-675: Was first achieved in 1970 by researchers Robert D. Maurer , Donald Keck , Peter C. Schultz , and Frank Zimar working for American glass maker Corning Glass Works . They demonstrated a fiber with 17 dB/km attenuation by doping silica glass with titanium . A few years later they produced a fiber with only 4 dB/km attenuation using germanium dioxide as the core dopant. In 1981, General Electric produced fused quartz ingots that could be drawn into strands 25 miles (40 km) long. Initially, high-quality optical fibers could only be manufactured at 2 meters per second. Chemical engineer Thomas Mensah joined Corning in 1983 and increased
#727272